1 | %* glpk04.tex *% |
---|
2 | |
---|
3 | \chapter{Advanced API Routines} |
---|
4 | |
---|
5 | \section{Background} |
---|
6 | \label{basbgd} |
---|
7 | |
---|
8 | Using vector and matrix notations LP problem (1.1)---(1.3) (see Section |
---|
9 | \ref{seclp}, page \pageref{seclp}) can be stated as follows: |
---|
10 | |
---|
11 | \medskip |
---|
12 | |
---|
13 | \noindent |
---|
14 | \hspace{.5in} minimize (or maximize) |
---|
15 | $$z=c^Tx_S+c_0\eqno(3.1)$$ |
---|
16 | \hspace{.5in} subject to linear constraints |
---|
17 | $$x_R=Ax_S\eqno(3.2)$$ |
---|
18 | \hspace{.5in} and bounds of variables |
---|
19 | $$ |
---|
20 | \begin{array}{l@{\ }c@{\ }l@{\ }c@{\ }l} |
---|
21 | l_R&\leq&x_R&\leq&u_R\\ |
---|
22 | l_S&\leq&x_S&\leq&u_S\\ |
---|
23 | \end{array}\eqno(3.3) |
---|
24 | $$ |
---|
25 | where: |
---|
26 | |
---|
27 | \noindent |
---|
28 | $x_R=(x_1,\dots,x_m)$ is the vector of auxiliary variables; |
---|
29 | |
---|
30 | \noindent |
---|
31 | $x_S=(x_{m+1},\dots,x_{m+n})$ is the vector of structural |
---|
32 | variables; |
---|
33 | |
---|
34 | \noindent |
---|
35 | $z$ is the objective function; |
---|
36 | |
---|
37 | \noindent |
---|
38 | $c=(c_1,\dots,c_n)$ is the vector of objective coefficients; |
---|
39 | |
---|
40 | \noindent |
---|
41 | $c_0$ is the constant term (``shift'') of the objective function; |
---|
42 | |
---|
43 | \noindent |
---|
44 | $A=(a_{11},\dots,a_{mn})$ is the constraint matrix; |
---|
45 | |
---|
46 | \noindent |
---|
47 | $l_R=(l_1,\dots,l_m)$ is the vector of lower bounds of auxiliary |
---|
48 | variables; |
---|
49 | |
---|
50 | \noindent |
---|
51 | $u_R=(u_1,\dots,u_m)$ is the vector of upper bounds of auxiliary |
---|
52 | variables; |
---|
53 | |
---|
54 | \noindent |
---|
55 | $l_S=(l_{m+1},\dots,l_{m+n})$ is the vector of lower bounds of |
---|
56 | structural variables; |
---|
57 | |
---|
58 | \noindent |
---|
59 | $u_S=(u_{m+1},\dots,u_{m+n})$ is the vector of upper bounds of |
---|
60 | structural variables. |
---|
61 | |
---|
62 | \medskip |
---|
63 | |
---|
64 | From the simplex method's standpoint there is no difference between |
---|
65 | auxiliary and structural variables. This allows combining all these |
---|
66 | variables into one vector that leads to the following problem statement: |
---|
67 | |
---|
68 | \medskip |
---|
69 | |
---|
70 | \noindent |
---|
71 | \hspace{.5in} minimize (or maximize) |
---|
72 | $$z=(0\ |\ c)^Tx+c_0\eqno(3.4)$$ |
---|
73 | \hspace{.5in} subject to linear constraints |
---|
74 | $$(I\ |-\!A)x=0\eqno(3.5)$$ |
---|
75 | \hspace{.5in} and bounds of variables |
---|
76 | $$l\leq x\leq u\eqno(3.6)$$ |
---|
77 | where: |
---|
78 | |
---|
79 | \noindent |
---|
80 | $x=(x_R\ |\ x_S)$ is the $(m+n)$-vector of (all) variables; |
---|
81 | |
---|
82 | \noindent |
---|
83 | $(0\ |\ c)$ is the $(m+n)$-vector of objective |
---|
84 | coefficients;\footnote{Subvector 0 corresponds to objective coefficients |
---|
85 | at auxiliary variables.} |
---|
86 | |
---|
87 | \noindent |
---|
88 | $(I\ |-\!A)$ is the {\it augmented} constraint |
---|
89 | $m\times(m+n)$-matrix;\footnote{Note that due to auxiliary variables |
---|
90 | matrix $(I\ |-\!A)$ contains the unity submatrix and therefore has full |
---|
91 | rank. This means, in particular, that the system (3.5) has no linearly |
---|
92 | dependent constraints.} |
---|
93 | |
---|
94 | \noindent |
---|
95 | $l=(l_R\ |\ l_S)$ is the $(m+n)$-vector of lower bounds of (all) |
---|
96 | variables; |
---|
97 | |
---|
98 | \noindent |
---|
99 | $u=(u_R\ |\ u_S)$ is the $(m+n)$-vector of upper bounds of (all) |
---|
100 | variables. |
---|
101 | |
---|
102 | \medskip |
---|
103 | |
---|
104 | By definition an {\it LP basic solution} geometrically is a point in |
---|
105 | the space of all variables, which is the intersection of planes |
---|
106 | corresponding to active constraints\footnote{A constraint is called |
---|
107 | {\it active} if in a given point it is satisfied as equality, otherwise |
---|
108 | it is called {\it inactive}.}. The space of all variables has the |
---|
109 | dimension $m+n$, therefore, to define some basic solution we have to |
---|
110 | define $m+n$ active constraints. Note that $m$ constraints (3.5) being |
---|
111 | linearly independent equalities are always active, so remaining $n$ |
---|
112 | active constraints can be chosen only from bound constraints (3.6). |
---|
113 | |
---|
114 | A variable is called {\it non-basic}, if its (lower or upper) bound is |
---|
115 | active, otherwise it is called {\it basic}. Since, as was said above, |
---|
116 | exactly $n$ bound constraints must be active, in any basic solution |
---|
117 | there are always $n$ non-basic variables and $m$ basic variables. |
---|
118 | (Note that a free variable also can be non-basic. Although such |
---|
119 | variable has no bounds, we can think it as the difference between two |
---|
120 | non-negative variables, which both are non-basic in this case.) |
---|
121 | |
---|
122 | Now consider how to determine numeric values of all variables for a |
---|
123 | given basic solution. |
---|
124 | |
---|
125 | Let $\Pi$ be an appropriate permutation matrix of the order $(m+n)$. |
---|
126 | Then we can write: |
---|
127 | $$\left(\begin{array}{@{}c@{}}x_B\\x_N\\\end{array}\right)= |
---|
128 | \Pi\left(\begin{array}{@{}c@{}}x_R\\x_S\\\end{array}\right)=\Pi x, |
---|
129 | \eqno(3.7)$$ |
---|
130 | where $x_B$ is the vector of basic variables, $x_N$ is the vector of |
---|
131 | non-basic variables, $x=(x_R\ |\ x_S)$ is the vector of all variables |
---|
132 | in the original order. In this case the system of linear constraints |
---|
133 | (3.5) can be rewritten as follows: |
---|
134 | $$(I\ |-\!A)\Pi^T\Pi x=0\ \ \ \Rightarrow\ \ \ (B\ |\ N) |
---|
135 | \left(\begin{array}{@{}c@{}}x_B\\x_N\\\end{array}\right)=0,\eqno(3.8)$$ |
---|
136 | where |
---|
137 | $$(B\ |\ N)=(I\ |-\!A)\Pi^T.\eqno(3.9)$$ |
---|
138 | Matrix $B$ is a square non-singular $m\times m$-matrix, which is |
---|
139 | composed from columns of the augmented constraint matrix corresponding |
---|
140 | to basic variables. It is called the {\it basis matrix} or simply the |
---|
141 | {\it basis}. Matrix $N$ is a rectangular $m\times n$-matrix, which is |
---|
142 | composed from columns of the augmented constraint matrix corresponding |
---|
143 | to non-basic variables. |
---|
144 | |
---|
145 | From (3.8) it follows that: |
---|
146 | $$Bx_B+Nx_N=0,\eqno(3.10)$$ |
---|
147 | therefore, |
---|
148 | $$x_B=-B^{-1}Nx_N.\eqno(3.11)$$ |
---|
149 | Thus, the formula (3.11) shows how to determine numeric values of basic |
---|
150 | variables $x_B$ assuming that non-basic variables $x_N$ are fixed on |
---|
151 | their active bounds. |
---|
152 | |
---|
153 | The $m\times n$-matrix |
---|
154 | $$\Xi=-B^{-1}N,\eqno(3.12)$$ |
---|
155 | which appears in (3.11), is called the {\it simplex |
---|
156 | tableau}.\footnote{This definition corresponds to the GLPK |
---|
157 | implementation.} It shows how basic variables depend on non-basic |
---|
158 | variables: |
---|
159 | $$x_B=\Xi x_N.\eqno(3.13)$$ |
---|
160 | |
---|
161 | The system (3.13) is equivalent to the system (3.5) in the sense that |
---|
162 | they both define the same set of points in the space of (primal) |
---|
163 | variables, which satisfy to these systems. If, moreover, values of all |
---|
164 | basic variables satisfy to their bound constraints (3.3), the |
---|
165 | corresponding basic solution is called {\it (primal) feasible}, |
---|
166 | otherwise {\it (primal) infeasible}. It is understood that any (primal) |
---|
167 | feasible basic solution satisfy to all constraints (3.2) and (3.3). |
---|
168 | |
---|
169 | The LP theory says that if LP has optimal solution, it has (at least |
---|
170 | one) basic feasible solution, which corresponds to the optimum. And the |
---|
171 | most natural way to determine whether a given basic solution is optimal |
---|
172 | or not is to use the Karush---Kuhn---Tucker optimality conditions. |
---|
173 | |
---|
174 | \def\arraystretch{1.5} |
---|
175 | |
---|
176 | For the problem statement (3.4)---(3.6) the optimality conditions are |
---|
177 | the following:\footnote{These conditions can be appiled to any solution, |
---|
178 | not only to a basic solution.} |
---|
179 | $$(I\ |-\!A)x=0\eqno(3.14)$$ |
---|
180 | $$(I\ |-\!A)^T\pi+\lambda_l+\lambda_u=\nabla z=(0\ |\ c)^T\eqno(3.15)$$ |
---|
181 | $$l\leq x\leq u\eqno(3.16)$$ |
---|
182 | $$\lambda_l\geq 0,\ \ \lambda_u\leq 0\ \ \mbox{(minimization)} |
---|
183 | \eqno(3.17)$$ |
---|
184 | $$\lambda_l\leq 0,\ \ \lambda_u\geq 0\ \ \mbox{(maximization)} |
---|
185 | \eqno(3.18)$$ |
---|
186 | $$(\lambda_l)_k(x_k-l_k)=0,\ \ (\lambda_u)_k(x_k-u_k)=0,\ \ k=1,2,\dots, |
---|
187 | m+n\eqno(3.19)$$ |
---|
188 | where: |
---|
189 | $\pi=(\pi_1,\pi_2,\dots,\pi_m)$ is a $m$-vector of Lagrange |
---|
190 | multipliers for equality constraints (3.5); |
---|
191 | $\lambda_l=[(\lambda_l)_1,(\lambda_l)_2,\dots,(\lambda_l)_n]$ is a |
---|
192 | $n$-vector of Lagrange multipliers for lower bound constraints (3.6); |
---|
