1 | # Model I Forest Estate Modelling using GLPK/MathProg |
---|
2 | # Reading and writing dbf files |
---|
3 | |
---|
4 | # by Noli Sicad --- nsicad@gmail.com |
---|
5 | # 18 December 2009 |
---|
6 | |
---|
7 | # Forest Management 4th Edition |
---|
8 | # by Lawrence Davis, K. Norman Johnson, Pete Bettinger, Theodore Howard |
---|
9 | # Chapter 11 - Daniel Pickett |
---|
10 | # http://warnell.forestry.uga.edu/Warnell/Bettinger/mgtbook/index.htm |
---|
11 | |
---|
12 | # Model I Formulation |
---|
13 | |
---|
14 | /* Note: This is not the full LP model mentioned in the book. |
---|
15 | Some of the constraints are deliberately omitted in this model for the purpose of clarity. |
---|
16 | |
---|
17 | The features of MathProg in this example are: |
---|
18 | * reading and writing dbf from regular dbf files, |
---|
19 | * reading dbf file (database of shapefile (stands.shp)) (e.g. area parameter), |
---|
20 | * using the area data in the constraints and |
---|
21 | * writing dbf file from result of LP model. |
---|
22 | |
---|
23 | Model I - Harvest Scheduling formulation for Sustainable Forest Management (SFM) |
---|
24 | |
---|
25 | Features are: |
---|
26 | * Net Present Value for the objective function (Revenue - Cost) |
---|
27 | * Harvest Constraints by period - Sustainable Yield per Period |
---|
28 | * Even-Flow Constraint / Volume - Harvest Flow Constraint - Alpha (1-Apha) |
---|
29 | * Even-Flow Constraint / Volume - Harvest Flow Constraint - Beta (1 +Beta) |
---|
30 | * Forest / Land Constraint -- Total Area of the forest |
---|
31 | * Forest Stand Constraint -- Individual stands |
---|
32 | |
---|
33 | What is next? -- Forest Mgt Carbon Accounting for Climate Change |
---|
34 | |
---|
35 | Note: The model file that the data containing in |
---|
36 | the dbf files is public domain material (so it is compatible with the |
---|
37 | GNU GPL) and data can be found in |
---|
38 | http://warnell.forestry.uga.edu/Warnell/Bettinger/mgtbook/index.htm |
---|
39 | |
---|
40 | # Noli Sicad --- nsicad@gmail.com |
---|
41 | |
---|
42 | */ |
---|
43 | |
---|
44 | set G_STAND_TYPE; # A, B, C |
---|
45 | |
---|
46 | set I_CULTURAL_PRES; |
---|
47 | set J_MGT_YEAR; |
---|
48 | |
---|
49 | param K_PERIOD; |
---|
50 | param Forest_Cost{G_STAND_TYPE,I_CULTURAL_PRES, J_MGT_YEAR}; # cost |
---|
51 | |
---|
52 | param Yield_Table_Vol{G_STAND_TYPE, I_CULTURAL_PRES, J_MGT_YEAR, 1..K_PERIOD} >= 0; |
---|
53 | |
---|
54 | |
---|
55 | param Alpha >= 0; |
---|
56 | param Beta >= 0; |
---|
57 | |
---|
58 | param TCost_Table{G_STAND_TYPE, I_CULTURAL_PRES, J_MGT_YEAR, 1..K_PERIOD} >= 0; |
---|
59 | |
---|
60 | param NetRev_Table{G_STAND_TYPE, I_CULTURAL_PRES, J_MGT_YEAR, 1..K_PERIOD}; |
---|
61 | |
---|
62 | |
---|
63 | var XForestLand{g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} >= 0; |
---|
64 | |
---|
65 | |
---|
66 | #reading dbf tables |
---|
67 | table tab IN "xBASE" "standtype.dbf": G_STAND_TYPE <- [STAND]; |
---|
68 | display G_STAND_TYPE; |
---|
69 | |
---|
70 | |
---|
71 | table tab2 IN "xBASE" "cultural_pres.dbf": I_CULTURAL_PRES <- [CUL_PRES]; |
---|
72 | display I_CULTURAL_PRES; |
---|
73 | |
---|
74 | table tab3 IN "xBASE" "mgt_year.dbf": J_MGT_YEAR <- [MGT_YEAR]; |
---|
75 | display J_MGT_YEAR; |
---|
76 | |
---|
