Ticket #326: 326lpmipunifyd4c3ba9ac811.patch
File 326lpmipunifyd4c3ba9ac811.patch, 14.1 KB (added by , 12 years ago) 


lemon/lp_base.h
# HG changeset patch # User Peter Kovacs <kpeter@inf.elte.hu> # Date 1266443462 3600 # Node ID d4c3ba9ac81125b315d7cf33ff057f0b074a457d # Parent 5100072d83caa82eaf0be1a84a27e5d1917f2efd Unify the interface of MipSolver and LpSolver (#326)  Add sol() (without parameters) to MipSolver as an alias for solValue(), since we have primal() instead of primalValue() in LpSolver.  Add primal() (3 overloaded variants) and primalValue() to MipSolver as aliases for sol() and solValue().  Rename ColTypes to ColType in MipSolver and keep the old name as an obsolete typedef.  Add primalValue() to LpSolver as an alias for primal() (without parameters).  Doc improvements and unifications. diff git a/lemon/lp_base.h b/lemon/lp_base.h
a b 146 146 147 147 ///Iterator for iterate over the columns of an LP problem 148 148 149 /// Its usage is quite simple, for example you can count the number149 /// Its usage is quite simple, for example, you can count the number 150 150 /// of columns in an LP \c lp: 151 151 ///\code 152 152 /// int count=0; … … 241 241 242 242 ///Iterator for iterate over the rows of an LP problem 243 243 244 /// Its usage is quite simple, for example you can count the number244 /// Its usage is quite simple, for example, you can count the number 245 245 /// of rows in an LP \c lp: 246 246 ///\code 247 247 /// int count=0; … … 943 943 virtual int _addCol() = 0; 944 944 virtual int _addRow() = 0; 945 945 946 virtual int _addRow(Value l, ExprIterator b, ExprIterator e, Value u) { 947 int row = _addRow(); 948 _setRowCoeffs(row, b, e); 949 _setRowLowerBound(row, l); 950 _setRowUpperBound(row, u); 951 return row; 952 } 953 946 954 virtual void _eraseCol(int col) = 0; 947 955 virtual void _eraseRow(int row) = 0; 948 956 … … 1207 1215 ///\param u is the upper bound (\ref INF means no bound) 1208 1216 ///\return The created row. 1209 1217 Row addRow(Value l,const Expr &e, Value u) { 1210 Row r=addRow(); 1211 row(r,l,e,u); 1218 Row r; 1219 e.simplify(); 1220 r._id = _addRowId(_addRow(l  *e, ExprIterator(e.comps.begin(), cols), 1221 ExprIterator(e.comps.end(), cols), u  *e)); 1212 1222 return r; 1213 1223 } 1214 1224 … … 1217 1227 ///\param c is a linear expression (see \ref Constr) 1218 1228 ///\return The created row. 1219 1229 Row addRow(const Constr &c) { 1220 Row r=addRow(); 1221 row(r,c); 1230 Row r; 1231 c.expr().simplify(); 1232 r._id = _addRowId(_addRow(c.lowerBounded()?c.lowerBound()*c.expr():INF, 1233 ExprIterator(c.expr().comps.begin(), cols), 1234 ExprIterator(c.expr().comps.end(), cols), 1235 c.upperBounded()?c.upperBound()*c.expr():INF)); 1222 1236 return r; 1223 1237 } 1224 1238 ///Erase a column (i.e a variable) from the LP … … 1776 1790 /// 1777 1791 /// \brief Common base class for LP solvers 1778 1792 /// 1779 /// This class is an abstract base class for LP solvers. This class1793 /// This class is an abstract base class for LP solvers. It 1780 1794 /// provides a full interface for set and modify an LP problem, 1781 1795 /// solve it and retrieve the solution. You can use one of the 1782 1796 /// descendants as a concrete implementation, or the \c Lp … … 1786 1800 class LpSolver : virtual public LpBase { 1787 1801 public: 1788 1802 1789 /// The problem types for primal and dual problems 1803 /// \brief The problem types for primal and dual problems 1804 /// 1805 /// The problem types for primal and dual problems. 1790 1806 enum ProblemType { 1791 1807 /// = 0. Feasible solution hasn't been found (but may exist). 1792 1808 UNDEFINED = 0, … … 1800 1816 UNBOUNDED = 4 1801 1817 }; 1802 1818 1803 ///The basis status of variables 1819 /// \brief The basis status of variables 1820 /// 1821 /// The basis status of variables. 