[1] | 1 | # A TRANSPORTATION PROBLEM |
---|
| 2 | # |
---|
| 3 | # This problem finds a least cost shipping schedule that meets |
---|
| 4 | # requirements at markets and supplies at factories. |
---|
| 5 | # |
---|
| 6 | # References: |
---|
| 7 | # Dantzig G B, "Linear Programming and Extensions." |
---|
| 8 | # Princeton University Press, Princeton, New Jersey, 1963, |
---|
| 9 | # Chapter 3-3. |
---|
| 10 | |
---|
| 11 | set I; |
---|
| 12 | /* canning plants */ |
---|
| 13 | |
---|
| 14 | set J; |
---|
| 15 | /* markets */ |
---|
| 16 | |
---|
| 17 | set K dimen 2; |
---|
| 18 | /* transportation lane */ |
---|
| 19 | |
---|
| 20 | set L; |
---|
| 21 | /* parameters */ |
---|
| 22 | |
---|
| 23 | param a{i in I}; |
---|
| 24 | /* capacity of plant i in cases */ |
---|
| 25 | |
---|
| 26 | param b{j in J}; |
---|
| 27 | /* demand at market j in cases */ |
---|
| 28 | |
---|
| 29 | param d{i in I, j in J}; |
---|
| 30 | /* distance in thousands of miles */ |
---|
| 31 | |
---|
| 32 | param e{l in L}; |
---|
| 33 | /* parameters */ |
---|
| 34 | |
---|
| 35 | param f; |
---|
| 36 | /* freight in dollars per case per thousand miles */ |
---|
| 37 | |
---|
| 38 | table tab_plant IN "CSV" "plants.csv" : |
---|
| 39 | I <- [plant], a ~ capacity; |
---|
| 40 | |
---|
| 41 | table tab_market IN "CSV" "markets.csv" : |
---|
| 42 | J <- [market], b ~ demand; |
---|
| 43 | |
---|
| 44 | table tab_distance IN "CSV" "distances.csv" : |
---|
| 45 | K <- [plant, market], d ~ distance; |
---|
| 46 | |
---|
| 47 | table tab_parameter IN "CSV" "parameters.csv" : |
---|
| 48 | L <- [parameter], e ~ value ; |
---|
| 49 | |
---|
| 50 | param c{i in I, j in J} := e['transport cost'] * d[i,j] / 1000; |
---|
| 51 | /* transport cost in thousands of dollars per case */ |
---|
| 52 | |
---|
| 53 | var x{(i,j) in K} >= 0; |
---|
| 54 | /* shipment quantities in cases */ |
---|
| 55 | |
---|
| 56 | minimize cost: sum{(i,j) in K} c[i,j] * x[i,j]; |
---|
| 57 | /* total transportation costs in thousands of dollars */ |
---|
| 58 | |
---|
| 59 | s.t. supply{i in I}: sum{(i,j) in K} x[i,j] <= a[i]; |
---|
| 60 | /* observe supply limit at plant i */ |
---|
| 61 | |
---|
| 62 | s.t. demand{j in J}: sum{(i,j) in K} x[i,j] >= b[j]; |
---|
| 63 | /* satisfy demand at market j */ |
---|
| 64 | |
---|
| 65 | solve; |
---|
| 66 | |
---|
| 67 | table tab_result{(i,j) in K} OUT "CSV" "result.csv" : |
---|
| 68 | i ~ plant, j ~ market, x[i,j] ~ shipment; |
---|
| 69 | |
---|
| 70 | end; |
---|