[1] | 1 | /* A solver for the Japanese number-puzzle Hashiwokakero |
---|
| 2 | * (http://en.wikipedia.org/wiki/Hashiwokakero) |
---|
| 3 | * |
---|
| 4 | * Sebastian Nowozin <nowozin@gmail.com>, 13th January 2009 |
---|
| 5 | */ |
---|
| 6 | |
---|
| 7 | param n := 25; |
---|
| 8 | set rows := 1..n; |
---|
| 9 | set cols := 1..n; |
---|
| 10 | param givens{rows, cols}, integer, >= 0, <= 8, default 0; |
---|
| 11 | |
---|
| 12 | /* Set of vertices as (row,col) coordinates */ |
---|
| 13 | set V := { (i,j) in { rows, cols }: givens[i,j] != 0 }; |
---|
| 14 | |
---|
| 15 | /* Set of feasible horizontal edges from (i,j) to (k,l) rightwards */ |
---|
| 16 | set Eh := { (i,j,k,l) in { V, V }: |
---|
| 17 | i = k and j < l and # Same row and left to right |
---|
| 18 | card({ (s,t) in V: s = i and t > j and t < l }) = 0 # No vertex inbetween |
---|
| 19 | }; |
---|
| 20 | |
---|
| 21 | /* Set of feasible vertical edges from (i,j) to (k,l) downwards */ |
---|
| 22 | set Ev := { (i,j,k,l) in { V, V }: |
---|
| 23 | j = l and i < k and # Same column and top to bottom |
---|
| 24 | card({ (s,t) in V: t = j and s > i and s < k }) = 0 # No vertex inbetween |
---|
| 25 | }; |
---|
| 26 | |
---|
| 27 | set E := Eh union Ev; |
---|
| 28 | |
---|
| 29 | /* Indicators: use edge once/twice */ |
---|
| 30 | var xe1{E}, binary; |
---|
| 31 | var xe2{E}, binary; |
---|
| 32 | |
---|
| 33 | /* Constraint: Do not use edge or do use once or do use twice */ |
---|
| 34 | s.t. edge_sel{(i,j,k,l) in E}: |
---|
| 35 | xe1[i,j,k,l] + xe2[i,j,k,l] <= 1; |
---|
| 36 | |
---|
| 37 | /* Constraint: There must be as many edges used as the node value */ |
---|
| 38 | s.t. satisfy_vertex_demand{(s,t) in V}: |
---|
| 39 | sum{(i,j,k,l) in E: (i = s and j = t) or (k = s and l = t)} |
---|
| 40 | (xe1[i,j,k,l] + 2.0*xe2[i,j,k,l]) = givens[s,t]; |
---|
| 41 | |
---|
| 42 | /* Constraint: No crossings */ |
---|
| 43 | s.t. no_crossing1{(i,j,k,l) in Eh, (s,t,u,v) in Ev: |
---|
| 44 | s < i and u > i and j < t and l > t}: |
---|
| 45 | xe1[i,j,k,l] + xe1[s,t,u,v] <= 1; |
---|
| 46 | s.t. no_crossing2{(i,j,k,l) in Eh, (s,t,u,v) in Ev: |
---|
| 47 | s < i and u > i and j < t and l > t}: |
---|
| 48 | xe1[i,j,k,l] + xe2[s,t,u,v] <= 1; |
---|
| 49 | s.t. no_crossing3{(i,j,k,l) in Eh, (s,t,u,v) in Ev: |
---|
| 50 | s < i and u > i and j < t and l > t}: |
---|
| 51 | xe2[i,j,k,l] + xe1[s,t,u,v] <= 1; |
---|
| 52 | s.t. no_crossing4{(i,j,k,l) in Eh, (s,t,u,v) in Ev: |
---|
| 53 | s < i and u > i and j < t and l > t}: |
---|
| 54 | xe2[i,j,k,l] + xe2[s,t,u,v] <= 1; |
---|
| 55 | |
---|
| 56 | |
---|
| 57 | /* Model connectivity by auxiliary network flow problem: |
---|
| 58 | * One vertex becomes a target node and all other vertices send a unit flow |
---|
| 59 | * to it. The edge selection variables xe1/xe2 are VUB constraints and |
---|
| 60 | * therefore xe1/xe2 select the feasible graph for the max-flow problems. |
