COIN-OR::LEMON - Graph Library

source: glpk-cmake/examples/pbn.mod

Last change on this file was 1:c445c931472f, checked in by Alpar Juttner <alpar@…>, 14 years ago

Import glpk-4.45

  • Generated files and doc/notes are removed
File size: 6.5 KB
Line 
1/* PBN, Paint-By-Numbers Puzzle */
2
3/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
4
5/* A paint-by-number puzzle consists of an m*n grid of pixels (the
6   canvas) together with m+n cluster-size sequences, one for each row
7   and column. The goal is to paint the canvas with a picture that
8   satisfies the following constraints:
9
10   1. Each pixel must be blank or white.
11
12   2. If a row or column has cluster-size sequence s1, s2, ..., sk,
13      then it must contain k clusters of black pixels - the first with
14      s1 black pixels, the second with s2 black pixels, and so on.
15
16   It should be noted that "first" means "leftmost" for rows and
17   "topmost" for columns, and that rows and columns need not begin or
18   end with black pixels.
19
20   Example:
21                  1   1
22                  1   1
23              2 1 1 1 1 1 2 3
24              3 2 1 2 1 2 3 4 8 9
25
26        3 6   # # # . # # # # # #
27        1 4   # . . . . . # # # #
28      1 1 3   . . # . # . . # # #
29          2   . . . . . . . . # #
30        3 3   . . # # # . . # # #
31        1 4   # . . . . . # # # #
32        2 5   # # . . . # # # # #
33        2 5   # # . . . # # # # #
34        1 1   . . . # . . . . . #
35          3   . . # # # . . . . .
36
37   (In Russia this sort of puzzles is known as "Japanese crossword".)
38
39   References:
40   Robert A. Bosch, "Painting by Numbers", 2000.
41   <http://www.oberlin.edu/~math/faculty/bosch/pbn-page.html> */
42
43param m, integer, >= 1;
44/* the number of rows */
45
46param n, integer, >= 1;
47/* the number of columns */
48
49param row{i in 1..m, 1..n div 2}, integer, >= 0, default 0;
50/* the cluster-size sequence for row i (raw data) */
51
52param col{j in 1..n, 1..m div 2}, integer, >= 0, default 0;
53/* the cluster-size sequence for column j (raw data) */
54
55param kr{i in 1..m} := sum{t in 1..n div 2: row[i,t] > 0} 1;
56/* the number of clusters in row i */
57
58param kc{j in 1..n} := sum{t in 1..m div 2: col[j,t] > 0} 1;
59/* the number of clusters in column j */
60
61param sr{i in 1..m, t in 1..kr[i]} := row[i,t], integer, >= 1;
62/* the cluster-size sequence for row i */
63
64param sc{j in 1..n, t in 1..kc[j]} := col[j,t], integer, >= 1;
65/* the cluster-size sequence for column j */
66
67check{i in 1..m}: sum{t in 1..kr[i]} sr[i,t] <= n - (kr[i] - 1);
68/* check that the sum of the cluster sizes in each row is valid */
69
70check{j in 1..n}: sum{t in 1..kc[j]} sc[j,t] <= m - (kc[j] - 1);
71/* check that the sum of the cluster sizes in each column is valid */
72
73check: sum{i in 1..m, t in 1..kr[i]} sr[i,t] =
74       sum{j in 1..n, t in 1..kc[j]} sc[j,t];
75/* check that the sum of the cluster sizes in all rows is equal to the
76   sum of the cluster sizes in all columns */
77
78param er{i in 1..m, t in 1..kr[i]} :=
79   if t = 1 then 1 else er[i,t-1] + sr[i,t-1] + 1;
80/* the smallest value of j such that row i's t-th cluster can be
81   placed in row i with its leftmost pixel occupying pixel j */
82
83param lr{i in 1..m, t in 1..kr[i]} :=
84   if t = kr[i] then n + 1 - sr[i,t] else lr[i,t+1] - sr[i,t] - 1;
85/* the largest value of j such that row i's t-th cluster can be
