/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2009 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef HYPERCUBE_GRAPH_H #define HYPERCUBE_GRAPH_H #include #include #include #include ///\ingroup graphs ///\file ///\brief HypercubeGraph class. namespace lemon { class HypercubeGraphBase { public: typedef HypercubeGraphBase Graph; class Node; class Edge; class Arc; public: HypercubeGraphBase() {} protected: void construct(int dim) { LEMON_ASSERT(dim >= 1, "The number of dimensions must be at least 1."); _dim = dim; _node_num = 1 << dim; _edge_num = dim * (1 << (dim-1)); } public: typedef True NodeNumTag; typedef True EdgeNumTag; typedef True ArcNumTag; int nodeNum() const { return _node_num; } int edgeNum() const { return _edge_num; } int arcNum() const { return 2 * _edge_num; } int maxNodeId() const { return _node_num - 1; } int maxEdgeId() const { return _edge_num - 1; } int maxArcId() const { return 2 * _edge_num - 1; } static Node nodeFromId(int id) { return Node(id); } static Edge edgeFromId(int id) { return Edge(id); } static Arc arcFromId(int id) { return Arc(id); } static int id(Node node) { return node._id; } static int id(Edge edge) { return edge._id; } static int id(Arc arc) { return arc._id; } Node u(Edge edge) const { int base = edge._id & ((1 << (_dim-1)) - 1); int k = edge._id >> (_dim-1); return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)); } Node v(Edge edge) const { int base = edge._id & ((1 << (_dim-1)) - 1); int k = edge._id >> (_dim-1); return ((base >> k) << (k+1)) | (base & ((1 << k) - 1)) | (1 << k); } Node source(Arc arc) const { return (arc._id & 1) == 1 ? u(arc) : v(arc); } Node target(Arc arc) const { return (arc._id & 1) == 1 ? v(arc) : u(arc); } typedef True FindEdgeTag; typedef True FindArcTag; Edge findEdge(Node u, Node v, Edge prev = INVALID) const { if (prev != INVALID) return INVALID; int d = u._id ^ v._id; int k = 0; if (d == 0) return INVALID; for ( ; (d & 1) == 0; d >>= 1) ++k; if (d >> 1 != 0) return INVALID; return (k << (_dim-1)) | ((u._id >> (k+1)) << k) | (u._id & ((1 << k) - 1)); } Arc findArc(Node u, Node v, Arc prev = INVALID) const { Edge edge = findEdge(u, v, prev); if (edge == INVALID) return INVALID; int k = edge._id >> (_dim-1); return ((u._id >> k) & 1) == 1 ? edge._id << 1 : (edge._id << 1) | 1; } class Node { friend class HypercubeGraphBase; protected: int _id; Node(int id) : _id(id) {} public: Node() {} Node (Invalid) : _id(-1) {} bool operator==(const Node node) const {return _id == node._id;} bool operator!=(const Node node) const {return _id != node._id;} bool operator<(const Node node) const {return _id < node._id;} }; class Edge { friend class HypercubeGraphBase; friend class Arc; protected: int _id; Edge(int id) : _id(id) {} public: Edge() {} Edge (Invalid) : _id(-1) {} bool operator==(const Edge edge) const {return _id == edge._id;} bool operator!=(const Edge edge) const {return _id != edge._id;} bool operator<(const Edge edge) const {return _id < edge._id;} }; class Arc { friend class HypercubeGraphBase; protected: int _id; Arc(int id) : _id(id) {} public: Arc() {} Arc (Invalid) : _id(-1) {} operator Edge() const { return _id != -1 ? Edge(_id >> 1) : INVALID; } bool operator==(const Arc arc) const {return _id == arc._id;} bool operator!=(const Arc arc) const {return _id != arc._id;} bool operator<(const Arc arc) const {return _id < arc._id;} }; void first(Node& node) const { node._id = _node_num - 1; } static void next(Node& node) { --node._id; } void first(Edge& edge) const { edge._id = _edge_num - 1; } static void next(Edge& edge) { --edge._id; } void first(Arc& arc) const { arc._id = 2 * _edge_num - 1; } static void next(Arc& arc) { --arc._id; } void firstInc(Edge& edge, bool& dir, const Node& node) const { edge._id = node._id >> 1; dir = (node._id & 1) == 0; } void nextInc(Edge& edge, bool& dir) const { Node n = dir ? u(edge) : v(edge); int k = (edge._id >> (_dim-1)) + 1; if (k < _dim) { edge._id = (k << (_dim-1)) | ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); dir = ((n._id >> k) & 1) == 0; } else { edge._id = -1; dir = true; } } void firstOut(Arc& arc, const Node& node) const { arc._id = ((node._id >> 1) << 1) | (~node._id & 1); } void nextOut(Arc& arc) const { Node n = (arc._id & 1) == 1 ? u(arc) : v(arc); int k = (arc._id >> _dim) + 1; if (k < _dim) { arc._id = (k << (_dim-1)) | ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); arc._id = (arc._id << 1) | (~(n._id >> k) & 1); } else { arc._id = -1; } } void firstIn(Arc& arc, const Node& node) const { arc._id = ((node._id >> 1) << 1) | (node._id & 1); } void nextIn(Arc& arc) const { Node n = (arc._id & 1) == 1 ? v(arc) : u(arc); int k = (arc._id >> _dim) + 1; if (k < _dim) { arc._id = (k << (_dim-1)) | ((n._id >> (k+1)) << k) | (n._id & ((1 << k) - 1)); arc._id = (arc._id << 1) | ((n._id >> k) & 1); } else { arc._id = -1; } } static bool direction(Arc arc) { return (arc._id & 1) == 1; } static Arc direct(Edge edge, bool dir) { return Arc((edge._id << 1) | (dir ? 1 : 0)); } int dimension() const { return _dim; } bool projection(Node node, int n) const { return static_cast(node._id & (1 << n)); } int dimension(Edge edge) const { return edge._id >> (_dim-1); } int dimension(Arc arc) const { return arc._id >> _dim; } static int index(Node node) { return node._id; } Node operator()(int ix) const { return Node(ix); } private: int _dim; int _node_num, _edge_num; }; typedef GraphExtender ExtendedHypercubeGraphBase; /// \ingroup graphs /// /// \brief Hypercube graph class /// /// HypercubeGraph implements a special graph type. The nodes of the /// graph are indexed with integers having at most \c dim binary digits. /// Two nodes are connected in the graph if and only if their indices /// differ only on one position in the binary form. /// This class is completely static and it needs constant memory space. /// Thus you can neither add nor delete nodes or edges, however /// the structure can be resized using resize(). /// /// This type fully conforms to the \ref concepts::Graph "Graph concept". /// Most of its member functions and nested classes are documented /// only in the concept class. /// /// This class provides constant time counting for nodes, edges and arcs. /// /// \note The type of the indices is chosen to \c int for efficiency /// reasons. Thus the maximum dimension of this implementation is 26 /// (assuming that the size of \c int is 32 bit). class HypercubeGraph : public ExtendedHypercubeGraphBase { typedef ExtendedHypercubeGraphBase Parent; public: /// \brief Constructs a hypercube graph with \c dim dimensions. /// /// Constructs a hypercube graph with \c dim dimensions. HypercubeGraph(int dim) { construct(dim); } /// \brief Resizes the graph /// /// This function resizes the graph. It fully destroys and /// rebuilds the structure, therefore the maps of the graph will be /// reallocated automatically and the previous values will be lost. void resize(int dim) { Parent::notifier(Arc()).clear(); Parent::notifier(Edge()).clear(); Parent::notifier(Node()).clear(); construct(dim); Parent::notifier(Node()).build(); Parent::notifier(Edge()).build(); Parent::notifier(Arc()).build(); } /// \brief The number of dimensions. /// /// Gives back the number of dimensions. int dimension() const { return Parent::dimension(); } /// \brief Returns \c true if the n'th bit of the node is one. /// /// Returns \c true if the n'th bit of the node is one. bool projection(Node node, int n) const { return Parent::projection(node, n); } /// \brief The dimension id of an edge. /// /// Gives back the dimension id of the given edge. /// It is in the range [0..dim-1]. int dimension(Edge edge) const { return Parent::dimension(edge); } /// \brief The dimension id of an arc. /// /// Gives back the dimension id of the given arc. /// It is in the range [0..dim-1]. int dimension(Arc arc) const { return Parent::dimension(arc); } /// \brief The index of a node. /// /// Gives back the index of the given node. /// The lower bits of the integer describes the node. static int index(Node node) { return Parent::index(node); } /// \brief Gives back a node by its index. /// /// Gives back a node by its index. Node operator()(int ix) const { return Parent::operator()(ix); } /// \brief Number of nodes. int nodeNum() const { return Parent::nodeNum(); } /// \brief Number of edges. int edgeNum() const { return Parent::edgeNum(); } /// \brief Number of arcs. int arcNum() const { return Parent::arcNum(); } /// \brief Linear combination map. /// /// This map makes possible to give back a linear combination /// for each node. It works like the \c std::accumulate function, /// so it accumulates the \c bf binary function with the \c fv first /// value. The map accumulates only on that positions (dimensions) /// where the index of the node is one. The values that have to be /// accumulated should be given by the \c begin and \c end iterators /// and the length of this range should be equal to the dimension /// number of the graph. /// ///\code /// const int DIM = 3; /// HypercubeGraph graph(DIM); /// dim2::Point base[DIM]; /// for (int k = 0; k < DIM; ++k) { /// base[k].x = rnd(); /// base[k].y = rnd(); /// } /// HypercubeGraph::HyperMap > /// pos(graph, base, base + DIM, dim2::Point(0.0, 0.0)); ///\endcode /// /// \see HypercubeGraph template > class HyperMap { public: /// \brief The key type of the map typedef Node Key; /// \brief The value type of the map typedef T Value; /// \brief Constructor for HyperMap. /// /// Construct a HyperMap for the given graph. The values that have /// to be accumulated should be given by the \c begin and \c end /// iterators and the length of this range should be equal to the /// dimension number of the graph. /// /// This map accumulates the \c bf binary function with the \c fv /// first value on that positions (dimensions) where the index of /// the node is one. template HyperMap(const Graph& graph, It begin, It end, T fv = 0, const BF& bf = BF()) : _graph(graph), _values(begin, end), _first_value(fv), _bin_func(bf) { LEMON_ASSERT(_values.size() == graph.dimension(), "Wrong size of range"); } /// \brief The partial accumulated value. /// /// Gives back the partial accumulated value. Value operator[](const Key& k) const { Value val = _first_value; int id = _graph.index(k); int n = 0; while (id != 0) { if (id & 1) { val = _bin_func(val, _values[n]); } id >>= 1; ++n; } return val; } private: const Graph& _graph; std::vector _values; T _first_value; BF _bin_func; }; }; } #endif