---|
| 61 | */ |
---|
| 62 | set node_target := { (s,t) in V: |
---|
| 63 | card({ (i,j) in V: i < s or (i = s and j < t) }) = 0}; |
---|
| 64 | set node_sources := { (s,t) in V: (s,t) not in node_target }; |
---|
| 65 | |
---|
| 66 | var flow_forward{ E }, >= 0; |
---|
| 67 | var flow_backward{ E }, >= 0; |
---|
| 68 | s.t. flow_conservation{ (s,t) in node_target, (p,q) in V }: |
---|
| 69 | /* All incoming flows */ |
---|
| 70 | - sum{(i,j,k,l) in E: k = p and l = q} flow_forward[i,j,k,l] |
---|
| 71 | - sum{(i,j,k,l) in E: i = p and j = q} flow_backward[i,j,k,l] |
---|
| 72 | /* All outgoing flows */ |
---|
| 73 | + sum{(i,j,k,l) in E: k = p and l = q} flow_backward[i,j,k,l] |
---|
| 74 | + sum{(i,j,k,l) in E: i = p and j = q} flow_forward[i,j,k,l] |
---|
| 75 | = 0 + (if (p = s and q = t) then card(node_sources) else -1); |
---|
| 76 | |
---|
| 77 | /* Variable-Upper-Bound (VUB) constraints: xe1/xe2 bound the flows. |
---|
| 78 | */ |
---|
| 79 | s.t. connectivity_vub1{(i,j,k,l) in E}: |
---|
| 80 | flow_forward[i,j,k,l] <= card(node_sources)*(xe1[i,j,k,l] + xe2[i,j,k,l]); |
---|
| 81 | s.t. connectivity_vub2{(i,j,k,l) in E}: |
---|
| 82 | flow_backward[i,j,k,l] <= card(node_sources)*(xe1[i,j,k,l] + xe2[i,j,k,l]); |
---|
| 83 | |
---|
| 84 | /* A feasible solution is enough |
---|
| 85 | */ |
---|
| 86 | minimize cost: 0; |
---|
| 87 | |
---|
| 88 | solve; |
---|
| 89 | |
---|
| 90 | /* Output solution graphically */ |
---|
| 91 | printf "\nSolution:\n"; |
---|
| 92 | for { row in rows } { |
---|
| 93 | for { col in cols } { |
---|
| 94 | /* First print this cell information: givens or space */ |
---|
| 95 | printf{0..0: givens[row,col] != 0} "%d", givens[row,col]; |
---|
| 96 | printf{0..0: givens[row,col] = 0 and |
---|
| 97 | card({(i,j,k,l) in Eh: i = row and col >= j and col < l and |
---|
| 98 | xe1[i,j,k,l] = 1}) = 1} "-"; |
---|
| 99 | printf{0..0: givens[row,col] = 0 and |
---|
| 100 | card({(i,j,k,l) in Eh: i = row and col >= j and col < l and |
---|
| 101 | xe2[i,j,k,l] = 1}) = 1} "="; |
---|
| 102 | printf{0..0: givens[row,col] = 0 |
---|
| 103 | and card({(i,j,k,l) in Ev: j = col and row >= i and row < k and |
---|
| 104 | xe1[i,j,k,l] = 1}) = 1} "|"; |
---|
| 105 | printf{0..0: givens[row,col] = 0 |
---|
| 106 | and card({(i,j,k,l) in Ev: j = col and row >= i and row < k and |
---|
| 107 | xe2[i,j,k,l] = 1}) = 1} '"'; |
---|
| 108 | printf{0..0: givens[row,col] = 0 |
---|
| 109 | and card({(i,j,k,l) in Eh: i = row and col >= j and col < l and |
---|
| 110 | (xe1[i,j,k,l] = 1 or xe2[i,j,k,l] = 1)}) = 0 |
---|
| 111 | and card({(i,j,k,l) in Ev: j = col and row >= i and row < k and |
---|
| 112 | (xe1[i,j,k,l] = 1 or xe2[i,j,k,l] = 1)}) = 0} " "; |
---|
| 113 | |
---|
| 114 | /* Now print any edges */ |
---|
| 115 | printf{(i,j,k,l) in Eh: i = row and col >= j and col < l and xe1[i,j,k,l] = 1} "-"; |
---|
| 116 | printf{(i,j,k,l) in Eh: i = row and col >= j and col < l and xe2[i,j,k,l] = 1} "="; |