1804 1822 enum VarStatus { 1805 1823 /// The variable is in the basis 1806 1824 BASIC, … … 1843 1861 1844 1862 ///@{ 1845 1863 1846 ///\ e Solve the LP problem at hand1864 ///\brief Solve the specified LP problem 1847 1865 /// 1866 ///This function solves the specified LP problem. 1848 1867 ///\return The result of the optimization procedure. Possible 1849 1868 ///values and their meanings can be found in the documentation of 1850 1869 ///\ref SolveExitStatus. … … 1856 1875 1857 1876 ///@{ 1858 1877 1859 /// The type of the primal problem 1878 /// Return the type of the primal problem 1879 1880 /// This function returns the type of the primal problem. 1881 /// \see ProblemType 1860 1882 ProblemType primalType() const { 1861 1883 return _getPrimalType(); 1862 1884 } 1863 1885 1864 /// The type of the dual problem 1886 /// Return the type of the dual problem 1887 1888 /// This function returns the type of the dual problem. 1889 /// \see ProblemType 1865 1890 ProblemType dualType() const { 1866 1891 return _getDualType(); 1867 1892 } 1868 1893 1894 /// Return the primal value of the objective function 1895 1896 /// This function returns the primal value of the objective function. 1897 /// \return 1898 ///  \ref INF or \ref INF means either infeasibility or unboundedness 1899 /// of the primal problem, depending on whether we minimize or maximize. 1900 ///  \ref NaN if no primal solution is found. 1901 ///  The (finite) objective value if an optimal solution is found. 1902 Value primal() const { return _getPrimalValue()+obj_const_comp;} 1903 1869 1904 /// Return the primal value of the column 1870 1905 1871 /// Return the primal value of thecolumn.1906 /// This function returns the primal value of the given column. 1872 1907 /// \pre The problem is solved. 1873 1908 Value primal(Col c) const { return _getPrimal(cols(id(c))); } 1874 1909 1875 1910 /// Return the primal value of the expression 1876 1911 1877 /// Return the primal value of the expression, i.e. the dot1878 /// product of the primal solution and the expression.1912 /// This function returns the primal value of the given expression, 1913 /// i.e. the dot product of the primal solution and the expression. 1879 1914 /// \pre The problem is solved. 1880 1915 Value primal(const Expr& e) const { 1881 1916 double res = *e; … … 1884 1919 } 1885 1920 return res; 1886 1921 } 1887 /// Returns a component of the primal ray 1922 1923 /// Return the primal value of the objective function 1924 1925 /// This function returns the primal value of the objective function. 1926 /// It is an alias for \ref primal(). 1927 Value primalValue() const { return _getPrimalValue()+obj_const_comp;} 1928 1929 /// Return a component of the primal ray 1888 1930 1889 1931 /// The primal ray is solution of the modified primal problem, 1890 1932 /// where we change each finite bound to 0, and we looking for a … … 1901 1943 1902 1944 /// Return the dual value of the row 1903 1945 1904 /// Return the dual value of therow.1946 /// This function returns the dual value of the given row. 1905 1947 /// \pre The problem is solved. 1906 1948 Value dual(Row r) const { return _getDual(rows(id(r))); } 1907 1949 1908 1950 /// Return the dual value of the dual expression 1909 1951 1910 /// Return the dual value of the dual expression, i.e. the dot1911 /// product of the dual solution and the dual expression.1952 /// This function returns the dual value of the given dual expression, 1953 /// i.e. the dot product of the dual solution and the dual expression. 1912 1954 /// \pre The problem is solved. 