77 | /* |
---|
78 | param Forest_Cost{G_STAND_TYPE,I_CULTURAL_PRES, J_MGT_YEAR} default 0; # cost |
---|
79 | */ |
---|
80 | |
---|
81 | set S1, dimen 3; |
---|
82 | table tab4 IN "xBASE" "Forest_Cost.dbf": S1 <- [STAND, CUL_PRES, MGT_YEAR],Forest_Cost ~FCOST; |
---|
83 | display Forest_Cost; |
---|
84 | |
---|
85 | set S2, dimen 4; |
---|
86 | table tab5 IN "xBASE" "Yield_Table_Vol.dbf": S2 <- [STAND, CUL_PRES, MGT_YEAR, PERIOD],Yield_Table_Vol ~YIELD; |
---|
87 | display Yield_Table_Vol; |
---|
88 | |
---|
89 | set S3, dimen 4; |
---|
90 | table tab5 IN "xBASE" "TCost_Table.dbf": S3 <- [STAND, CUL_PRES, MGT_YEAR, PERIOD],TCost_Table ~TCOST; |
---|
91 | display TCost_Table; |
---|
92 | |
---|
93 | |
---|
94 | set S4, dimen 4; |
---|
95 | table tab5 IN "xBASE" "NetRev_Table.dbf": S4 <- [STAND, CUL_PRES, MGT_YEAR, PERIOD],NetRev_Table ~NETREV; |
---|
96 | display NetRev_Table; |
---|
97 | |
---|
98 | |
---|
99 | param MGT; |
---|
100 | |
---|
101 | param Area_Stand_Indi{g in G_STAND_TYPE, m in 1..MGT} default 0; |
---|
102 | |
---|
103 | set ST, dimen 2; |
---|
104 | table tab5 IN "xBASE" "stands.dbf": ST <- [VEG_TYPE, MGT], Area_Stand_Indi ~ACRES; |
---|
105 | display Area_Stand_Indi; |
---|
106 | |
---|
107 | param Area_Stand_Type{g in G_STAND_TYPE}:= sum {m in 1..MGT } Area_Stand_Indi[g,m]; |
---|
108 | display Area_Stand_Type; |
---|
109 | |
---|
110 | |
---|
111 | param Total_Area := sum {g in G_STAND_TYPE, m in 1..MGT } Area_Stand_Indi[g,m]; |
---|
112 | display Total_Area; |
---|
113 | |
---|
114 | param Harvest_Min_Vol_Period; |
---|
115 | |
---|
116 | |
---|
117 | var NetPresentValue; |
---|
118 | |
---|
119 | # Objective function |
---|
120 | maximize Net_Present_Value: NetPresentValue; |
---|
121 | |
---|
122 | subject to NPV: |
---|
123 | NetPresentValue = sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Forest_Cost[g,i,j] * XForestLand[g,i,j]; |
---|
124 | |
---|
125 | # Harvest Constraint by Period |
---|
126 | subject to Harvest_Period_H {k in 1..K_PERIOD}: |
---|
127 | sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j] >= Harvest_Min_Vol_Period; |
---|
128 | |
---|
129 | |
---|
130 | #Even-Flow Constraint / Volume - Harvest Flow Constraint - Alpha |
---|
131 | subject to Even_Flow_Constaints_Alpha {k in 6..K_PERIOD-1}: |
---|
132 | (1 - Alpha) * sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j] - |
---|
133 | sum {g in G_STAND_TYPE,i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k+1] * XForestLand[g,i,j] <= 0; |
---|
134 | |
---|
135 | # Even-Flow Constraint / Volume - Harvest Flow Constraint - Beta |
---|
136 | subject to Even_Flow_Constaints_Beta {k in 6..K_PERIOD-1}: |
---|
137 | (1 + Beta) * sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j] - |
---|
138 | sum {g in G_STAND_TYPE,i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k+1] * XForestLand[g,i,j] >= 0; |
---|
139 | |
---|
140 | # Forest / Land Constraints |
---|
141 | subject to Total_Area_Constraint: |
---|
142 | sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} XForestLand[g,i,j] <= Total_Area; |
---|
143 | display Total_Area; |
---|
144 | |
---|
145 | # Forest / Land Constraints for A B C |
---|
146 | subject to Area {g in G_STAND_TYPE}: |
---|
147 | sum {i in I_CULTURAL_PRES,j in J_MGT_YEAR} XForestLand[g,i,j] = Area_Stand_Type[g]; |