---|
| 117 | |
---|
| 118 | printf{(i,j,k,l) in Eh: i = row and col >= j and col < l and |
---|
| 119 | xe1[i,j,k,l] = 0 and xe2[i,j,k,l] = 0} " "; |
---|
| 120 | printf{0..0: card({(i,j,k,l) in Eh: i = row and col >= j and col < l}) = 0} " "; |
---|
| 121 | } |
---|
| 122 | printf "\n"; |
---|
| 123 | for { col in cols } { |
---|
| 124 | printf{(i,j,k,l) in Ev: j = col and row >= i and row < k and xe1[i,j,k,l] = 1} "|"; |
---|
| 125 | printf{(i,j,k,l) in Ev: j = col and row >= i and row < k and xe2[i,j,k,l] = 1} '"'; |
---|
| 126 | printf{(i,j,k,l) in Ev: j = col and row >= i and row < k and |
---|
| 127 | xe1[i,j,k,l] = 0 and xe2[i,j,k,l] = 0} " "; |
---|
| 128 | /* No vertical edges: skip also a field */ |
---|
| 129 | printf{0..0: card({(i,j,k,l) in Ev: j = col and row >= i and row < k}) = 0} " "; |
---|
| 130 | printf " "; |
---|
| 131 | } |
---|
| 132 | printf "\n"; |
---|
| 133 | } |
---|
| 134 | |
---|
| 135 | data; |
---|
| 136 | |
---|
| 137 | /* This is a difficult 25x25 Hashiwokakero. |
---|
| 138 | */ |
---|
| 139 | param givens : 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 |
---|
| 140 | 25 := |
---|
| 141 | 1 2 . 2 . 2 . . 2 . 2 . . 2 . . . . 2 . 2 . 2 . 2 . |
---|
| 142 | 2 . 1 . . . . 2 . . . 4 . . 5 . 2 . . 1 . 2 . 2 . 1 |
---|
| 143 | 3 2 . . 5 . 4 . . 3 . . . . . 1 . . 4 . 5 . 1 . 1 . |
---|
| 144 | 4 . . . . . . . . . . . 1 . 3 . . 1 . . . . . . . . |
---|
| 145 | 5 2 . . 6 . 6 . . 8 . 5 . 2 . . 3 . 5 . 7 . . 2 . . |
---|
| 146 | 6 . 1 . . . . . . . . . 1 . . 2 . . . . . 1 . . . 3 |
---|
| 147 | 7 2 . . . . 5 . . 6 . 4 . . 2 . . . 2 . 5 . 4 . 2 . |
---|
| 148 | 8 . 2 . 2 . . . . . . . . . . . 3 . . 3 . . . 1 . 2 |
---|
| 149 | 9 . . . . . . . . . . 4 . 2 . 2 . . 1 . . . 3 . 1 . |
---|
| 150 | 10 2 . 3 . . 6 . . 2 . . . . . . . . . . 3 . . . . . |
---|
| 151 | 11 . . . . 1 . . 2 . . 5 . . 1 . 4 . 3 . . . . 2 . 4 |
---|
| 152 | 12 . . 2 . . 1 . . . . . . 5 . 4 . . . . 4 . 3 . . . |
---|
| 153 | 13 2 . . . 3 . 1 . . . . . . . . 3 . . 5 . 5 . . 2 . |
---|
| 154 | 14 . . . . . 2 . 5 . . 7 . 5 . 3 . 1 . . 1 . . 1 . 4 |
---|
| 155 | 15 2 . 5 . 3 . . . . 1 . 2 . 1 . . . . 2 . 4 . . 2 . |
---|
| 156 | 16 . . . . . 1 . . . . . . . . . . 2 . . 2 . 1 . . 3 |
---|
| 157 | 17 2 . 6 . 6 . . 2 . . 2 . 2 . 5 . . . . . 2 . . . . |
---|
| 158 | 18 . . . . . 1 . . . 3 . . . . . 1 . . 1 . . 4 . 3 . |
---|
| 159 | 19 . . 4 . 5 . . 2 . . . 2 . . 6 . 6 . . 3 . . . . 3 |
---|
| 160 | 20 2 . . . . . . . . . 2 . . 1 . . . . . . 1 . . 1 . |
---|
| 161 | 21 . . 3 . . 3 . 5 . 5 . . 4 . 6 . 7 . . 4 . 6 . . 4 |
---|
| 162 | 22 2 . . . 3 . 5 . 2 . 1 . . . . . . . . . . . . . . |
---|
| 163 | 23 . . . . . . . . . 1 . . . . . . 3 . 2 . . 5 . . 5 |
---|
| 164 | 24 2 . 3 . 3 . 5 . 4 . 3 . 3 . 4 . . 2 . 2 . . . 1 . |
---|
| 165 | 25 . 1 . 2 . 2 . . . 2 . 2 . . . 2 . . . . 2 . 2 . 2 |
---|
| 166 | ; |
---|
| 167 | |
---|
| 168 | end; |
---|