1913 1955 Value dual(const DualExpr& e) const { 1914 1956 double res = 0.0; … … 1918 1960 return res; 1919 1961 } 1920 1962 1921 /// Return sa component of the dual ray1963 /// Return a component of the dual ray 1922 1964 1923 1965 /// The dual ray is solution of the modified primal problem, where 1924 1966 /// we change each finite bound to 0 (i.e. the objective function … … 1935 1977 1936 1978 /// Return the basis status of the column 1937 1979 1980 /// This function returns the basis status of the column. 1938 1981 /// \see VarStatus 1939 1982 VarStatus colStatus(Col c) const { return _getColStatus(cols(id(c))); } 1940 1983 1941 1984 /// Return the basis status of the row 1942 1985 1986 /// This function returns the basis status of the row. 1943 1987 /// \see VarStatus 1944 1988 VarStatus rowStatus(Row r) const { return _getRowStatus(rows(id(r))); } 1945 1946 ///The value of the objective function1947 1948 ///\return1949 /// \ref INF or \ref INF means either infeasibility or unboundedness1950 /// of the primal problem, depending on whether we minimize or maximize.1951 /// \ref NaN if no primal solution is found.1952 /// The (finite) objective value if an optimal solution is found.1953 Value primal() const { return _getPrimalValue()+obj_const_comp;}1954 1989 ///@} 1955 1990 1956 protected:1957 1958 1991 }; 1959 1992 1960 1993 … … 1962 1995 /// 1963 1996 /// \brief Common base class for MIP solvers 1964 1997 /// 1965 /// This class is an abstract base class for MIP solvers. This class1998 /// This class is an abstract base class for MIP solvers. It 1966 1999 /// provides a full interface for set and modify an MIP problem, 1967 2000 /// solve it and retrieve the solution. You can use one of the 1968 2001 /// descendants as a concrete implementation, or the \c Lp … … 1972 2005 class MipSolver : virtual public LpBase { 1973 2006 public: 1974 2007 1975 /// The problem types for MIP problems 2008 /// \brief The problem types for MIP problems 2009 /// 2010 /// The problem types for MIP problems. 1976 2011 enum ProblemType { 1977 2012 /// = 0. Feasible solution hasn't been found (but may exist). 1978 2013 UNDEFINED = 0, … … 1996 2031 1997 2032 ///@{ 1998 2033 1999 /// Solve the MIP problem at hand2034 ///\brief Solve the specified MIP problem 2000 2035 /// 2036 ///This function solves the specified MIP problem. 2001 2037 ///\return The result of the optimization procedure. Possible 2002 2038 ///values and their meanings can be found in the documentation of 2003 2039 ///\ref SolveExitStatus. … … 2008 2044 ///\name Set Column Type 2009 2045 ///@{ 2010 2046 2011 ///Possible variable (column) types (e.g. real, integer, binary etc.) 2012 enum ColTypes { 2047 /// The column types for MIP problems. 2048 2049 /// The column (variable) types for MIP problems. 2050 /// 2051 enum ColType { 2013 2052 /// = 0. Continuous variable (default). 2014 2053 REAL = 0, 2015 2054 /// = 1. Integer variable. 2016 2055 INTEGER = 1 2017 2056 }; 2018 2057 2058 /// \brief The column types for MIP problems. It is an obsolete alias for 2059 /// \ref ColType. 2060 typedef ColType ColTypes; 2061 2019 2062 ///Sets the type of the given column to the given type 2020 2063 2021 /// Sets the type of the given column to the given type.2064 ///This function sets the type of the given column to the given type. 2022 2065 /// 2023 2066 void colType(Col c, ColTypes col_type) { 2024 2067 _setColType(cols(id(c)),col_type); … … 2026 2069 2027 2070 ///Gives back the type of the column. 2028 2071 2029 /// Gives back the type of the column.2072 ///This function gives back the type of the column. 2030 2073 /// 2031 2074 ColTypes colType(Col c) const { 2032 2075 return _getColType(cols(id(c))); … … 2037 2080 2038 2081 ///@{ 2039 2082 2040 /// The type of the MIP problem 2083 /// Return the type of the MIP problem 2084 2085 /// This function returns the type of the MIP problem. 