/* -*- mode: C++; indent-tabs-mode: nil; -*- * * This file is a part of LEMON, a generic C++ optimization library. * * Copyright (C) 2003-2011 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_GRAPH_TO_EPS_H #define LEMON_GRAPH_TO_EPS_H #include #include #include #include #include #ifndef WIN32 #include #include #else #include #endif #include #include #include #include #include #include #include ///\ingroup eps_io ///\file ///\brief A well configurable tool for visualizing graphs namespace lemon { namespace _graph_to_eps_bits { template class _NegY { public: typedef typename MT::Key Key; typedef typename MT::Value Value; const MT ↦ int yscale; _NegY(const MT &m,bool b) : map(m), yscale(1-b*2) {} Value operator[](Key n) { return Value(map[n].x,map[n].y*yscale);} }; } ///Default traits class of GraphToEps ///Default traits class of \ref GraphToEps. /// ///\c G is the type of the underlying graph. template struct DefaultGraphToEpsTraits { typedef G Graph; typedef typename Graph::Node Node; typedef typename Graph::NodeIt NodeIt; typedef typename Graph::Arc Arc; typedef typename Graph::ArcIt ArcIt; typedef typename Graph::InArcIt InArcIt; typedef typename Graph::OutArcIt OutArcIt; const Graph &g; std::ostream& os; typedef ConstMap > CoordsMapType; CoordsMapType _coords; ConstMap _nodeSizes; ConstMap _nodeShapes; ConstMap _nodeColors; ConstMap _arcColors; ConstMap _arcWidths; double _arcWidthScale; double _nodeScale; double _xBorder, _yBorder; double _scale; double _nodeBorderQuotient; bool _drawArrows; double _arrowLength, _arrowWidth; bool _showNodes, _showArcs; bool _enableParallel; double _parArcDist; bool _showNodeText; ConstMap _nodeTexts; double _nodeTextSize; bool _showNodePsText; ConstMap _nodePsTexts; char *_nodePsTextsPreamble; bool _undirected; bool _pleaseRemoveOsStream; bool _scaleToA4; std::string _title; std::string _copyright; enum NodeTextColorType { DIST_COL=0, DIST_BW=1, CUST_COL=2, SAME_COL=3 } _nodeTextColorType; ConstMap _nodeTextColors; bool _autoNodeScale; bool _autoArcWidthScale; bool _absoluteNodeSizes; bool _absoluteArcWidths; bool _negY; bool _preScale; ///Constructor ///Constructor ///\param _g Reference to the graph to be printed. ///\param _os Reference to the output stream. ///\param _os Reference to the output stream. ///By default it is std::cout. ///\param _pros If it is \c true, then the \c ostream referenced by \c _os ///will be explicitly deallocated by the destructor. DefaultGraphToEpsTraits(const G &_g,std::ostream& _os=std::cout, bool _pros=false) : g(_g), os(_os), _coords(dim2::Point(1,1)), _nodeSizes(1), _nodeShapes(0), _nodeColors(WHITE), _arcColors(BLACK), _arcWidths(1.0), _arcWidthScale(0.003), _nodeScale(.01), _xBorder(10), _yBorder(10), _scale(1.0), _nodeBorderQuotient(.1), _drawArrows(false), _arrowLength(1), _arrowWidth(0.3), _showNodes(true), _showArcs(true), _enableParallel(false), _parArcDist(1), _showNodeText(false), _nodeTexts(false), _nodeTextSize(1), _showNodePsText(false), _nodePsTexts(false), _nodePsTextsPreamble(0), _undirected(lemon::UndirectedTagIndicator::value), _pleaseRemoveOsStream(_pros), _scaleToA4(false), _nodeTextColorType(SAME_COL), _nodeTextColors(BLACK), _autoNodeScale(false), _autoArcWidthScale(false), _absoluteNodeSizes(false), _absoluteArcWidths(false), _negY(false), _preScale(true) {} }; ///Auxiliary class to implement the named parameters of \ref graphToEps() ///Auxiliary class to implement the named parameters of \ref graphToEps(). /// ///For detailed examples see