193 | $\lambda_u=[(\lambda_u)_1,(\lambda_u)_2,\dots,(\lambda_u)_n]$ is a |
---|
194 | $n$-vector of Lagrange multipliers for upper bound constraints (3.6). |
---|
195 | |
---|
196 | Condition (3.14) is the {\it primal} (original) system of equality |
---|
197 | constraints (3.5). |
---|
198 | |
---|
199 | Condition (3.15) is the {\it dual} system of equality constraints. |
---|
200 | It requires the gradient of the objective function to be a linear |
---|
201 | combination of normals to the planes defined by constraints of the |
---|
202 | original problem. |
---|
203 | |
---|
204 | Condition (3.16) is the primal (original) system of bound constraints |
---|
205 | (3.6). |
---|
206 | |
---|
207 | Condition (3.17) (or (3.18) in case of maximization) is the dual system |
---|
208 | of bound constraints. |
---|
209 | |
---|
210 | Condition (3.19) is the {\it complementary slackness condition}. It |
---|
211 | requires, for each original (auxiliary or structural) variable $x_k$, |
---|
212 | that either its (lower or upper) bound must be active, or zero bound of |
---|
213 | the corresponding Lagrange multiplier ($(\lambda_l)_k$ or |
---|
214 | $(\lambda_u)_k$) must be active. |
---|
215 | |
---|
216 | In GLPK two multipliers $(\lambda_l)_k$ and $(\lambda_u)_k$ for each |
---|
217 | primal (original) variable $x_k$, $k=1,2,\dots,m+n$, are combined into |
---|
218 | one multiplier: |
---|
219 | $$\lambda_k=(\lambda_l)_k+(\lambda_u)_k,\eqno(3.20)$$ |
---|
220 | which is called a {\it dual variable} for $x_k$. This {\it cannot} lead |
---|
221 | to the ambiguity, because both lower and upper bounds of $x_k$ cannot be |
---|
222 | active at the same time,\footnote{If $x_k$ is a fixed variable, we can |
---|
223 | think it as double-bounded variable $l_k\leq x_k\leq u_k$, where |
---|
224 | $l_k=u_k.$} so at least one of $(\lambda_l)_k$ and $(\lambda_u)_k$ must |
---|
225 | be equal to zero, and because these multipliers have different signs, |
---|
226 | the combined multiplier, which is their sum, uniquely defines each of |
---|
227 | them. |
---|
228 | |
---|
229 | \def\arraystretch{1} |
---|
230 | |
---|
231 | Using dual variables $\lambda_k$ the dual system of bound constraints |
---|
232 | (3.17) and (3.18) can be written in the form of so called {\it ``rule of |
---|
233 | signs''} as follows: |
---|
234 | |
---|
235 | \begin{center} |
---|
236 | \begin{tabular}{|@{\,}c@{$\,$}|@{$\,$}c@{$\,$}|@{$\,$}c@{$\,$}| |
---|
237 | @{$\,$}c|c@{$\,$}|@{$\,$}c@{$\,$}|@{$\,$}c@{$\,$}|} |
---|
238 | \hline |
---|
239 | Original bound&\multicolumn{3}{c|}{Minimization}&\multicolumn{3}{c|} |
---|
240 | {Maximization}\\ |
---|
241 | \cline{2-7} |
---|
242 | constraint&$(\lambda_l)_k$&$(\lambda_u)_k$&$(\lambda_l)_k+ |
---|
243 | (\lambda_u)_k$&$(\lambda_l)_k$&$(\lambda_u)_k$&$(\lambda_l)_k+ |
---|
244 | (\lambda_u)_k$\\ |
---|
245 | \hline |
---|
246 | $-\infty<x_k<+\infty$&$=0$&$=0$&$\lambda_k=0$&$=0$&$=0$&$\lambda_k=0$\\ |
---|
247 | $x_k\geq l_k$&$\geq 0$&$=0$&$\lambda_k\geq 0$&$\leq 0$&$=0$&$\lambda_k |
---|
248 | \leq0$\\ |
---|
249 | $x_k\leq u_k$&$=0$&$\leq 0$&$\lambda_k\leq 0$&$=0$&$\geq 0$&$\lambda_k |
---|
250 | \geq0$\\ |
---|
251 | $l_k\leq x_k\leq u_k$&$\geq 0$& $\leq 0$& $-\infty\!<\!\lambda_k\!< |
---|
252 | \!+\infty$ |
---|
253 | &$\leq 0$& $\geq 0$& $-\infty\!<\!\lambda_k\!<\!+\infty$\\ |
---|
254 | $x_k=l_k=u_k$&$\geq 0$& $\leq 0$& $-\infty\!<\!\lambda_k\!<\!+\infty$& |
---|
255 | $\leq 0$& |
---|
256 | $\geq 0$& $-\infty\!<\!\lambda_k\!<\!+\infty$\\ |
---|
257 | \hline |
---|
258 | \end{tabular} |
---|
259 | \end{center} |
---|
260 | |
---|
261 | May note that each primal variable $x_k$ has its dual counterpart |
---|
262 | $\lambda_k$ and vice versa. This allows applying the same partition for |
---|
263 | the vector of dual variables as (3.7): |
---|
264 | $$\left(\begin{array}{@{}c@{}}\lambda_B\\\lambda_N\\\end{array}\right)= |
---|
265 | \Pi\lambda,\eqno(3.21)$$ |
---|
266 | where $\lambda_B$ is a vector of dual variables for basic variables |
---|
267 | $x_B$, $\lambda_N$ is a vector of dual variables for non-basic variables |
---|
268 | $x_N$. |
---|
269 | |
---|
270 | By definition, bounds of basic variables are inactive constraints, so in |
---|
271 | any basic solution $\lambda_B=0$. Corresponding values of dual variables |
---|
272 | $\lambda_N$ for non-basic variables $x_N$ can be determined in the |
---|
273 | following way. From the dual system (3.15) we have: |
---|
274 | $$(I\ |-\!A)^T\pi+\lambda=(0\ |\ c)^T,\eqno(3.22)$$ |
---|
275 | so multiplying both sides of (3.22) by matrix $\Pi$ gives: |
---|
276 | $$\Pi(I\ |-\!A)^T\pi+\Pi\lambda=\Pi(0\ |\ c)^T.\eqno(3.23)$$ |
---|
277 | From (3.9) it follows that |
---|
278 | $$\Pi(I\ |-\!A)^T=[(I\ |-\!A)\Pi^T]^T=(B\ |\ N)^T.\eqno(3.24)$$ |
---|
279 | Further, we can apply the partition (3.7) also to the vector of |
---|
280 | objective coefficients (see (3.4)): |
---|
281 | $$\left(\begin{array}{@{}c@{}}c_B\\c_N\\\end{array}\right)= |
---|
282 | \Pi\left(\begin{array}{@{}c@{}}0\\c\\\end{array}\right),\eqno(3.25)$$ |
---|
283 | where $c_B$ is a vector of objective coefficients at basic variables, |
---|
284 | $c_N$ is a vector of objective coefficients at non-basic variables. |
---|
285 | Now, substituting (3.24), (3.21), and (3.25) into (3.23), leads to: |
---|
286 | $$(B\ |\ N)^T\pi+(\lambda_B\ |\ \lambda_N)^T=(c_B\ |\ c_N)^T, |
---|
287 | \eqno(3.26)$$ |
---|
288 | and transposing both sides of (3.26) gives the system: |
---|
289 | $$\left(\begin{array}{@{}c@{}}B^T\\N^T\\\end{array}\right)\pi+ |
---|
290 | \left(\begin{array}{@{}c@{}}\lambda_B\\\lambda_N\\\end{array}\right)= |
---|
291 | \left(\begin{array}{@{}c@{}}c_B\\c_T\\\end{array}\right),\eqno(3.27)$$ |
---|
292 | which can be written as follows: |
---|
293 | $$\left\{ |
---|
294 | \begin{array}{@{\ }r@{\ }c@{\ }r@{\ }c@{\ }l@{\ }} |
---|
295 | B^T\pi&+&\lambda_B&=&c_B\\ |
---|
296 | N^T\pi&+&\lambda_N&=&c_N\\ |
---|
297 | \end{array} |
---|
298 | \right.\eqno(3.28) |
---|
299 | $$ |
---|
300 | Lagrange multipliers $\pi=(\pi_i)$ correspond to equality constraints |
---|
301 | (3.5) and therefore can have any sign. This allows resolving the first |
---|
302 | subsystem of (3.28) as follows:\footnote{$B^{-T}$ means $(B^T)^{-1}= |
---|
303 | (B^{-1})^T$.} |
---|
304 | $$\pi=B^{-T}(c_B-\lambda_B)=-B^{-T}\lambda_B+B^{-T}c_B,\eqno(3.29)$$ |
---|
305 | and substitution of $\pi$ from (3.29) into the second subsystem of |
---|
306 | (3.28) gives: |
---|
307 | $$\lambda_N=-N^T\pi+c_N=N^TB^{-T}\lambda_B+(c_N-N^TB^{-T}c_B). |
---|
308 | \eqno(3.30)$$ |
---|
309 | The latter system can be written in the following final form: |
---|
310 | $$\lambda_N=-\Xi^T\lambda_B+d,\eqno(3.31)$$ |
---|
311 | where $\Xi$ is the simplex tableau (see (3.12)), and |
---|
312 | $$d=c_N-N^TB^{-T}c_B=c_N+\Xi^Tc_B\eqno(3.32)$$ |
---|
313 | is the vector of so called {\it reduced costs} of non-basic variables. |
---|
314 | |
---|
315 | \pagebreak |
---|
316 | |
---|
317 | Above it was said that in any basic solution $\lambda_B=0$, so |
---|
318 | $\lambda_N=d$ as it follows from (3.31). |
---|
319 | |
---|
320 | The system (3.31) is equivalent to the system (3.15) in the sense that |
---|
321 | they both define the same set of points in the space of dual variables |
---|
322 | $\lambda$, which satisfy to these systems. If, moreover, values of all |
---|
323 | dual variables $\lambda_N$ (i.e. reduced costs $d$) satisfy to their |
---|
324 | bound constraints (i.e. to the ``rule of signs''; see the table above), |
---|
325 | the corresponding basic solution is called {\it dual feasible}, |
---|
326 | otherwise {\it dual infeasible}. It is understood that any dual feasible |
---|
327 | solution satisfy to all constraints (3.15) and (3.17) (or (3.18) in case |
---|
328 | of maximization). |
---|
329 | |
---|
330 | It can be easily shown that the complementary slackness condition |
---|
331 | (3.19) is always satisfied for {\it any} basic solution. Therefore, |
---|
332 | a basic solution\footnote{It is assumed that a complete basic solution |
---|
333 | has the form $(x,\lambda)$, i.e. it includes primal as well as dual |
---|
334 | variables.} is {\it optimal} if and only if it is primal and dual |
---|
335 | feasible, because in this case it satifies to all the optimality |
---|
336 | conditions (3.14)---(3.19). |
---|
337 | |
---|
338 | \def\arraystretch{1.5} |
---|
339 | |
---|
340 | The meaning of reduced costs $d=(d_j)$ of non-basic variables can be |
---|
341 | explained in the following way. From (3.4), (3.7), and (3.25) it follows |
---|
342 | that: |
---|
343 | $$z=c_B^Tx_B+c_N^Tx_N+c_0.\eqno(3.33)$$ |
---|
344 | Substituting $x_B$ from (3.11) into (3.33) we can eliminate basic |
---|
345 | variables and express the objective only through non-basic variables: |
---|
346 | $$ |
---|
347 | \begin{array}{r@{\ }c@{\ }l} |
---|
348 | z&=&c_B^T(-B^{-1}Nx_N)+c_N^Tx_N+c_0=\\ |
---|
349 | &=&(c_N^T-c_B^TB^{-1}N)x_N+c_0=\\ |
---|
350 | &=&(c_N-N^TB^{-T}c_B)^Tx_N+c_0=\\ |
---|
351 | &=&d^Tx_N+c_0. |
---|
352 | \end{array}\eqno(3.34) |
---|
353 | $$ |
---|
354 | From (3.34) it is seen that reduced cost $d_j$ shows how the objective |
---|
355 | function $z$ depends on non-basic variable $(x_N)_j$ in the neighborhood |
---|
356 | of the current basic solution, i.e. while the current basis remains |
---|
357 | unchanged. |
---|
358 | |
---|
359 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
360 | |
---|
361 | \newpage |
---|
362 | |
---|
363 | \section{LP basis routines} |
---|
364 | \label{lpbasis} |
---|
365 | |
---|
366 | \subsection{glp\_bf\_exists---check if the basis factorization exists} |
---|
367 | |
---|
368 | \subsubsection*{Synopsis} |
---|
369 | |
---|
370 | \begin{verbatim} |
---|
371 | int glp_bf_exists(glp_prob *lp); |
---|
372 | \end{verbatim} |
---|
373 | |
---|
374 | \subsubsection*{Returns} |
---|
375 | |
---|
376 | If the basis factorization for the current basis associated with the |
---|
377 | specified problem object exists and therefore is available for |
---|
378 | computations, the routine \verb|glp_bf_exists| returns non-zero. |
---|
379 | Otherwise the routine returns zero. |
---|
380 | |
---|
381 | \subsubsection*{Comments} |
---|
382 | |
---|
383 | Let the problem object have $m$ rows and $n$ columns. In GLPK the |
---|
384 | {\it basis matrix} $B$ is a square non-singular matrix of the order $m$, |
---|
385 | whose columns correspond to basic (auxiliary and/or structural) |
---|
386 | variables. It is defined by the following main |
---|
387 | equality:\footnote{For more details see Subsection \ref{basbgd}, |
---|
388 | page \pageref{basbgd}.} |
---|
389 | $$(B\ |\ N)=(I\ |-\!A)\Pi^T,$$ |
---|
390 | where $I$ is the unity matrix of the order $m$, whose columns correspond |
---|
391 | to auxiliary variables; $A$ is the original constraint |
---|
392 | $m\times n$-matrix, whose columns correspond to structural variables; |
---|
393 | $(I\ |-\!A)$ is the augmented constraint\linebreak |
---|
394 | $m\times(m+n)$-matrix, whose columns correspond to all (auxiliary and |
---|
395 | structural) variables following in the original order; $\Pi$ is a |
---|
396 | permutation matrix of the order $m+n$; and $N$ is a rectangular |
---|
397 | $m\times n$-matrix, whose columns correspond to non-basic (auxiliary |
---|
398 | and/or structural) variables. |
---|
399 | |
---|
400 | For various reasons it may be necessary to solve linear systems with |
---|
401 | matrix $B$. To provide this possibility the GLPK implementation |
---|
402 | maintains an invertable form of $B$ (that is, some representation of |
---|
403 | $B^{-1}$) called the {\it basis factorization}, which is an internal |
---|
404 | component of the problem object. Typically, the basis factorization is |
---|
405 | computed by the simplex solver, which keeps it in the problem object |
---|
406 | to be available for other computations. |
---|
407 | |
---|
408 | Should note that any changes in the problem object, which affects the |
---|
409 | basis matrix (e.g. changing the status of a row or column, changing |
---|
410 | a basic column of the constraint matrix, removing an active constraint, |
---|
411 | etc.), invalidates the basis factorization. So before calling any API |
---|
412 | routine, which uses the basis factorization, the application program |
---|
413 | must make sure (using the routine \verb|glp_bf_exists|) that the |
---|
414 | factorization exists and therefore available for computations. |
---|
415 | |
---|
416 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
417 | |
---|
418 | \subsection{glp\_factorize---compute the basis factorization} |
---|
419 | |
---|
420 | \subsubsection*{Synopsis} |
---|
421 | |
---|
422 | \begin{verbatim} |
---|
423 | int glp_factorize(glp_prob *lp); |
---|
424 | \end{verbatim} |
---|
425 | |
---|
426 | \subsubsection*{Description} |
---|
427 | |
---|
428 | The routine \verb|glp_factorize| computes the basis factorization for |
---|
429 | the current basis associated with the specified problem |
---|
430 | object.\footnote{The current basis is defined by the current statuses |
---|
431 | of rows (auxiliary variables) and columns (structural variables).} |
---|
432 | |
---|
433 | The basis factorization is computed from ``scratch'' even if it exists, |
---|
434 | so the application program may use the routine \verb|glp_bf_exists|, |
---|
435 | and, if the basis factorization already exists, not to call the routine |
---|
436 | \verb|glp_factorize| to prevent an extra work. |
---|
437 | |
---|
438 | The routine \verb|glp_factorize| {\it does not} compute components of |
---|
439 | the basic solution (i.e. primal and dual values). |
---|
440 | |
---|
441 | \subsubsection*{Returns} |
---|
442 | |
---|
443 | \begin{tabular}{@{}p{25mm}p{97.3mm}@{}} |
---|
444 | 0 & The basis factorization has been successfully computed.\\ |
---|
445 | \verb|GLP_EBADB| & The basis matrix is invalid, because the number of |
---|
446 | basic (auxiliary and structural) variables is not the same as the number |
---|
447 | of rows in the problem object.\\ |
---|
448 | \verb|GLP_ESING| & The basis matrix is singular within the working |
---|
449 | precision.\\ |
---|
450 | \verb|GLP_ECOND| & The basis matrix is ill-conditioned, i.e. its |
---|
451 | condition number is too large.\\ |
---|
452 | \end{tabular} |
---|
453 | |
---|
454 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
455 | |
---|
456 | \newpage |
---|
457 | |
---|
458 | \subsection{glp\_bf\_updated---check if the basis factorization has\\ |
---|
459 | been updated} |
---|
460 | |
---|
461 | \subsubsection*{Synopsis} |
---|
462 | |
---|
463 | \begin{verbatim} |
---|
464 | int glp_bf_updated(glp_prob *lp); |
---|
465 | \end{verbatim} |
---|
466 | |
---|
467 | \subsubsection*{Returns} |
---|
468 | |
---|
469 | If the basis factorization has been just computed from ``scratch'', the |
---|
470 | routine \verb|glp_bf_updated| returns zero. Otherwise, if the |
---|
471 | factorization has been updated at least once, the routine returns |
---|
472 | non-zero. |
---|
473 | |
---|
474 | \subsubsection*{Comments} |
---|
475 | |
---|
476 | {\it Updating} the basis factorization means recomputing it to reflect |
---|
477 | changes in the basis matrix. For example, on every iteration of the |
---|
478 | simplex method some column of the current basis matrix is replaced by a |
---|
479 | new column that gives a new basis matrix corresponding to the adjacent |
---|
480 | basis. In this case computing the basis factorization for the adjacent |
---|
481 | basis from ``scratch'' (as the routine \verb|glp_factorize| does) would |
---|
482 | be too time-consuming. |
---|
483 | |
---|
484 | On the other hand, since the basis factorization update is a numeric |
---|
485 | computational procedure, applying it many times may lead to accumulating |
---|
486 | round-off errors. Therefore the basis is periodically refactorized |
---|
487 | (reinverted) from ``scratch'' (with the routine \verb|glp_factorize|) |
---|
488 | that allows improving its numerical properties. |
---|
489 | |
---|
490 | The routine \verb|glp_bf_updated| allows determining if the basis |
---|
491 | factorization has been updated at least once since it was computed from |
---|
492 | ``scratch''. |
---|
493 | |
---|
494 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
495 | |
---|
496 | \newpage |
---|
497 | |
---|
498 | \subsection{glp\_get\_bfcp---retrieve basis factorization control |
---|
499 | parameters} |
---|
500 | |
---|
501 | \subsubsection*{Synopsis} |
---|
502 | |
---|
503 | \begin{verbatim} |
---|
504 | void glp_get_bfcp(glp_prob *lp, glp_bfcp *parm); |
---|
505 | \end{verbatim} |
---|
506 | |
---|
507 | \subsubsection*{Description} |
---|
508 | |
---|
509 | The routine \verb|glp_get_bfcp| retrieves control parameters, which are |
---|
510 | used on computing and updating the basis factorization associated with |
---|
511 | the specified problem object. |
---|
512 | |
---|
513 | Current values of the control parameters are stored in a \verb|glp_bfcp| |
---|
514 | structure, which the parameter \verb|parm| points to. For a detailed |
---|
515 | description of the structure \verb|glp_bfcp| see comments to the routine |
---|
516 | \verb|glp_set_bfcp| in the next subsection. |
---|
517 | |
---|
518 | \subsubsection*{Comments} |
---|
519 | |
---|
520 | The purpose of the routine \verb|glp_get_bfcp| is two-fold. First, it |
---|
521 | allows the application program obtaining current values of control |
---|
522 | parameters used by internal GLPK routines, which compute and update the |
---|
523 | basis factorization. |
---|
524 | |
---|
525 | The second purpose of this routine is to provide proper values for all |
---|
526 | fields of the structure \verb|glp_bfcp| in the case when the application |
---|
527 | program needs to change some control parameters. |
---|
528 | |
---|
529 | \subsection{glp\_set\_bfcp---change basis factorization control |
---|
530 | parameters} |
---|
531 | |
---|
532 | \subsubsection*{Synopsis} |
---|
533 | |
---|
534 | \begin{verbatim} |
---|
535 | void glp_set_bfcp(glp_prob *lp, const glp_bfcp *parm); |
---|
536 | \end{verbatim} |
---|
537 | |
---|
538 | \subsubsection*{Description} |
---|
539 | |
---|
540 | The routine \verb|glp_set_bfcp| changes control parameters, which are |