2086 /// \see ProblemType 2041 2087 ProblemType type() const { 2042 2088 return _getType(); 2043 2089 } 2044 2090 2045 /// Return the value of the row in the solution 2091 /// Return the value of the objective function 2092 2093 /// This function returns value of the objective function. 2094 /// \return 2095 ///  \ref INF or \ref INF means either infeasibility or unboundedness 2096 /// of the problem, depending on whether we minimize or maximize. 2097 ///  \ref NaN if no primal solution is found. 2098 ///  The (finite) objective value if an optimal solution is found. 2099 Value sol() const { return _getSolValue()+obj_const_comp;} 2046 2100 2047 /// Return the value of the row in the solution. 2101 /// Return the value of the column 2102 2103 /// This function returns the value of the given column in the solution. 2048 2104 /// \pre The problem is solved. 2049 2105 Value sol(Col c) const { return _getSol(cols(id(c))); } 2050 2106 2051 /// Return the value of the expression in the solution2107 /// Return the value of the expression 2052 2108 2053 /// Return the value of the expression in the solution, i.e. the2054 /// dot product of the solution and the expression.2109 /// This function returns the value of the given expression in the solution, 2110 /// i.e. the dot product of the solution and the expression. 2055 2111 /// \pre The problem is solved. 2056 2112 Value sol(const Expr& e) const { 2057 2113 double res = *e; … … 2060 2116 } 2061 2117 return res; 2062 2118 } 2063 ///The value of the objective function 2119 2120 /// Return the value of the objective function 2064 2121 2065 ///\return 2066 /// \ref INF or \ref INF means either infeasibility or unboundedness 2067 /// of the problem, depending on whether we minimize or maximize. 2068 /// \ref NaN if no primal solution is found. 2069 /// The (finite) objective value if an optimal solution is found. 2122 /// This function returns the value of the objective function. 2123 /// It is an alias for \ref sol(). 2070 2124 Value solValue() const { return _getSolValue()+obj_const_comp;} 2125 2126 /// Return the type of the MIP problem 2127 2128 /// This function returns the type of the MIP problem. 2129 /// It is an alias for \ref type(). 2130 /// \see ProblemType 2131 ProblemType primalType() const { 2132 return _getType(); 2133 } 2134 2135 /// Return the value of the objective function 2136 2137 /// This function returns value of the objective function. 2138 /// It is an alias for \ref sol(). 2139 Value primal() const { return _getSolValue()+obj_const_comp;} 2140 2141 /// Return the value of the column 2142 2143 /// This function returns the value of the given column in the solution. 2144 /// It is an alias for the corresponding \ref sol() function. 2145 /// \pre The problem is solved. 2146 Value primal(Col c) const { return _getSol(cols(id(c))); } 2147 2148 /// Return the value of the expression 2149 2150 /// This function returns the value of the given expression in the solution, 2151 /// i.e. the dot product of the solution and the expression. 2152 /// It is an alias for the corresponding \ref sol() function. 2153 /// \pre The problem is solved. 2154 Value primal(const Expr& e) const { 2155 double res = *e; 2156 for (Expr::ConstCoeffIt c(e); c != INVALID; ++c) { 2157 res += *c * sol(c); 2158 } 2159 return res; 2160 } 2161 2162 /// Return the value of the objective function 2163 2164 /// This function returns the value of the objective function. 2165 /// It is an alias for \ref sol(). 2166 Value primalValue() const { return _getSolValue()+obj_const_comp;} 2167 2071 2168 ///@} 2072 2169 2073 2170 protected: