# HG changeset patch
# User Peter Kovacs <kpeter@inf.elte.hu>
# Date 1225201677 3600
# Node ID 0badf3bb38c2a0ef9cb4c0dc1c2bd994979d043a
# Parent 2593e163e407403990ba8f4323f684190a625a62
Minor doc improvements
diff git a/lemon/random.h b/lemon/random.h
a

b


540  540  /// 
541  541  /// @{ 
542  542  
543   ///\name Initialization 
544   /// 
545   /// @{ 
546   
547  543  /// \brief Default constructor 
548  544  /// 
549  545  /// Constructor with constant seeding. 
… 
… 

708  704  return real<Number>() * (b  a) + a; 
709  705  } 
710  706  
711   /// @} 
712   
713   ///\name Uniform distributions 
714   /// 
715   /// @{ 
716   
717  707  /// \brief Returns a random real number from the range [0, 1) 
718  708  /// 
719  709  /// It returns a random double from the range [0, 1). 
… 
… 

771  761  return _random_bits::IntConversion<Number, Word>::convert(core); 
772  762  } 
773  763  
774   /// @} 
775   
776  764  unsigned int uinteger() { 
777  765  return uinteger<unsigned int>(); 
778  766  } 
… 
… 

806  794  
807  795  ///\name Nonuniform distributions 
808  796  /// 
809   
810  797  ///@{ 
811  798  
812   /// \brief Returns a random bool 
 799  /// \brief Returns a random bool with given probability of true result. 
813  800  /// 
814  801  /// It returns a random bool with given probability of true result. 
815  802  bool boolean(double p) { 
816  803  return operator()() < p; 
817  804  } 
818  805  
819   /// Standard Gauss distribution 
 806  /// Standard normal (Gauss) distribution 
820  807  
821   /// Standard Gauss distribution. 
 808  /// Standard normal (Gauss) distribution. 
822  809  /// \note The Cartesian form of the BoxMuller 
823  810  /// transformation is used to generate a random normal distribution. 
824  811  double gauss() 
… 
… 

831  818  } while(S>=1); 
832  819  return std::sqrt(2*std::log(S)/S)*V1; 
833  820  } 
834   /// Gauss distribution with given mean and standard deviation 
 821  /// Normal (Gauss) distribution with given mean and standard deviation 
835  822  
836   /// Gauss distribution with given mean and standard deviation. 
 823  /// Normal (Gauss) distribution with given mean and standard deviation. 
837  824  /// \sa gauss() 
838  825  double gauss(double mean,double std_dev) 
839  826  { 
… 
… 

864  851  /// standard deviation. The return value can direcly be passed to 
865  852  /// lognormal(). 
866  853  std::pair<double,double> lognormalParamsFromMD(double mean, 
867   double std_dev) 
 854  double std_dev) 
868  855  { 
869  856  double fr=std_dev/mean; 
870  857  fr*=fr; 
… 
… 

872  859  return std::pair<double,double>(std::log(mean)lg/2.0,std::sqrt(lg)); 
873  860  } 
874  861  /// Lognormal distribution with given mean and standard deviation 
875   
 862  
876  863  /// Lognormal distribution with given mean and standard deviation. 
877  864  /// 
878  865  double lognormalMD(double mean,double std_dev) 
879  866  { 
880  867  return lognormal(lognormalParamsFromMD(mean,std_dev)); 
881  868  } 
882   
 869  
883  870  /// Exponential distribution with given mean 
884  871  
885  872  /// This function generates an exponential distribution random number 
… 
… 

983  970  
984  971  ///\name Two dimensional distributions 
985  972  /// 
986   
987  973  ///@{ 
988  974  
989  975  /// Uniform distribution on the full unit circle 
… 
… 

1000  986  } while(V1*V1+V2*V2>=1); 
1001  987  return dim2::Point<double>(V1,V2); 
1002  988  } 
1003   /// A kind of two dimensional Gauss distribution 
 989  /// A kind of two dimensional normal (Gauss) distribution 
1004  990  
1005  991  /// This function provides a turning symmetric twodimensional distribution. 
1006  992  /// Both coordinates are of standard normal distribution, but they are not 