the \ref graph_to_eps_demo.cc demo file. template class GraphToEps : public T { // Can't believe it is required by the C++ standard using T::g; using T::os; using T::_coords; using T::_nodeSizes; using T::_nodeShapes; using T::_nodeColors; using T::_arcColors; using T::_arcWidths; using T::_arcWidthScale; using T::_nodeScale; using T::_xBorder; using T::_yBorder; using T::_scale; using T::_nodeBorderQuotient; using T::_drawArrows; using T::_arrowLength; using T::_arrowWidth; using T::_showNodes; using T::_showArcs; using T::_enableParallel; using T::_parArcDist; using T::_showNodeText; using T::_nodeTexts; using T::_nodeTextSize; using T::_showNodePsText; using T::_nodePsTexts; using T::_nodePsTextsPreamble; using T::_undirected; using T::_pleaseRemoveOsStream; using T::_scaleToA4; using T::_title; using T::_copyright; using T::NodeTextColorType; using T::CUST_COL; using T::DIST_COL; using T::DIST_BW; using T::_nodeTextColorType; using T::_nodeTextColors; using T::_autoNodeScale; using T::_autoArcWidthScale; using T::_absoluteNodeSizes; using T::_absoluteArcWidths; using T::_negY; using T::_preScale; // dradnats ++C eht yb deriuqer si ti eveileb t'naC typedef typename T::Graph Graph; typedef typename Graph::Node Node; typedef typename Graph::NodeIt NodeIt; typedef typename Graph::Arc Arc; typedef typename Graph::ArcIt ArcIt; typedef typename Graph::InArcIt InArcIt; typedef typename Graph::OutArcIt OutArcIt; static const int INTERPOL_PREC; static const double A4HEIGHT; static const double A4WIDTH; static const double A4BORDER; bool dontPrint; public: ///Node shapes ///Node shapes. /// enum NodeShapes { /// = 0 ///\image html nodeshape_0.png ///\image latex nodeshape_0.eps "CIRCLE shape (0)" width=2cm CIRCLE=0, /// = 1 ///\image html nodeshape_1.png ///\image latex nodeshape_1.eps "SQUARE shape (1)" width=2cm /// SQUARE=1, /// = 2 ///\image html nodeshape_2.png ///\image latex nodeshape_2.eps "DIAMOND shape (2)" width=2cm /// DIAMOND=2, /// = 3 ///\image html nodeshape_3.png ///\image latex nodeshape_2.eps "MALE shape (4)" width=2cm /// MALE=3, /// = 4 ///\image html nodeshape_4.png ///\image latex nodeshape_2.eps "FEMALE shape (4)" width=2cm /// FEMALE=4 }; private: class arcLess { const Graph &g; public: arcLess(const Graph &_g) : g(_g) {} bool operator()(Arc a,Arc b) const { Node ai=std::min(g.source(a),g.target(a)); Node aa=std::max(g.source(a),g.target(a)); Node bi=std::min(g.source(b),g.target(b)); Node ba=std::max(g.source(b),g.target(b)); return ai static std::string psOut(const dim2::Point &p) { std::ostringstream os; os << p.x << ' ' << p.y; return os.str(); } static std::string psOut(const Color &c) { std::ostringstream os; os << c.red() << ' ' << c.green() << ' ' << c.blue(); return os.str(); } public: GraphToEps(const T &t) : T(t), dontPrint(false) {}; template struct CoordsTraits : public T { typedef X CoordsMapType; const X &_coords; CoordsTraits(const T &t,const X &x) : T(t), _coords(x) {} }; ///Sets the map of the node coordinates ///Sets the map of the node coordinates. ///\param x must be a node map with \ref dim2::Point "dim2::Point" or ///\ref dim2::Point "dim2::Point" values. template GraphToEps > coords(const X &x) { dontPrint=true; return GraphToEps >(CoordsTraits(*this,x)); } template struct NodeSizesTraits : public T { const X &_nodeSizes; NodeSizesTraits(const T &t,const X &x) : T(t), _nodeSizes(x) {} }; ///Sets the map of the node sizes ///Sets the map of the node sizes. ///\param x must be a node map with \c double (or convertible) values. template GraphToEps > nodeSizes(const X &x) { dontPrint=true; return GraphToEps >(NodeSizesTraits(*this,x)); } template struct NodeShapesTraits : public T { const X &_nodeShapes; NodeShapesTraits(const T &t,const X &x) : T(t), _nodeShapes(x) {} }; ///Sets the map of the node shapes ///Sets the map of the node shapes. ///The available shape values ///can be found in \ref NodeShapes "enum NodeShapes". ///\param x must be a node map with \c int (or convertible) values. ///\sa NodeShapes template GraphToEps > nodeShapes(const X &x) { dontPrint=true; return GraphToEps >(NodeShapesTraits(*this,x)); } template struct NodeTextsTraits : public T { const X &_nodeTexts; NodeTextsTraits(const T &t,const X &x) : T(t), _nodeTexts(x) {} }; ///Sets the text printed on the nodes ///Sets the text printed on the nodes. ///\param x must be a node map with type that can be pushed to a standard ///\c ostream. template GraphToEps > nodeTexts(const X &x) { dontPrint=true; _showNodeText=true; return GraphToEps >(NodeTextsTraits(*this,x)); } template struct NodePsTextsTraits : public T { const X &_nodePsTexts; NodePsTextsTraits(const T &t,const X &x) : T(t), _nodePsTexts(x) {} }; ///Inserts a PostScript block to the nodes ///With this command it is possible to insert a verbatim PostScript ///block to the nodes. ///The PS current point will be moved to the center of the node before ///the PostScript block inserted. /// ///Before and after the block a newline character is inserted so you ///don't have to bother with the separators. /// ///\param x must be a node map with type that can be pushed to a standard ///\c ostream. /// ///\sa nodePsTextsPreamble() template GraphToEps > nodePsTexts(const X &x) { dontPrint=true; _showNodePsText=true; return GraphToEps >(NodePsTextsTraits(*this,x)); } template struct ArcWidthsTraits : public T { const X &_arcWidths; ArcWidthsTraits(const T &t,const X &x) : T(t), _arcWidths(x) {} }; ///Sets the map of the arc widths ///Sets the map of the arc widths. ///\param x must be an arc map with \c double (or convertible) values. template GraphToEps > arcWidths(const X &x) { dontPrint=true; return GraphToEps >(ArcWidthsTraits(*this,x)); } template struct NodeColorsTraits : public T { const X &_nodeColors; NodeColorsTraits(const T &t,const X &x) : T(t), _nodeColors(x) {} }; ///Sets the map of the node colors ///Sets the map of the node colors. ///\param x must be a node map with \ref Color values. /// ///\sa Palette template GraphToEps > nodeColors(const X &x) { dontPrint=true; return GraphToEps >(NodeColorsTraits(*this,x)); } template struct NodeTextColorsTraits : public T { const X &_nodeTextColors; NodeTextColorsTraits(const T &t,const X &x) : T(t), _nodeTextColors(x) {} }; ///Sets the map of the node text colors ///Sets the map of the node text colors. ///\param x must be a node map with \ref Color values. /// ///\sa Palette template GraphToEps > nodeTextColors(const X &x) { dontPrint=true; _nodeTextColorType=CUST_COL; return GraphToEps > (NodeTextColorsTraits(*this,x)); } template struct ArcColorsTraits : public T { const X &_arcColors; ArcColorsTraits(const T &t,const X &x) : T(t), _arcColors(x) {} }; ///Sets the map of the arc colors ///Sets the map of the arc colors. ///\param x must be an arc map with \ref Color values. /// ///\sa Palette template GraphToEps > arcColors(const X &x) { dontPrint=true; return GraphToEps >(ArcColorsTraits(*this,x)); } ///Sets a global scale factor for node sizes ///Sets a global scale