---|
541 | used by internal GLPK routines on computing and updating the basis |
---|
542 | factorization associated with the specified problem object. |
---|
543 | |
---|
544 | New values of the control parameters should be passed in a structure |
---|
545 | \verb|glp_bfcp|, which the parameter \verb|parm| points to. For a |
---|
546 | detailed description of the structure \verb|glp_bfcp| see paragraph |
---|
547 | ``Control parameters'' below. |
---|
548 | |
---|
549 | The parameter \verb|parm| can be specified as \verb|NULL|, in which case |
---|
550 | all control parameters are reset to their default values. |
---|
551 | |
---|
552 | \subsubsection*{Comments} |
---|
553 | |
---|
554 | Before changing some control parameters with the routine |
---|
555 | \verb|glp_set_bfcp| the application program should retrieve current |
---|
556 | values of all control parameters with the routine \verb|glp_get_bfcp|. |
---|
557 | This is needed for backward compatibility, because in the future there |
---|
558 | may appear new members in the structure \verb|glp_bfcp|. |
---|
559 | |
---|
560 | Note that new values of control parameters come into effect on a next |
---|
561 | computation of the basis factorization, not immediately. |
---|
562 | |
---|
563 | \subsubsection*{Example} |
---|
564 | |
---|
565 | \begin{verbatim} |
---|
566 | glp_prob *lp; |
---|
567 | glp_bfcp parm; |
---|
568 | . . . |
---|
569 | /* retrieve current values of control parameters */ |
---|
570 | glp_get_bfcp(lp, &parm); |
---|
571 | /* change the threshold pivoting tolerance */ |
---|
572 | parm.piv_tol = 0.05; |
---|
573 | /* set new values of control parameters */ |
---|
574 | glp_set_bfcp(lp, &parm); |
---|
575 | . . . |
---|
576 | \end{verbatim} |
---|
577 | |
---|
578 | \subsubsection*{Control parameters} |
---|
579 | |
---|
580 | This paragraph describes all basis factorization control parameters |
---|
581 | currently used in the package. Symbolic names of control parameters are |
---|
582 | names of corresponding members in the structure \verb|glp_bfcp|. |
---|
583 | |
---|
584 | \def\arraystretch{1} |
---|
585 | |
---|
586 | \medskip |
---|
587 | |
---|
588 | \noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}} |
---|
589 | \multicolumn{2}{@{}l}{{\tt int type} (default: {\tt GLP\_BF\_FT})} \\ |
---|
590 | &Basis factorization type:\\ |
---|
591 | &\verb|GLP_BF_FT|---$LU$ + Forrest--Tomlin update;\\ |
---|
592 | &\verb|GLP_BF_BG|---$LU$ + Schur complement + Bartels--Golub update;\\ |
---|
593 | &\verb|GLP_BF_GR|---$LU$ + Schur complement + Givens rotation update. |
---|
594 | \\ |
---|
595 | &In case of \verb|GLP_BF_FT| the update is applied to matrix $U$, while |
---|
596 | in cases of \verb|GLP_BF_BG| and \verb|GLP_BF_GR| the update is applied |
---|
597 | to the Schur complement. |
---|
598 | \end{tabular} |
---|
599 | |
---|
600 | \medskip |
---|
601 | |
---|
602 | \noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}} |
---|
603 | \multicolumn{2}{@{}l}{{\tt int lu\_size} (default: {\tt 0})} \\ |
---|
604 | &The initial size of the Sparse Vector Area, in non-zeros, used on |
---|
605 | computing $LU$-factorization of the basis matrix for the first time. |
---|
606 | If this parameter is set to 0, the initial SVA size is determined |
---|
607 | automatically.\\ |
---|
608 | \end{tabular} |
---|
609 | |
---|
610 | \medskip |
---|
611 | |
---|
612 | \noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}} |
---|
613 | \multicolumn{2}{@{}l}{{\tt double piv\_tol} (default: {\tt 0.10})} \\ |
---|
614 | &Threshold pivoting (Markowitz) tolerance, 0 $<$ \verb|piv_tol| $<$ 1, |
---|
615 | used on computing $LU$-factorization of the basis matrix. Element |
---|
616 | $u_{ij}$ of the active submatrix of factor $U$ fits to be pivot if it |
---|
617 | satisfies to the stability criterion |
---|
618 | $|u_{ij}| >= {\tt piv\_tol}\cdot\max|u_{i*}|$, i.e. if it is not very |
---|
619 | small in the magnitude among other elements in the same row. Decreasing |
---|
620 | this parameter may lead to better sparsity at the expense of numerical |
---|
621 | accuracy, and vice versa.\\ |
---|
622 | \end{tabular} |
---|
623 | |
---|
624 | \medskip |
---|
625 | |
---|
626 | \noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}} |
---|
627 | \multicolumn{2}{@{}l}{{\tt int piv\_lim} (default: {\tt 4})} \\ |
---|
628 | &This parameter is used on computing $LU$-factorization of the basis |
---|
629 | matrix and specifies how many pivot candidates needs to be considered |
---|
630 | on choosing a pivot element, \verb|piv_lim| $\geq$ 1. If \verb|piv_lim| |
---|
631 | candidates have been considered, the pivoting routine prematurely |
---|
632 | terminates the search with the best candidate found.\\ |
---|
633 | \end{tabular} |
---|
634 | |
---|
635 | \medskip |
---|
636 | |
---|
637 | \noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}} |
---|
638 | \multicolumn{2}{@{}l}{{\tt int suhl} (default: {\tt GLP\_ON})} \\ |
---|
639 | &This parameter is used on computing $LU$-factorization of the basis |
---|
640 | matrix. Being set to {\tt GLP\_ON} it enables applying the following |
---|
641 | heuristic proposed by Uwe Suhl: if a column of the active submatrix has |
---|
642 | no eligible pivot candidates, it is no more considered until it becomes |
---|
643 | a column singleton. In many cases this allows reducing the time needed |
---|
644 | for pivot searching. To disable this heuristic the parameter \verb|suhl| |
---|
645 | should be set to {\tt GLP\_OFF}.\\ |
---|
646 | \end{tabular} |
---|
647 | |
---|
648 | \medskip |
---|
649 | |
---|
650 | \noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}} |
---|
651 | \multicolumn{2}{@{}l}{{\tt double eps\_tol} (default: {\tt 1e-15})} \\ |
---|
652 | &Epsilon tolerance, \verb|eps_tol| $\geq$ 0, used on computing |
---|
653 | $LU$-factorization of the basis matrix. If an element of the active |
---|
654 | submatrix of factor $U$ is less than \verb|eps_tol| in the magnitude, |
---|
655 | it is replaced by exact zero.\\ |
---|
656 | \end{tabular} |
---|
657 | |
---|
658 | \medskip |
---|
659 | |
---|
660 | \noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}} |
---|
661 | \multicolumn{2}{@{}l}{{\tt double max\_gro} (default: {\tt 1e+10})} \\ |
---|
662 | &Maximal growth of elements of factor $U$, \verb|max_gro| $\geq$ 1, |
---|
663 | allowable on computing $LU$-factorization of the basis matrix. If on |
---|
664 | some elimination step the ratio $u_{big}/b_{max}$ (where $u_{big}$ is |
---|
665 | the largest magnitude of elements of factor $U$ appeared in its active |
---|
666 | submatrix during all the factorization process, $b_{max}$ is the largest |
---|
667 | magnitude of elements of the basis matrix to be factorized), the basis |
---|
668 | matrix is considered as ill-conditioned.\\ |
---|
669 | \end{tabular} |
---|
670 | |
---|
671 | \medskip |
---|
672 | |
---|
673 | \noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}} |
---|
674 | \multicolumn{2}{@{}l}{{\tt int nfs\_max} (default: {\tt 100})} \\ |
---|
675 | &Maximal number of additional row-like factors (entries of the eta |
---|
676 | file), \verb|nfs_max| $\geq$ 1, which can be added to $LU$-factorization |
---|
677 | of the basis matrix on updating it with the Forrest--Tomlin technique. |
---|
678 | This parameter is used only once, before $LU$-factorization is computed |
---|
679 | for the first time, to allocate working arrays. As a rule, each update |
---|
680 | adds one new factor (however, some updates may need no addition), so |
---|
681 | this parameter limits the number of updates between refactorizations.\\ |
---|
682 | \end{tabular} |
---|
683 | |
---|
684 | \medskip |
---|
685 | |
---|
686 | \noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}} |
---|
687 | \multicolumn{2}{@{}l}{{\tt double upd\_tol} (default: {\tt 1e-6})} \\ |
---|
688 | &Update tolerance, 0 $<$ \verb|upd_tol| $<$ 1, used on updating |
---|
689 | $LU$-factorization of the basis matrix with the Forrest--Tomlin |
---|
690 | technique. If after updating the magnitude of some diagonal element |
---|
691 | $u_{kk}$ of factor $U$ becomes less than |
---|
692 | ${\tt upd\_tol}\cdot\max(|u_{k*}|, |u_{*k}|)$, the factorization is |
---|
693 | considered as inaccurate.\\ |
---|
694 | \end{tabular} |
---|
695 | |
---|
696 | \medskip |
---|
697 | |
---|
698 | \noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}} |
---|
699 | \multicolumn{2}{@{}l}{{\tt int nrs\_max} (default: {\tt 100})} \\ |
---|
700 | &Maximal number of additional rows and columns, \verb|nrs_max| $\geq$ 1, |
---|
701 | which can be added to $LU$-factorization of the basis matrix on updating |
---|
702 | it with the Schur complement technique. This parameter is used only |
---|
703 | once, before $LU$-factorization is computed for the first time, to |
---|
704 | allocate working arrays. As a rule, each update adds one new row and |
---|
705 | column (however, some updates may need no addition), so this parameter |
---|
706 | limits the number of updates between refactorizations.\\ |
---|
707 | \end{tabular} |
---|
708 | |
---|
709 | \medskip |
---|
710 | |
---|
711 | \noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}} |
---|
712 | \multicolumn{2}{@{}l}{{\tt int rs\_size} (default: {\tt 0})} \\ |
---|
713 | &The initial size of the Sparse Vector Area, in non-zeros, used to |
---|
714 | store non-zero elements of additional rows and columns introduced on |
---|
715 | updating $LU$-factorization of the basis matrix with the Schur |
---|
716 | complement technique. If this parameter is set to 0, the initial SVA |
---|
717 | size is determined automatically.\\ |
---|
718 | \end{tabular} |
---|
719 | |
---|
720 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
721 | |
---|
722 | \newpage |
---|
723 | |
---|
724 | \subsection{glp\_get\_bhead---retrieve the basis header information} |
---|
725 | |
---|
726 | \subsubsection*{Synopsis} |
---|
727 | |
---|
728 | \begin{verbatim} |
---|
729 | int glp_get_bhead(glp_prob *lp, int k); |
---|
730 | \end{verbatim} |
---|
731 | |
---|
732 | \subsubsection*{Description} |
---|
733 | |
---|
734 | The routine \verb|glp_get_bhead| returns the basis header information |
---|
735 | for the current basis associated with the specified problem object. |
---|
736 | |
---|
737 | \subsubsection*{Returns} |
---|
738 | |
---|
739 | If basic variable $(x_B)_k$, $1\leq k\leq m$, is $i$-th auxiliary |
---|
740 | variable ($1\leq i\leq m$), the routine returns $i$. Otherwise, if |
---|
741 | $(x_B)_k$ is $j$-th structural variable ($1\leq j\leq n$), the routine |
---|
742 | returns $m+j$. Here $m$ is the number of rows and $n$ is the number of |
---|
743 | columns in the problem object. |
---|
744 | |
---|
745 | \subsubsection*{Comments} |
---|
746 | |
---|
747 | Sometimes the application program may need to know which original |
---|
748 | (auxiliary and structural) variable correspond to a given basic |
---|
749 | variable, or, that is the same, which column of the augmented constraint |
---|
750 | matrix $(I\ |-\!A)$ correspond to a given column of the basis matrix |
---|
751 | $B$. |
---|
752 | |
---|
753 | \def\arraystretch{1} |
---|
754 | |
---|
755 | The correspondence is defined as follows:\footnote{For more details see |
---|
756 | Subsection \ref{basbgd}, page \pageref{basbgd}.} |
---|
757 | $$\left(\begin{array}{@{}c@{}}x_B\\x_N\\\end{array}\right)= |
---|
758 | \Pi\left(\begin{array}{@{}c@{}}x_R\\x_S\\\end{array}\right) |
---|
759 | \ \ \Leftrightarrow |
---|
760 | \ \ \left(\begin{array}{@{}c@{}}x_R\\x_S\\\end{array}\right)= |
---|
761 | \Pi^T\left(\begin{array}{@{}c@{}}x_B\\x_N\\\end{array}\right),$$ |
---|
762 | where $x_B$ is the vector of basic variables, $x_N$ is the vector of |
---|
763 | non-basic variables, $x_R$ is the vector of auxiliary variables |
---|
764 | following in their original order,\footnote{The original order of |
---|
765 | auxiliary and structural variables is defined by the ordinal numbers |
---|
766 | of corresponding rows and columns in the problem object.} $x_S$ is the |
---|
767 | vector of structural variables following in their original order, $\Pi$ |
---|
768 | is a permutation matrix (which is a component of the basis |
---|
769 | factorization). |
---|
770 | |
---|
771 | Thus, if $(x_B)_k=(x_R)_i$ is $i$-th auxiliary variable, the routine |
---|
772 | returns $i$, and if $(x_B)_k=(x_S)_j$ is $j$-th structural variable, |
---|
773 | the routine returns $m+j$, where $m$ is the number of rows in the |
---|
774 | problem object. |
---|
775 | |
---|
776 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
777 | |
---|
778 | \newpage |
---|
779 | |
---|
780 | \subsection{glp\_get\_row\_bind---retrieve row index in the basis\\ |
---|
781 | header} |
---|
782 | |
---|
783 | \subsubsection*{Synopsis} |
---|
784 | |
---|
785 | \begin{verbatim} |
---|
786 | int glp_get_row_bind(glp_prob *lp, int i); |
---|
787 | \end{verbatim} |
---|
788 | |
---|
789 | \subsubsection*{Returns} |
---|
790 | |
---|
791 | The routine \verb|glp_get_row_bind| returns the index $k$ of basic |
---|
792 | variable $(x_B)_k$, $1\leq k\leq m$, which is $i$-th auxiliary variable |
---|
793 | (that is, the auxiliary variable corresponding to $i$-th row), |
---|
794 | $1\leq i\leq m$, in the current basis associated with the specified |
---|
795 | problem object, where $m$ is the number of rows. However, if $i$-th |
---|
796 | auxiliary variable is non-basic, the routine returns zero. |
---|
797 | |
---|
798 | \subsubsection*{Comments} |
---|
799 | |
---|
800 | The routine \verb|glp_get_row_bind| is an inverse to the routine |
---|
801 | \verb|glp_get_bhead|: if \verb|glp_get_bhead|$(lp,k)$ returns $i$, |
---|
802 | \verb|glp_get_row_bind|$(lp,i)$ returns $k$, and vice versa. |
---|
803 | |
---|
804 | \subsection{glp\_get\_col\_bind---retrieve column index in the basis |
---|
805 | header} |
---|
806 | |
---|
807 | \subsubsection*{Synopsis} |
---|
808 | |
---|
809 | \begin{verbatim} |
---|
810 | int glp_get_col_bind(glp_prob *lp, int j); |
---|
811 | \end{verbatim} |
---|
812 | |
---|
813 | \subsubsection*{Returns} |
---|
814 | |
---|
815 | The routine \verb|glp_get_col_bind| returns the index $k$ of basic |
---|
816 | variable $(x_B)_k$, $1\leq k\leq m$, which is $j$-th structural |
---|
817 | variable (that is, the structural variable corresponding to $j$-th |
---|
818 | column), $1\leq j\leq n$, in the current basis associated with the |
---|
819 | specified problem object, where $m$ is the number of rows, $n$ is the |
---|
820 | number of columns. However, if $j$-th structural variable is non-basic, |
---|
821 | the routine returns zero. |
---|
822 | |
---|
823 | \subsubsection*{Comments} |
---|
824 | |
---|
825 | The routine \verb|glp_get_col_bind| is an inverse to the routine |
---|
826 | \verb|glp_get_bhead|: if \verb|glp_get_bhead|$(lp,k)$ returns $m+j$, |
---|
827 | \verb|glp_get_col_bind|$(lp,j)$ returns $k$, and vice versa. |
---|
828 | |
---|
829 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
830 | |
---|
831 | \newpage |
---|
832 | |
---|
833 | \subsection{glp\_ftran---perform forward transformation} |
---|
834 | |
---|
835 | \subsubsection*{Synopsis} |
---|
836 | |
---|
837 | \begin{verbatim} |
---|
838 | void glp_ftran(glp_prob *lp, double x[]); |
---|
839 | \end{verbatim} |
---|
840 | |
---|
841 | \subsubsection*{Description} |
---|
842 | |
---|
843 | The routine \verb|glp_ftran| performs forward transformation (FTRAN), |
---|
844 | i.e. it solves the system $Bx=b$, where $B$ is the basis matrix |
---|
845 | associated with the specified problem object, $x$ is the vector of |
---|
846 | unknowns to be computed, $b$ is the vector of right-hand sides. |
---|
847 | |
---|
848 | On entry to the routine elements of the vector $b$ should be stored in |
---|
849 | locations \verb|x[1]|, \dots, \verb|x[m]|, where $m$ is the number of |
---|
850 | rows. On exit the routine stores elements of the vector $x$ in the same |
---|
851 | locations. |
---|
852 | |
---|
853 | \subsection{glp\_btran---perform backward transformation} |
---|
854 | |
---|
855 | \subsubsection*{Synopsis} |
---|
856 | |
---|
857 | \begin{verbatim} |
---|
858 | void glp_btran(glp_prob *lp, double x[]); |
---|
859 | \end{verbatim} |
---|
860 | |
---|
861 | \subsubsection*{Description} |
---|
862 | |
---|
863 | The routine \verb|glp_btran| performs backward transformation (BTRAN), |
---|
864 | i.e. it solves the system $B^Tx=b$, where $B^T$ is a matrix transposed |
---|
865 | to the basis matrix $B$ associated with the specified problem object, |
---|
866 | $x$ is the vector of unknowns to be computed, $b$ is the vector of |
---|
867 | right-hand sides. |
---|
868 | |
---|
869 | On entry to the routine elements of the vector $b$ should be stored in |
---|
870 | locations \verb|x[1]|, \dots, \verb|x[m]|, where $m$ is the number of |
---|
871 | rows. On exit the routine stores elements of the vector $x$ in the same |
---|
872 | locations. |
---|
873 | |
---|
874 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
875 | |
---|
876 | \newpage |
---|
877 | |
---|
878 | \subsection{glp\_warm\_up---``warm up'' LP basis} |
---|
879 | |
---|
880 | \subsubsection*{Synopsis} |
---|
881 | |
---|
882 | \begin{verbatim} |
---|
883 | int glp_warm_up(glp_prob *P); |
---|
884 | \end{verbatim} |
---|
885 | |
---|
886 | \subsubsection*{Description} |
---|
887 | |
---|
888 | The routine \verb|glp_warm_up| ``warms up'' the LP basis for the |
---|
889 | specified problem object using current statuses assigned to rows and |
---|
890 | columns (that is, to auxiliary and structural variables). |
---|
891 | |
---|
892 | This operation includes computing factorization of the basis matrix |
---|
893 | (if it does not exist), computing primal and dual components of basic |
---|
894 | solution, and determining the solution status. |
---|
895 | |
---|
896 | \subsubsection*{Returns} |
---|
897 | |
---|
898 | \begin{tabular}{@{}p{25mm}p{97.3mm}@{}} |
---|
899 | 0 & The operation has been successfully performed.\\ |
---|
900 | \verb|GLP_EBADB| & The basis matrix is invalid, because the number of |
---|
901 | basic (auxiliary and structural) variables is not the same as the number |
---|
902 | of rows in the problem object.\\ |
---|
903 | \verb|GLP_ESING| & The basis matrix is singular within the working |
---|
904 | precision.\\ |
---|
905 | \verb|GLP_ECOND| & The basis matrix is ill-conditioned, i.e. its |
---|
906 | condition number is too large.\\ |
---|
907 | \end{tabular} |
---|
908 | |
---|
909 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
910 | |
---|
911 | \newpage |
---|
912 | |
---|
913 | \section{Simplex tableau routines} |
---|
914 | |
---|
915 | \subsection{glp\_eval\_tab\_row---compute row of the tableau} |
---|
916 | |
---|
917 | \subsubsection*{Synopsis} |
---|
918 | |
---|
919 | \begin{verbatim} |
---|
920 | int glp_eval_tab_row(glp_prob *lp, int k, int ind[], |
---|
921 | double val[]); |
---|
922 | \end{verbatim} |
---|
923 | |
---|
924 | \subsubsection*{Description} |
---|
925 | |
---|
926 | The routine \verb|glp_eval_tab_row| computes a row of the current |
---|
927 | simplex tableau (see Subsection 3.1.1, formula (3.12)), which (row) |
---|
928 | corresponds to some basic variable specified by the parameter $k$ as |
---|
929 | follows: if $1\leq k\leq m$, the basic variable is $k$-th auxiliary |
---|
930 | variable, and if $m+1\leq k\leq m+n$, the basic variable is $(k-m)$-th |
---|
931 | structural variable, where $m$ is the number of rows and $n$ is the |
---|
932 | number of columns in the specified problem object. The basis |
---|
933 | factorization must exist. |
---|
934 | |
---|
935 | The computed row shows how the specified basic variable depends on |
---|
936 | non-basic variables: |
---|
937 | $$x_k=(x_B)_i=\xi_{i1}(x_N)_1+\xi_{i2}(x_N)_2+\dots+\xi_{in}(x_N)_n,$$ |
---|
938 | where $\xi_{i1}$, $\xi_{i2}$, \dots, $\xi_{in}$ are elements of the |
---|
939 | simplex table row, $(x_N)_1$, $(x_N)_2$, \dots, $(x_N)_n$ are non-basic |
---|
940 | (auxiliary and structural) variables. |
---|
941 | |
---|
942 | The routine stores column indices and corresponding numeric values of |
---|
943 | non-zero elements of the computed row in unordered sparse format in |
---|
944 | locations \verb|ind[1]|, \dots, \verb|ind[len]| and \verb|val[1]|, |
---|
945 | \dots, \verb|val[len]|, respectively, where $0\leq{\tt len}\leq n$ is |
---|
946 | the number of non-zero elements in the row returned on exit. |
---|
947 | |
---|
948 | Element indices stored in the array \verb|ind| have the same sense as |
---|
949 | index $k$, i.e. indices 1 to $m$ denote auxiliary variables while |
---|
950 | indices $m+1$ to $m+n$ denote structural variables (all these variables |
---|
951 | are obviously non-basic by definition). |
---|
952 | |
---|
953 | \subsubsection*{Returns} |
---|
954 | |
---|
955 | The routine \verb|glp_eval_tab_row| returns \verb|len|, which is the |
---|
956 | number of non-zero elements in the simplex table row stored in the |
---|
957 | arrays \verb|ind| and \verb|val|. |
---|
958 | |
---|
959 | \subsubsection*{Comments} |
---|
960 | |
---|
961 | A row of the simplex table is computed as follows. At first, the |
---|
962 | routine checks that the specified variable $x_k$ is basic and uses the |
---|
963 | permutation matrix $\Pi$ (3.7) to determine index $i$ of basic variable |
---|
964 | $(x_B)_i$, which corresponds to $x_k$. |
---|
965 | |
---|
966 | The row to be computed is $i$-th row of the matrix $\Xi$ (3.12), |
---|
967 | therefore: |
---|
968 | $$\xi_i=e_i^T\Xi=-e_i^TB^{-1}N=-(B^{-T}e_i)^TN,$$ |
---|
969 | where $e_i$ is $i$-th unity vector. So the routine performs BTRAN to |
---|
970 | obtain $i$-th row of the inverse $B^{-1}$: |
---|
971 | $$\varrho_i=B^{-T}e_i,$$ |
---|
972 | and then computes elements of the simplex table row as inner products: |
---|
973 | $$\xi_{ij}=-\varrho_i^TN_j,\ \ j=1,2,\dots,n,$$ |
---|
974 | where $N_j$ is $j$-th column of matrix $N$ (3.9), which (column) |
---|
975 | corresponds to non-basic variable $(x_N)_j$. The permutation matrix |
---|
976 | $\Pi$ is used again to convert indices $j$ of non-basic columns to |
---|
977 | original ordinal numbers of auxiliary and structural variables. |
---|
978 | |
---|
979 | \subsection{glp\_eval\_tab\_col---compute column of the tableau} |
---|
980 | |
---|
981 | \subsubsection*{Synopsis} |
---|
982 | |
---|
983 | \begin{verbatim} |
---|
984 | int glp_eval_tab_col(glp_prob *lp, int k, int ind[], |
---|
985 | double val[]); |
---|
986 | \end{verbatim} |
---|
987 | |
---|
988 | \subsubsection*{Description} |
---|
989 | |
---|
990 | The routine \verb|glp_eval_tab_col| computes a column of the current |
---|
991 | simplex tableau (see Subsection 3.1.1, formula (3.12)), which (column) |
---|
992 | corresponds to some non-basic variable specified by the parameter $k$: |
---|
993 | if $1\leq k\leq m$, the non-basic variable is $k$-th auxiliary variable, |
---|
994 | and if $m+1\leq k\leq m+n$, the non-basic variable is $(k-m)$-th |
---|
995 | structural variable, where $m$ is the number of rows and $n$ is the |
---|
996 | number of columns in the specified problem object. The basis |
---|
997 | factorization must exist. |
---|
998 | |
---|
999 | The computed column shows how basic variables depends on the specified |
---|
1000 | non-basic variable $x_k=(x_N)_j$: |
---|
1001 | $$ |
---|
1002 | \begin{array}{r@{\ }c@{\ }l@{\ }l} |
---|
1003 | (x_B)_1&=&\dots+\xi_{1j}(x_N)_j&+\dots\\ |
---|
1004 | (x_B)_2&=&\dots+\xi_{2j}(x_N)_j&+\dots\\ |
---|
1005 | .\ \ .&.&.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\\ |
---|
1006 | (x_B)_m&=&\dots+\xi_{mj}(x_N)_j&+\dots\\ |
---|
1007 | \end{array} |
---|
1008 | $$ |
---|
1009 | where $\xi_{1j}$, $\xi_{2j}$, \dots, $\xi_{mj}$ are elements of the |
---|
1010 | simplex table column, $(x_B)_1$, $(x_B)_2$, \dots, $(x_B)_m$ are basic |
---|
1011 | (auxiliary and structural) variables. |
---|
1012 | |
---|
1013 | The routine stores row indices and corresponding numeric values of |
---|
1014 | non-zero elements of the computed column in unordered sparse format in |
---|
1015 | locations \verb|ind[1]|, \dots, \verb|ind[len]| and \verb|val[1]|, |
---|
1016 | \dots, \verb|val[len]|, respectively, where $0\leq{\tt len}\leq m$ is |
---|
1017 | the number of non-zero elements in the column returned on exit. |
---|
1018 | |
---|
1019 | Element indices stored in the array \verb|ind| have the same sense as |
---|
1020 | index $k$, i.e. indices 1 to $m$ denote auxiliary variables while |
---|
1021 | indices $m+1$ to $m+n$ denote structural variables (all these variables |
---|
1022 | are obviously basic by definition). |
---|
1023 | |
---|
1024 | \subsubsection*{Returns} |
---|
1025 | |
---|
1026 | The routine \verb|glp_eval_tab_col| returns \verb|len|, which is the |
---|
1027 | number of non-zero elements in the simplex table column stored in the |
---|
1028 | arrays \verb|ind| and \verb|val|. |
---|
1029 | |
---|
1030 | \subsubsection*{Comments} |
---|
1031 | |
---|
1032 | A column of the simplex table is computed as follows. At first, the |
---|
1033 | routine checks that the specified variable $x_k$ is non-basic and uses |
---|
1034 | the permutation matrix $\Pi$ (3.7) to determine index $j$ of non-basic |
---|
1035 | variable $(x_N)_j$, which corresponds to $x_k$. |
---|
1036 | |
---|
1037 | The column to be computed is $j$-th column of the matrix $\Xi$ (3.12), |
---|
1038 | therefore: |
---|
1039 | $$\Xi_j=\Xi e_j=-B^{-1}Ne_j=-B^{-1}N_j,$$ |
---|
1040 | where $e_j$ is $j$-th unity vector, $N_j$ is $j$-th column of matrix |
---|
1041 | $N$ (3.9). So the routine performs FTRAN to transform $N_j$ to the |
---|
1042 | simplex table column $\Xi_j=(\xi_{ij})$ and uses the permutation matrix |
---|
1043 | $\Pi$ to convert row indices $i$ to original ordinal numbers of |
---|
1044 | auxiliary and structural variables. |
---|
1045 | |
---|
1046 | \newpage |
---|
1047 | |
---|
1048 | \subsection{glp\_transform\_row---transform explicitly specified\\ |
---|
1049 | row} |
---|
1050 | |
---|
1051 | \subsubsection*{Synopsis} |
---|
1052 | |
---|
1053 | \begin{verbatim} |
---|
1054 | int glp_transform_row(glp_prob *P, int len, int ind[], |
---|
1055 | double val[]); |
---|
1056 | \end{verbatim} |
---|
1057 | |
---|
1058 | \subsubsection*{Description} |
---|
1059 | |
---|
1060 | The routine \verb|glp_transform_row| performs the same operation as the |
---|
1061 | routine \verb|glp_eval_tab_row| with exception that the row to be |
---|
1062 | transformed is specified explicitly as a sparse vector. |
---|
1063 | |
---|
1064 | The explicitly specified row may be thought as a linear form: |
---|
1065 | $$x=a_1x_{m+1}+a_2x_{m+2}+\dots+a_nx_{m+n},$$ |
---|
1066 | where $x$ is an auxiliary variable for this row, $a_j$ are coefficients |
---|
1067 | of the linear form, $x_{m+j}$ are structural variables. |
---|
1068 | |
---|
1069 | On entry column indices and numerical values of non-zero coefficients |
---|
1070 | $a_j$ of the specified row should be placed in locations \verb|ind[1]|, |
---|
1071 | \dots, \verb|ind[len]| and \verb|val[1]|, \dots, \verb|val[len]|, where |
---|
1072 | \verb|len| is number of non-zero coefficients. |
---|
1073 | |
---|
1074 | This routine uses the system of equality constraints and the current |
---|
1075 | basis in order to express the auxiliary variable $x$ through the current |
---|
1076 | non-basic variables (as if the transformed row were added to the problem |
---|
1077 | object and the auxiliary variable $x$ were basic), i.e. the resultant |
---|
1078 | row has the form: |
---|
1079 | $$x=\xi_1(x_N)_1+\xi_2(x_N)_2+\dots+\xi_n(x_N)_n,$$ |
---|
1080 | where $\xi_j$ are influence coefficients, $(x_N)_j$ are non-basic |
---|
1081 | (auxiliary and structural) variables, $n$ is the number of columns in |
---|
1082 | the problem object. |
---|
1083 | |
---|
1084 | On exit the routine stores indices and numerical values of non-zero |
---|
1085 | coefficients $\xi_j$ of the resultant row in locations \verb|ind[1]|, |
---|
1086 | \dots, \verb|ind[len']| and \verb|val[1]|, \dots, \verb|val[len']|, |
---|
1087 | where $0\leq{\tt len'}\leq n$ is the number of non-zero coefficients in |
---|
1088 | the resultant row returned by the routine. Note that indices of |
---|
1089 | non-basic variables stored in the array \verb|ind| correspond to |
---|
1090 | original ordinal numbers of variables: indices 1 to $m$ mean auxiliary |
---|
1091 | variables and indices $m+1$ to $m+n$ mean structural ones. |
---|
1092 | |
---|
1093 | \subsubsection*{Returns} |
---|
1094 | |
---|
1095 | The routine \verb|glp_transform_row| returns \verb|len'|, the number of |
---|
1096 | non-zero coefficients in the resultant row stored in the arrays |
---|
1097 | \verb|ind| and \verb|val|. |
---|
1098 | |
---|
1099 | \subsection{glp\_transform\_col---transform explicitly specified\\ |
---|
1100 | column} |
---|
1101 | |
---|
1102 | \subsubsection*{Synopsis} |
---|
1103 | |
---|
1104 | \begin{verbatim} |
---|
1105 | int glp_transform_col(glp_prob *P, int len, int ind[], |
---|
1106 | double val[]); |
---|
1107 | \end{verbatim} |
---|
1108 | |
---|
1109 | \subsubsection*{Description} |
---|
1110 | |
---|
1111 | The routine \verb|glp_transform_col| performs the same operation as the |
---|
1112 | routine \verb|glp_eval_tab_col| with exception that the column to be |
---|
1113 | transformed is specified explicitly as a sparse vector. |
---|
1114 | |
---|
1115 | The explicitly specified column may be thought as it were added to |
---|
1116 | the original system of equality constraints: |
---|
1117 | $$ |
---|
1118 | \begin{array}{l@{\ }c@{\ }r@{\ }c@{\ }r@{\ }c@{\ }r} |
---|
1119 | x_1&=&a_{11}x_{m+1}&+\dots+&a_{1n}x_{m+n}&+&a_1x \\ |
---|
1120 | x_2&=&a_{21}x_{m+1}&+\dots+&a_{2n}x_{m+n}&+&a_2x \\ |
---|
1121 | \multicolumn{7}{c} |
---|
1122 | {.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .}\\ |
---|
1123 | x_m&=&a_{m1}x_{m+1}&+\dots+&a_{mn}x_{m+n}&+&a_mx \\ |
---|
1124 | \end{array} |
---|
1125 | $$ |
---|
1126 | where $x_i$ are auxiliary variables, $x_{m+j}$ are structural variables |
---|
1127 | (presented in the problem object), $x$ is a structural variable for the |
---|
1128 | explicitly specified column, $a_i$ are constraint coefficients at $x$. |
---|
1129 | |
---|
1130 | On entry row indices and numerical values of non-zero coefficients |
---|
1131 | $a_i$ of the specified column should be placed in locations |
---|
1132 | \verb|ind[1]|, \dots, \verb|ind[len]| and \verb|val[1]|, \dots, |
---|
1133 | \verb|val[len]|, where \verb|len| is number of non-zero coefficients. |
---|
1134 | |
---|
1135 | This routine uses the system of equality constraints and the current |
---|
1136 | basis in order to express the current basic variables through the |
---|
1137 | structural variable $x$ (as if the transformed column were added to the |
---|
1138 | problem object and the variable $x$ were non-basic): |
---|
1139 | $$ |
---|
1140 | \begin{array}{l@{\ }c@{\ }r} |
---|
1141 | (x_B)_1&=\dots+&\xi_{1}x\\ |
---|
1142 | (x_B)_2&=\dots+&\xi_{2}x\\ |
---|
1143 | \multicolumn{3}{c}{.\ \ .\ \ .\ \ .\ \ .\ \ .}\\ |
---|
1144 | (x_B)_m&=\dots+&\xi_{m}x\\ |
---|
1145 | \end{array} |
---|
1146 | $$ |
---|
1147 | where $\xi_i$ are influence coefficients, $x_B$ are basic (auxiliary |
---|
1148 | and structural) variables, $m$ is the number of rows in the problem |
---|
1149 | object. |
---|
1150 | |
---|
1151 | On exit the routine stores indices and numerical values of non-zero |
---|
1152 | coefficients $\xi_i$ of the resultant column in locations \verb|ind[1]|, |
---|
1153 | \dots, \verb|ind[len']| and \verb|val[1]|, \dots, \verb|val[len']|, |
---|
1154 | where $0\leq{\tt len'}\leq m$ is the number of non-zero coefficients in |
---|
1155 | the resultant column returned by the routine. Note that indices of basic |
---|
1156 | variables stored in the array \verb|ind| correspond to original ordinal |
---|
1157 | numbers of variables, i.e. indices 1 to $m$ mean auxiliary variables, |
---|
1158 | indices $m+1$ to $m+n$ mean structural ones. |
---|
1159 | |
---|
1160 | \subsubsection*{Returns} |
---|
1161 | |
---|
1162 | The routine \verb|glp_transform_col| returns \verb|len'|, the number of |
---|
1163 | non-zero coefficients in the resultant column stored in the arrays |
---|
1164 | \verb|ind| and \verb|val|. |
---|
1165 | |
---|
1166 | \subsection{glp\_prim\_rtest---perform primal ratio test} |
---|
1167 | |
---|
1168 | \subsubsection*{Synopsis} |
---|
1169 | |
---|
1170 | \begin{verbatim} |
---|
1171 | int glp_prim_rtest(glp_prob *P, int len, const int ind[], |
---|
1172 | const double val[], int dir, double eps); |
---|
1173 | \end{verbatim} |
---|
1174 | |
---|
1175 | \subsubsection*{Description} |
---|
1176 | |
---|
1177 | The routine \verb|glp_prim_rtest| performs the primal ratio test using |
---|
1178 | an explicitly specified column of the simplex table. |
---|
1179 | |
---|
1180 | The current basic solution associated with the LP problem object must be |
---|
1181 | primal feasible. |
---|
1182 | |
---|
1183 | The explicitly specified column of the simplex table shows how the basic |
---|
1184 | variables $x_B$ depend on some non-basic variable $x$ (which is not |
---|
1185 | necessarily presented in the problem object): |
---|
1186 | $$ |
---|
1187 | \begin{array}{l@{\ }c@{\ }r} |
---|
1188 | (x_B)_1&=\dots+&\xi_{1}x\\ |
---|
1189 | (x_B)_2&=\dots+&\xi_{2}x\\ |
---|
1190 | \multicolumn{3}{c}{.\ \ .\ \ .\ \ .\ \ .\ \ .}\\ |
---|
1191 | (x_B)_m&=\dots+&\xi_{m}x\\ |
---|
1192 | \end{array} |
---|
1193 | $$ |
---|
1194 | |
---|
1195 | The column is specifed on entry to the routine in sparse format. Ordinal |
---|
1196 | numbers of basic variables $(x_B)_i$ should be placed in locations |
---|
1197 | \verb|ind[1]|, \dots, \verb|ind[len]|, where ordinal number 1 to $m$ |
---|
1198 | denote auxiliary variables, and ordinal numbers $m+1$ to $m+n$ denote |
---|
1199 | structural variables. The corresponding non-zero coefficients $\xi_i$ |
---|
1200 | should be placed in locations \verb|val[1]|, \dots, \verb|val[len]|. The |
---|
1201 | arrays \verb|ind| and \verb|val| are not changed by the routine. |
---|
1202 | |
---|
1203 | The parameter \verb|dir| specifies direction in which the variable $x$ |
---|
1204 | changes on entering the basis: $+1$ means increasing, $-1$ means |
---|
1205 | decreasing. |
---|
1206 | |
---|
1207 | The parameter \verb|eps| is an absolute tolerance (small positive |
---|
1208 | number, say, $10^{-9}$) used by the routine to skip $\xi_i$'s whose |
---|
1209 | magnitude is less than \verb|eps|. |
---|
1210 | |
---|
1211 | The routine determines which basic variable (among those specified in |
---|
1212 | \verb|ind[1]|, \dots, \verb|ind[len]|) reaches its (lower or upper) |
---|
1213 | bound first before any other basic variables do, and which, therefore, |
---|
1214 | should leave the basis in order to keep primal feasibility. |
---|
1215 | |
---|
1216 | \subsubsection*{Returns} |
---|
1217 | |
---|
1218 | The routine \verb|glp_prim_rtest| returns the index, \verb|piv|, in the |
---|
1219 | arrays \verb|ind| and \verb|val| corresponding to the pivot element |
---|
1220 | chosen, $1\leq$ \verb|piv| $\leq$ \verb|len|. If the adjacent basic |
---|
1221 | solution is primal unbounded, and therefore the choice cannot be made, |
---|
1222 | the routine returns zero. |
---|
1223 | |
---|
1224 | \subsubsection*{Comments} |
---|
1225 | |
---|
1226 | If the non-basic variable $x$ is presented in the LP problem object, the |
---|
1227 | input column can be computed with the routine \verb|glp_eval_tab_col|; |
---|
1228 | otherwise, it can be computed with the routine \verb|glp_transform_col|. |
---|
1229 | |
---|
1230 | \subsection{glp\_dual\_rtest---perform dual ratio test} |
---|
1231 | |
---|
1232 | \subsubsection*{Synopsis} |
---|
1233 | |
---|
1234 | \begin{verbatim} |
---|
1235 | int glp_dual_rtest(glp_prob *P, int len, const int ind[], |
---|
1236 | const double val[], int dir, double eps); |
---|
1237 | \end{verbatim} |
---|
1238 | |
---|
1239 | \subsubsection*{Description} |
---|
1240 | |
---|
1241 | The routine \verb|glp_dual_rtest| performs the dual ratio test using |
---|
1242 | an explicitly specified row of the simplex table. |
---|
1243 | |
---|
1244 | The current basic solution associated with the LP problem object must be |
---|
1245 | dual feasible. |
---|
1246 | |
---|
1247 | The explicitly specified row of the simplex table is a linear form |
---|
1248 | that shows how some basic variable $x$ (which is not necessarily |
---|
1249 | presented in the problem object) depends on non-basic variables $x_N$: |
---|
1250 | $$x=\xi_1(x_N)_1+\xi_2(x_N)_2+\dots+\xi_n(x_N)_n.$$ |
---|
1251 | |
---|
1252 | The row is specified on entry to the routine in sparse format. Ordinal |
---|
1253 | numbers of non-basic variables $(x_N)_j$ should be placed in locations |
---|
1254 | \verb|ind[1]|, \dots, \verb|ind[len]|, where ordinal numbers 1 to $m$ |
---|
1255 | denote auxiliary variables, and ordinal numbers $m+1$ to $m+n$ denote |
---|
1256 | structural variables. The corresponding non-zero coefficients $\xi_j$ |
---|
1257 | should be placed in locations \verb|val[1]|, \dots, \verb|val[len]|. |
---|
1258 | The arrays \verb|ind| and \verb|val| are not changed by the routine. |
---|
1259 | |
---|
1260 | The parameter \verb|dir| specifies direction in which the variable $x$ |
---|
1261 | changes on leaving the basis: $+1$ means that $x$ goes on its lower |
---|
1262 | bound, so its reduced cost (dual variable) is increasing (minimization) |
---|
1263 | or decreasing (maximization); $-1$ means that $x$ goes on its upper |
---|
1264 | bound, so its reduced cost is decreasing (minimization) or increasing |
---|
1265 | (maximization). |
---|
1266 | |
---|
1267 | The parameter \verb|eps| is an absolute tolerance (small positive |
---|
1268 | number, say, $10^{-9}$) used by the routine to skip $\xi_j$'s whose |
---|
1269 | magnitude is less than \verb|eps|. |
---|
1270 | |
---|
1271 | The routine determines which non-basic variable (among those specified |
---|
1272 | in \verb|ind[1]|, \dots, \verb|ind[len]|) should enter the basis in |
---|
1273 | order to keep dual feasibility, because its reduced cost reaches the |
---|
1274 | (zero) bound first before this occurs for any other non-basic variables. |
---|
1275 | |
---|
1276 | \subsubsection*{Returns} |
---|
1277 | |
---|
1278 | The routine \verb|glp_dual_rtest| returns the index, \verb|piv|, in the |
---|
1279 | arrays \verb|ind| and \verb|val| corresponding to the pivot element |
---|
1280 | chosen, $1\leq$ \verb|piv| $\leq$ \verb|len|. If the adjacent basic |
---|
1281 | solution is dual unbounded, and therefore the choice cannot be made, |
---|
1282 | the routine returns zero. |
---|
1283 | |
---|
1284 | \subsubsection*{Comments} |
---|
1285 | |
---|
1286 | If the basic variable $x$ is presented in the LP problem object, the |
---|
1287 | input row can be computed with the routine \verb|glp_eval_tab_row|; |
---|
1288 | otherwise, it can be computed with the routine \verb|glp_transform_row|. |
---|
1289 | |
---|
1290 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
---|
1291 | |
---|
1292 | \newpage |
---|
1293 | |
---|
1294 | \section{Post-optimal analysis routines} |
---|
1295 | |
---|
1296 | \subsection{glp\_analyze\_bound---analyze active bound of non-basic |
---|
1297 | variable} |
---|
1298 | |
---|
1299 | \subsubsection*{Synopsis} |
---|
1300 | |
---|
1301 | \begin{verbatim} |
---|
1302 | void glp_analyze_bound(glp_prob *P, int k, double *limit1, |
---|
1303 | int *var1, double *limit2, int *var2); |
---|
1304 | \end{verbatim} |
---|
1305 | |
---|
1306 | \subsubsection*{Description} |
---|
1307 | |
---|
1308 | The routine \verb|glp_analyze_bound| analyzes the effect of varying the |
---|
1309 | active bound of specified non-basic variable. |
---|
1310 | |
---|
1311 | The non-basic variable is specified by the parameter $k$, where |
---|
1312 | $1\leq k\leq m$ means auxiliary variable of corresponding row, and |
---|
1313 | $m+1\leq k\leq m+n$ means structural variable (column). |
---|
1314 | |
---|
1315 | Note that the current basic solution must be optimal, and the basis |
---|
1316 | factorization must exist. |
---|
1317 | |
---|
1318 | Results of the analysis have the following meaning. |
---|
1319 | |
---|
1320 | \verb|value1| is the minimal value of the active bound, at which the |
---|
1321 | basis still remains primal feasible and thus optimal. \verb|-DBL_MAX| |
---|
1322 | means that the active bound has no lower limit. |
---|
1323 | |
---|
1324 | \verb|var1| is the ordinal number of an auxiliary (1 to $m$) or |
---|
1325 | structural ($m+1$ to $m+n$) basic variable, which reaches its bound |
---|
1326 | first and thereby limits further decreasing the active bound being |
---|
1327 | analyzed. if \verb|value1| = \verb|-DBL_MAX|, \verb|var1| is set to 0. |
---|
1328 | |
---|
1329 | \verb|value2| is the maximal value of the active bound, at which the |
---|
1330 | basis still remains primal feasible and thus optimal. \verb|+DBL_MAX| |
---|
1331 | means that the active bound has no upper limit. |
---|
1332 | |
---|
1333 | \verb|var2| is the ordinal number of an auxiliary (1 to $m$) or |
---|
1334 | structural ($m+1$ to $m+n$) basic variable, which reaches its bound |
---|
1335 | first and thereby limits further increasing the active bound being |
---|
1336 | analyzed. if \verb|value2| = \verb|+DBL_MAX|, \verb|var2| is set to 0. |
---|
1337 | |
---|
1338 | The parameters \verb|value1|, \verb|var1|, \verb|value2|, \verb|var2| |
---|
1339 | can be specified as \verb|NULL|, in which case corresponding information |
---|
1340 | is not stored. |
---|
1341 | |
---|
1342 | \newpage |
---|
1343 | |
---|
1344 | \subsection{glp\_analyze\_coef---analyze objective coefficient at basic |
---|
1345 | variable} |
---|
1346 | |
---|
1347 | \subsubsection*{Synopsis} |
---|
1348 | |
---|
1349 | \begin{verbatim} |
---|
1350 | void glp_analyze_coef(glp_prob *P, int k, double *coef1, |
---|
1351 | int *var1, double *value1, double *coef2, int *var2, |
---|
1352 | double *value2); |
---|
1353 | \end{verbatim} |
---|
1354 | |
---|
1355 | \subsubsection*{Description} |
---|
1356 | |
---|
1357 | The routine \verb|glp_analyze_coef| analyzes the effect of varying the |
---|
1358 | objective coefficient at specified basic variable. |
---|
1359 | |
---|
1360 | The basic variable is specified by the parameter $k$, where |
---|
1361 | $1\leq k\leq m$ means auxiliary variable of corresponding row, and |
---|
1362 | $m+1\leq k\leq m+n$ means structural variable (column). |
---|
1363 | |
---|
1364 | Note that the current basic solution must be optimal, and the basis |
---|
1365 | factorization must exist. |
---|
1366 | |
---|
1367 | Results of the analysis have the following meaning. |
---|
1368 | |
---|
1369 | \verb|coef1| is the minimal value of the objective coefficient, at |
---|
1370 | which the basis still remains dual feasible and thus optimal. |
---|
1371 | \verb|-DBL_MAX| means that the objective coefficient has no lower limit. |
---|
1372 | |
---|
1373 | \verb|var1| is the ordinal number of an auxiliary (1 to $m$) or |
---|
1374 | structural ($m+1$ to $m+n$) non-basic variable, whose reduced cost |
---|
1375 | reaches its zero bound first and thereby limits further decreasing the |
---|
1376 | objective coefficient being analyzed. If \verb|coef1| = \verb|-DBL_MAX|, |
---|
1377 | \verb|var1| is set to 0. |
---|
1378 | |
---|
1379 | \verb|value1| is value of the basic variable being analyzed in an |
---|
1380 | adjacent basis, which is defined as follows. Let the objective |
---|
1381 | coefficient reaches its minimal value (\verb|coef1|) and continues |
---|
1382 | decreasing. Then the reduced cost of the limiting non-basic variable |
---|
1383 | (\verb|var1|) becomes dual infeasible and the current basis becomes |
---|
1384 | non-optimal that forces the limiting non-basic variable to enter the |
---|
1385 | basis replacing there some basic variable that leaves the basis to keep |
---|
1386 | primal feasibility. Should note that on determining the adjacent basis |
---|
1387 | current bounds of the basic variable being analyzed are ignored as if |
---|
1388 | it were free (unbounded) variable, so it cannot leave the basis. It may |
---|
1389 | happen that no dual feasible adjacent basis exists, in which case |
---|
1390 | \verb|value1| is set to \verb|-DBL_MAX| or \verb|+DBL_MAX|. |
---|
1391 | |
---|
1392 | \verb|coef2| is the maximal value of the objective coefficient, at |
---|
1393 | which the basis still remains dual feasible and thus optimal. |
---|
1394 | \verb|+DBL_MAX| means that the objective coefficient has no upper limit. |
---|
1395 | |
---|
1396 | \verb|var2| is the ordinal number of an auxiliary (1 to $m$) or |
---|
1397 | structural ($m+1$ to $m+n$) non-basic variable, whose reduced cost |
---|
1398 | reaches its zero bound first and thereby limits further increasing the |
---|
1399 | objective coefficient being analyzed. If \verb|coef2| = \verb|+DBL_MAX|, |
---|
1400 | \verb|var2| is set to 0. |
---|
1401 | |
---|
1402 | \verb|value2| is value of the basic variable being analyzed in an |
---|
1403 | adjacent basis, which is defined exactly in the same way as |
---|
1404 | \verb|value1| above with exception that now the objective coefficient |
---|
1405 | is increasing. |
---|
1406 | |
---|
1407 | The parameters \verb|coef1|, \verb|var1|, \verb|value1|, \verb|coef2|, |
---|
1408 | \verb|var2|, \verb|value2| can be specified as \verb|NULL|, in which |
---|
1409 | case corresponding information is not stored. |
---|
1410 | |
---|
1411 | %* eof *% |
---|