---|
148 | |
---|
149 | |
---|
150 | |
---|
151 | solve; |
---|
152 | #RESULT SECTION |
---|
153 | printf '#################################\n'; |
---|
154 | printf 'Forest Management Model I - Noli Sicad\n'; |
---|
155 | printf '\n'; |
---|
156 | printf 'Net Present Value = %.2f\n', NetPresentValue; |
---|
157 | printf '\n'; |
---|
158 | |
---|
159 | printf '\n'; |
---|
160 | printf 'Variables\n'; |
---|
161 | printf 'Stand_Type Age_Class Mgt_Presc Sign Value \n'; |
---|
162 | printf{g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR}:'%5s %10s %11s = %10.2f\n', g,i,j, XForestLand[g,i,j]; |
---|
163 | printf '\n'; |
---|
164 | |
---|
165 | printf 'Constraints\n'; |
---|
166 | printf 'Period Harvest Sign \n'; |
---|
167 | for {k in 1..K_PERIOD} { |
---|
168 | printf '%5s %10.2f >= %.3f\n', k, sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j], Harvest_Min_Vol_Period; |
---|
169 | } |
---|
170 | |
---|
171 | # xbase (dbf) output |
---|
172 | table Harvest{k in 1..K_PERIOD} OUT "xBASE" "HarvestArea1.dbf" "N(5)N(15,2)" : k ~ Period, (sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j]) ~ H_Area; |
---|
173 | |
---|
174 | # xbase (dbf) read |
---|
175 | set S, dimen 2; |
---|
176 | table tab2 IN "xBASE" "HarvestArea1.dbf": S <- [Period, H_Area]; |
---|
177 | display S; |
---|
178 | |
---|
179 | |
---|
180 | |
---|
181 | |
---|
182 | printf '\n'; |
---|
183 | printf 'Constraint\n'; |
---|
184 | printf 'Harvest Period\n'; |
---|
185 | printf 'Type AgeClass PrescMgt Period Value\n'; |
---|
186 | printf{g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR, k in 1..K_PERIOD}:'%5s %11s %11s %5s %10.2f\n', g,i,j, k, (Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j]); |
---|
187 | |
---|
188 | |
---|
189 | printf 'Even_Flow_Constaint_Alpha (1-Alpha)\n'; |
---|
190 | printf 'Period Sign \n'; |
---|
191 | for {k in 6..K_PERIOD-1} { |
---|
192 | printf "%s %10.2f <= %s\n", k, ((1 - Alpha) * sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k] * XForestLand[g,i,j] - sum {g in G_STAND_TYPE,i in I_CULTURAL_PRES, j in J_MGT_YEAR} Yield_Table_Vol[g,i,j,k+1] * XForestLand[g,i,j]),0; |
---|
193 | } |
---|
194 | printf '\n'; |
---|
195 | |
---|
196 | |
---|
197 | # Forest / Land Constraints |
---|
198 | printf '\n'; |
---|
199 | printf 'Total Area Constraint\n'; |
---|
200 | printf 'Type AgeClass PrescMgt Value Sign Total_Area \n'; |
---|
201 | printf '%5s <= %.3f\n',sum {g in G_STAND_TYPE, i in I_CULTURAL_PRES, j in J_MGT_YEAR} XForestLand[g,i,j], Total_Area; |
---|
202 | |
---|
203 | printf 'Area\n'; |
---|
204 | printf 'Area Value Sign Areas_Stand\n'; |
---|
205 | for {g in G_STAND_TYPE} { |
---|
206 | printf '%5s %10.2f <= %.3f\n', g, sum {i in I_CULTURAL_PRES,j in J_MGT_YEAR} XForestLand[g,i,j], Area_Stand_Type[g]; |
---|
207 | } |
---|
208 | |
---|
209 | |
---|
210 | #DATA SECTION |
---|
211 | |
---|
212 | data; |
---|
213 | |
---|
214 | # Most of the data has been moved to dbf format |
---|
215 | |
---|
216 | param MGT:=31; |
---|
217 | |
---|
218 | param K_PERIOD:= 7; |
---|
219 | |
---|
220 | param Alpha:= 0.20; |
---|
221 | param Beta:= 0.20; |
---|
222 | |
---|
223 | param Harvest_Min_Vol_Period:= 12000; |
---|
224 | |
---|
225 | end; |
---|
226 | |
---|