factor for node sizes. /// /// If nodeSizes() is not given, this function simply sets the node /// sizes to \c d. If nodeSizes() is given, but /// autoNodeScale() is not, then the node size given by /// nodeSizes() will be multiplied by the value \c d. /// If both nodeSizes() and autoNodeScale() are used, then the /// node sizes will be scaled in such a way that the greatest size will be /// equal to \c d. /// \sa nodeSizes() /// \sa autoNodeScale() GraphToEps &nodeScale(double d=.01) {_nodeScale=d;return *this;} ///Turns on/off the automatic node size scaling. ///Turns on/off the automatic node size scaling. /// ///\sa nodeScale() /// GraphToEps &autoNodeScale(bool b=true) { _autoNodeScale=b;return *this; } ///Turns on/off the absolutematic node size scaling. ///Turns on/off the absolutematic node size scaling. /// ///\sa nodeScale() /// GraphToEps &absoluteNodeSizes(bool b=true) { _absoluteNodeSizes=b;return *this; } ///Negates the Y coordinates. GraphToEps &negateY(bool b=true) { _negY=b;return *this; } ///Turn on/off pre-scaling ///By default graphToEps() rescales the whole image in order to avoid ///very big or very small bounding boxes. /// ///This (p)rescaling can be turned off with this function. /// GraphToEps &preScale(bool b=true) { _preScale=b;return *this; } ///Sets a global scale factor for arc widths /// Sets a global scale factor for arc widths. /// /// If arcWidths() is not given, this function simply sets the arc /// widths to \c d. If arcWidths() is given, but /// autoArcWidthScale() is not, then the arc withs given by /// arcWidths() will be multiplied by the value \c d. /// If both arcWidths() and autoArcWidthScale() are used, then the /// arc withs will be scaled in such a way that the greatest width will be /// equal to \c d. GraphToEps &arcWidthScale(double d=.003) {_arcWidthScale=d;return *this;} ///Turns on/off the automatic arc width scaling. ///Turns on/off the automatic arc width scaling. /// ///\sa arcWidthScale() /// GraphToEps &autoArcWidthScale(bool b=true) { _autoArcWidthScale=b;return *this; } ///Turns on/off the absolutematic arc width scaling. ///Turns on/off the absolutematic arc width scaling. /// ///\sa arcWidthScale() /// GraphToEps &absoluteArcWidths(bool b=true) { _absoluteArcWidths=b;return *this; } ///Sets a global scale factor for the whole picture GraphToEps &scale(double d) {_scale=d;return *this;} ///Sets the width of the border around the picture GraphToEps &border(double b=10) {_xBorder=_yBorder=b;return *this;} ///Sets the width of the border around the picture GraphToEps &border(double x, double y) { _xBorder=x;_yBorder=y;return *this; } ///Sets whether to draw arrows GraphToEps &drawArrows(bool b=true) {_drawArrows=b;return *this;} ///Sets the length of the arrowheads GraphToEps &arrowLength(double d=1.0) {_arrowLength*=d;return *this;} ///Sets the width of the arrowheads GraphToEps &arrowWidth(double d=.3) {_arrowWidth*=d;return *this;} ///Scales the drawing to fit to A4 page GraphToEps &scaleToA4() {_scaleToA4=true;return *this;} ///Enables parallel arcs GraphToEps &enableParallel(bool b=true) {_enableParallel=b;return *this;} ///Sets the distance between parallel arcs GraphToEps &parArcDist(double d) {_parArcDist*=d;return *this;} ///Hides the arcs GraphToEps &hideArcs(bool b=true) {_showArcs=!b;return *this;} ///Hides the nodes GraphToEps &hideNodes(bool b=true) {_showNodes=!b;return *this;} ///Sets the size of the node texts GraphToEps &nodeTextSize(double d) {_nodeTextSize=d;return *this;} ///Sets the color of the node texts to be different from the node color ///Sets the color of the node texts to be as different from the node color ///as it is possible. GraphToEps &distantColorNodeTexts() {_nodeTextColorType=DIST_COL;return *this;} ///Sets the color of the node texts to be black or white and always visible. ///Sets the color of the node texts to be black or white according to ///which is more different from the node color. GraphToEps &distantBWNodeTexts() {_nodeTextColorType=DIST_BW;return *this;} ///Gives a preamble block for node Postscript block. ///Gives a preamble block for node Postscript block. /// ///\sa nodePsTexts() GraphToEps & nodePsTextsPreamble(const char *str) { _nodePsTextsPreamble=str ;return *this; } ///Sets whether the graph is undirected ///Sets whether the graph is undirected. /// ///This setting is the default for undirected graphs. /// ///\sa directed() GraphToEps &undirected(bool b=true) {_undirected=b;return *this;} ///Sets whether the graph is directed ///Sets whether the graph is directed. ///Use it to show the edges as a pair of directed ones. /// ///This setting is the default for digraphs. /// ///\sa undirected() GraphToEps &directed(bool b=true) {_undirected=!b;return *this;} ///Sets the title. ///Sets the title of the generated image, ///namely it inserts a %%Title: DSC field to the header of ///the EPS file. GraphToEps &title(const std::string &t) {_title=t;return *this;} ///Sets the copyright statement. ///Sets the copyright statement of the generated image, ///namely it inserts a %%Copyright: DSC field to the header of ///the EPS file. GraphToEps ©right(const std::string &t) {_copyright=t;return *this;} protected: bool isInsideNode(dim2::Point p, double r,int t) { switch(t) { case CIRCLE: case MALE: case FEMALE: return p.normSquare()<=r*r; case SQUARE: return p.x<=r&&p.x>=-r&&p.y<=r&&p.y>=-r; case DIAMOND: return p.x+p.y<=r && p.x-p.y<=r && -p.x+p.y<=r && -p.x-p.y<=r; } return false; } public: ~GraphToEps() { } ///Draws the graph. ///Like other functions using ///\ref named-templ-func-param "named template parameters", ///this function calls the algorithm itself, i.e. in this case ///it draws the graph. void run() { const double EPSILON=1e-9; if(dontPrint) return; _graph_to_eps_bits::_NegY mycoords(_coords,_negY); os << "%!PS-Adobe-2.0 EPSF-2.0\n"; if(_title.size()>0) os << "%%Title: " << _title << '\n'; if(_copyright.size()>0) os << "%%Copyright: " << _copyright << '\n'; os << "%%Creator: LEMON, graphToEps()\n"; { os << "%%CreationDate: "; #ifndef WIN32 timeval tv; gettimeofday(&tv, 0); char cbuf[26]; ctime_r(&tv.tv_sec,cbuf); os << cbuf; #else os << bits::getWinFormattedDate(); os << std::endl; #endif } if (_autoArcWidthScale) { double max_w=0; for(ArcIt e(g);e!=INVALID;++e) max_w=std::max(double(_arcWidths[e]),max_w); if(max_w>EPSILON) { _arcWidthScale/=max_w; } } if (_autoNodeScale) { double max_s=0; for(NodeIt n(g);n!=INVALID;++n) max_s=std::max(double(_nodeSizes[n]),max_s); if(max_s>EPSILON) { _nodeScale/=max_s; } } double diag_len = 1; if(!(_absoluteNodeSizes&&_absoluteArcWidths)) { dim2::Box bb; for(NodeIt n(g);n!=INVALID;++n) bb.add(mycoords[n]); if (bb.empty()) { bb = dim2::Box(dim2::Point(0,0)); } diag_len = std::sqrt((bb.bottomLeft()-bb.topRight()).normSquare()); if(diag_len bb; for(NodeIt n(g);n!=INVALID;++n) { double ns=_nodeSizes[n]*_nodeScale; dim2::Point p(ns,ns); switch(_nodeShapes[n]) { case CIRCLE: case SQUARE: case DIAMOND: bb.add(p+mycoords[n]); bb.add(-p+mycoords[n]); break; case MALE: bb.add(-p+mycoords[n]); bb.add(dim2::Point(1.5*ns,1.5*std::sqrt(3.0)*ns)+mycoords[n]); break; case FEMALE: bb.add(p+mycoords[n]); bb.add(dim2::Point(-ns,-3.01*ns)+mycoords[n]); break; } } if (bb.empty()) { bb = dim2::Box(dim2::Point(0,0)); } if(_scaleToA4) os <<"%%BoundingBox: 0 0 596 842\n%%DocumentPaperSizes: a4\n"; else { if(_preScale) { //Rescale so that BoundingBox won't be neither to big nor too small. while(bb.height()*_scale>1000||bb.width()*_scale>1000) _scale/=10; while(bb.height()*_scale<100||bb.width()*_scale<100) _scale*=10; } os << "%%BoundingBox: " << int(floor(bb.left() * _scale - _xBorder)) << ' ' << int(floor(bb.bottom() * _scale - _yBorder)) << ' ' << int(ceil(bb.right() * _scale + _xBorder)) << ' ' << int(ceil(bb.top() * _scale + _yBorder)) << '\n'; } os << "%%EndComments\n"; //x1 y1 x2 y2 x3 y3 cr cg cb w os << "/lb { setlinewidth setrgbcolor newpath moveto\n" << " 4 2 roll 1 index 1 index curveto stroke } bind def\n"; os << "/l { setlinewidth setrgbcolor newpath moveto lineto stroke }" << " bind def\n"; //x y r os << "/c { newpath dup 3 index add 2 index moveto 0 360 arc closepath }" << " bind def\n"; //x y r os << "/sq { newpath 2 index 1 index add 2 index 2 index add moveto\n" << " 2 index 1 index sub 2 index 2 index add lineto\n" << " 2 index 1 index sub 2 index 2 index sub lineto\n" << " 2 index 1 index add 2 index 2 index sub lineto\n" << " closepath pop pop pop} bind def\n"; //x y r os << "/di { newpath 2 index 1 index add 2 index moveto\n" << " 2 index 2 index 2 index add lineto\n" << " 2 index 1 index sub 2 index lineto\n" << " 2 index 2 index 2 index sub lineto\n" << " closepath pop pop pop} bind def\n"; // x y r cr cg cb os << "/nc { 0 0 0 setrgbcolor 5 index 5 index 5 index c fill\n" << " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" << " } bind def\n"; os << "/nsq { 0 0 0 setrgbcolor 5 index 5 index 5 index sq fill\n" << " setrgbcolor " << 1+_nodeBorderQuotient << " div sq fill\n" << " } bind def\n"; os << "/ndi { 0 0 0 setrgbcolor 5 index 5 index 5 index di fill\n" << " setrgbcolor " << 1+_nodeBorderQuotient << " div di fill\n" << " } bind def\n"; os << "/nfemale { 0 0 0 setrgbcolor 3 index " << _nodeBorderQuotient/(1+_nodeBorderQuotient) << " 1.5 mul mul setlinewidth\n" << " newpath 5 index 5 index moveto " << "5 index 5 index 5 index 3.01 mul sub\n" << " lineto 5 index 4 index .7 mul sub 5 index 5 index 2.2 mul sub" << " moveto\n" << " 5 index 4 index .7 mul add 5 index 5 index 2.2 mul sub lineto " << "stroke\n" << " 5 index 5 index 5 index c fill\n" << " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" << " } bind def\n"; os << "/nmale {\n" << " 0 0 0 setrgbcolor 3 index " << _nodeBorderQuotient/(1+_nodeBorderQuotient) <<" 1.5 mul mul setlinewidth\n" << " newpath 5 index 5 index moveto\n" << " 5 index 4 index 1 mul 1.5 mul add\n" << " 5 index 5 index 3 sqrt 1.5 mul mul add\n" << " 1 index 1 index lineto\n" << " 1 index 1 index 7 index sub moveto\n" << " 1 index 1 index lineto\n" << " exch 5 index 3 sqrt .5 mul mul sub exch 5 index .5 mul sub" << " lineto\n" << " stroke\n" << " 5 index 5 index 5 index c fill\n" << " setrgbcolor " << 1+_nodeBorderQuotient << " div c fill\n" << " } bind def\n"; os << "/arrl " << _arrowLength << " def\n"; os << "/arrw " << _arrowWidth << " def\n"; // l dx_norm dy_norm os << "/lrl { 2 index mul exch 2 index mul exch rlineto pop} bind def\n"; //len w dx_norm dy_norm x1 y1 cr cg cb os << "/arr { setrgbcolor /y1 exch def /x1 exch def /dy exch def /dx " << "exch def\n" << " /w exch def /len exch def\n" //<< "0.1 setlinewidth x1 y1 moveto dx len mul dy len mul rlineto stroke" << " newpath x1 dy w 2 div mul add y1 dx w 2 div mul sub moveto\n" << " len w sub arrl sub dx dy lrl\n" << " arrw dy dx neg lrl\n" << " dx arrl w add mul dy w 2 div arrw add mul sub\n" << " dy arrl w add mul dx w 2 div arrw add mul add rlineto\n" << " dx arrl w add mul neg dy w 2 div arrw add mul sub\n" << " dy arrl w add mul neg dx w 2 div arrw add mul add rlineto\n" << " arrw dy dx neg lrl\n" << " len w sub arrl sub neg dx dy lrl\n" << " closepath fill } bind def\n"; os << "/cshow { 2 index 2 index moveto dup stringwidth pop\n" << " neg 2 div fosi .35 mul neg rmoveto show pop pop} def\n"; os << "\ngsave\n"; if(_scaleToA4) if(bb.height()>bb.width()) { double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.height(), (A4WIDTH-2*A4BORDER)/bb.width()); os << ((A4WIDTH -2*A4BORDER)-sc*bb.width())/2 + A4BORDER << ' ' << ((A4HEIGHT-2*A4BORDER)-sc*bb.height())/2 + A4BORDER << " translate\n" << sc << " dup scale\n" << -bb.left() << ' ' << -bb.bottom() << " translate\n"; } else { double sc= std::min((A4HEIGHT-2*A4BORDER)/bb.width(), (A4WIDTH-2*A4BORDER)/bb.height()); os << ((A4WIDTH -2*A4BORDER)-sc*bb.height())/2 + A4BORDER << ' ' << ((A4HEIGHT-2*A4BORDER)-sc*bb.width())/2 + A4BORDER << " translate\n" << sc << " dup scale\n90 rotate\n" << -bb.left() << ' ' << -bb.top() << " translate\n"; } else if(_scale!=1.0) os << _scale << " dup scale\n"; if(_showArcs) { os << "%Arcs:\ngsave\n"; if(_enableParallel) { std::vector el; for(ArcIt e(g);e!=INVALID;++e) if((!_undirected||g.source(e)0 &&g.source(e)!=g.target(e)) el.push_back(e); std::sort(el.begin(),el.end(),arcLess(g)); typename std::vector::iterator j; for(typename std::vector::iterator i=el.begin();i!=el.end();i=j) { for(j=i+1;j!=el.end()&&isParallel(*i,*j);++j) ; double sw=0; for(typename std::vector::iterator e=i;e!=j;++e) sw+=_arcWidths[*e]*_arcWidthScale+_parArcDist; sw-=_parArcDist; sw/=-2.0; dim2::Point dvec(mycoords[g.target(*i)]-mycoords[g.source(*i)]); double l=std::sqrt(dvec.normSquare()); dim2::Point d(dvec/std::max(l,EPSILON)); dim2::Point m; // m=dim2::Point(mycoords[g.target(*i)]+ // mycoords[g.source(*i)])/2.0; // m=dim2::Point(mycoords[g.source(*i)])+ // dvec*(double(_nodeSizes[g.source(*i)])/ // (_nodeSizes[g.source(*i)]+_nodeSizes[g.target(*i)])); m=dim2::Point(mycoords[g.source(*i)])+ d*(l+_nodeSizes[g.source(*i)]-_nodeSizes[g.target(*i)])/2.0; for(typename std::vector::iterator e=i;e!=j;++e) { sw+=_arcWidths[*e]*_arcWidthScale/2.0; dim2::Point mm=m+rot90(d)*sw/.75; if(_drawArrows) { int node_shape; dim2::Point s=mycoords[g.source(*e)]; dim2::Point t=mycoords[g.target(*e)]; double rn=_nodeSizes[g.target(*e)]*_nodeScale; node_shape=_nodeShapes[g.target(*e)]; dim2::Bezier3 bez(s,mm,mm,t); double t1=0,t2=1; for(int ii=0;ii apoint=bez((t1+t2)/2); rn = _arrowLength+_arcWidths[*e]*_arcWidthScale; rn*=rn; t2=(t1+t2)/2;t1=0; for(int ii=0;iirn) t1=(t1+t2)/2; else t2=(t1+t2)/2; dim2::Point linend=bez((t1+t2)/2); bez=bez.before((t1+t2)/2); // rn=_nodeSizes[g.source(*e)]*_nodeScale; // node_shape=_nodeShapes[g.source(*e)]; // t1=0;t2=1; // for(int i=0;i dd(rot90(linend-apoint)); dd*=(.5*_arcWidths[*e]*_arcWidthScale+_arrowWidth)/ std::sqrt(dd.normSquare()); os << "newpath " << psOut(apoint) << " moveto " << psOut(linend+dd) << " lineto " << psOut(linend-dd) << " lineto closepath fill\n"; } else { os << mycoords[g.source(*e)].x << ' ' << mycoords[g.source(*e)].y << ' ' << mm.x << ' ' << mm.y << ' ' << mycoords[g.target(*e)].x << ' ' << mycoords[g.target(*e)].y << ' ' << _arcColors[*e].red() << ' ' << _arcColors[*e].green() << ' ' << _arcColors[*e].blue() << ' ' << _arcWidths[*e]*_arcWidthScale << " lb\n"; } sw+=_arcWidths[*e]*_arcWidthScale/2.0+_parArcDist; } } } else for(ArcIt e(g);e!=INVALID;++e) if((!_undirected||g.source(e)0 &&g.source(e)!=g.target(e)) { if(_drawArrows) { dim2::Point d(mycoords[g.target(e)]-mycoords[g.source(e)]); double rn=_nodeSizes[g.target(e)]*_nodeScale; int node_shape=_nodeShapes[g.target(e)]; double t1=0,t2=1; for(int i=0;i GraphToEps > edgeWidths(const X &x) { return arcWidths(x); } ///An alias for arcColors() template GraphToEps > edgeColors(const X &x) { return arcColors(x); } ///An alias for arcWidthScale() GraphToEps &edgeWidthScale(double d) {return arcWidthScale(d);} ///An alias for autoArcWidthScale() GraphToEps &autoEdgeWidthScale(bool b=true) { return autoArcWidthScale(b); } ///An alias for absoluteArcWidths() GraphToEps &absoluteEdgeWidths(bool b=true) { return absoluteArcWidths(b); } ///An alias for parArcDist() GraphToEps &parEdgeDist(double d) {return parArcDist(d);} ///An alias for hideArcs() GraphToEps &hideEdges(bool b=true) {return hideArcs(b);} ///@} }; template const int GraphToEps::INTERPOL_PREC = 20; template const double GraphToEps::A4HEIGHT = 841.8897637795276; template const double GraphToEps::A4WIDTH = 595.275590551181; template const double GraphToEps::A4BORDER = 15; ///Generates an EPS file from a graph ///\ingroup eps_io ///Generates an EPS file from a graph. ///\param g Reference to the graph to be printed. ///\param os Reference to the output stream. ///By default it is std::cout. /// ///This function also has a lot of ///\ref named-templ-func-param "named parameters", ///they are declared as the members of class \ref GraphToEps. The following ///example shows how to use these parameters. ///\code /// graphToEps(g,os).scale(10).coords(coords) /// .nodeScale(2).nodeSizes(sizes) /// .arcWidthScale(.4).run(); ///\endcode /// ///For more detailed examples see the \ref graph_to_eps_demo.cc demo file. /// ///\warning Don't forget to put the \ref GraphToEps::run() "run()" ///to the end of the parameter list. ///\sa GraphToEps ///\sa graphToEps(G &g, const char *file_name) template GraphToEps > graphToEps(G &g, std::ostream& os=std::cout) { return GraphToEps >(DefaultGraphToEpsTraits(g,os)); } ///Generates an EPS file from a graph ///\ingroup eps_io ///This function does the same as ///\ref graphToEps(G &g,std::ostream& os) ///but it writes its output into the file \c file_name ///instead of a stream. ///\sa graphToEps(G &g, std::ostream& os) template GraphToEps > graphToEps(G &g,const char *file_name) { std::ostream* os = new std::ofstream(file_name); if (!(*os)) { delete os; throw IoError("Cannot write file", file_name); } return GraphToEps > (DefaultGraphToEpsTraits(g,*os,true)); } ///Generates an EPS file from a graph ///\ingroup eps_io ///This function does the same as ///\ref graphToEps(G &g,std::ostream& os) ///but it writes its output into the file \c file_name ///instead of a stream. ///\sa graphToEps(G &g, std::ostream& os) template GraphToEps > graphToEps(G &g,const std::string& file_name) { std::ostream* os = new std::ofstream(file_name.c_str()); if (!(*os)) { delete os; throw IoError("Cannot write file", file_name); } return GraphToEps > (DefaultGraphToEpsTraits(g,*os,true)); } } //END OF NAMESPACE LEMON #endif // LEMON_GRAPH_TO_EPS_H