86   placed in row i with its leftmost pixel occupying pixel j */
87
88param ec{j in 1..n, t in 1..kc[j]} :=
89   if t = 1 then 1 else ec[j,t-1] + sc[j,t-1] + 1;
90/* the smallest value of i such that column j's t-th cluster can be
91   placed in column j with its topmost pixel occupying pixel i */
92
93param lc{j in 1..n, t in 1..kc[j]} :=
94   if t = kc[j] then m + 1 - sc[j,t] else lc[j,t+1] - sc[j,t] - 1;
95/* the largest value of i such that column j's t-th cluster can be
96   placed in column j with its topmost pixel occupying pixel i */
97
98var z{i in 1..m, j in 1..n}, binary;
99/* z[i,j] = 1, if row i's j-th pixel is painted black
100   z[i,j] = 0, if row i's j-th pixel is painted white */
101
102var y{i in 1..m, t in 1..kr[i], j in er[i,t]..lr[i,t]}, binary;
103/* y[i,t,j] = 1, if row i's t-th cluster is placed in row i with its
104                 leftmost pixel occupying pixel j
105   y[i,t,j] = 0, if not */
106
107var x{j in 1..n, t in 1..kc[j], i in ec[j,t]..lc[j,t]}, binary;
108/* x[j,t,i] = 1, if column j's t-th cluster is placed in column j with
109                 its topmost pixel occupying pixel i
110   x[j,t,i] = 0, if not */
111
112s.t. fa{i in 1..m, t in 1..kr[i]}:
113     sum{j in er[i,t]..lr[i,t]} y[i,t,j] = 1;
114/* row i's t-th cluster must appear in row i exactly once */
115
116s.t. fb{i in 1..m, t in 1..kr[i]-1, j in er[i,t]..lr[i,t]}:
117     y[i,t,j] <= sum{jp in j+sr[i,t]+1..lr[i,t+1]} y[i,t+1,jp];
118/* row i's (t+1)-th cluster must be placed to the right of its t-th
119   cluster */
120
121s.t. fc{j in 1..n, t in 1..kc[j]}:
122     sum{i in ec[j,t]..lc[j,t]} x[j,t,i] = 1;
123/* column j's t-th cluster must appear in column j exactly once */
124
125s.t. fd{j in 1..n, t in 1..kc[j]-1, i in ec[j,t]..lc[j,t]}:
126     x[j,t,i] <= sum{ip in i+sc[j,t]+1..lc[j,t+1]} x[j,t+1,ip];
127/* column j's (t+1)-th cluster must be placed below its t-th cluster */
128
129s.t. fe{i in 1..m, j in 1..n}:
130     z[i,j] <= sum{t in 1..kr[i], jp in er[i,t]..lr[i,t]:
131                   j-sr[i,t]+1 <= jp and jp <= j} y[i,t,jp];
132/* the double coverage constraint stating that if row i's j-th pixel
133   is painted black, then at least one of row i's clusters must be
134   placed in such a way that it covers row i's j-th pixel */
135
136s.t. ff{i in 1..m, j in 1..n}:
137     z[i,j] <= sum{t in 1..kc[j], ip in ec[j,t]..lc[j,t]:
138                   i-sc[j,t]+1 <= ip and ip <= i} x[j,t,ip];
139/* the double coverage constraint making sure that if row i's j-th
140   pixel is painted black, then at least one of column j's clusters
141   covers it */
142
143s.t. fg{i in 1..m, j in 1..n, t in 1..kr[i], jp in er[i,t]..lr[i,t]:
144     j-sr[i,t]+1 <= jp and jp <= j}: z[i,j] >= y[i,t,jp];
145/* the constraint to prevent white pixels from being covered by the
146   row clusters */
147
148s.t. fh{i in 1..m, j in 1..n, t in 1..kc[j], ip in ec[j,t]..lc[j,t]:
149     i-sc[j,t]+1 <= ip and ip <= i}: z[i,j] >= x[j,t,ip];
150/* the constraint to prevent white pixels from being covered by the
151   column clusters */
152
153/* there is no need for an objective function here */
154
155solve;
156
157for {i in 1..m}
158{  printf{j in 1..n} " %s", if z[i,j] then "#" else ".";
159   printf "\n";
160}
161
162data;
163
164/* These data correspond to the example above. */
165
166param m := 10;
167
168param n := 10;
169
170param row : 1 2 3 4 :=
171         1  3 6 . .
172         2  1 4 . .
173         3  1 1 3 .
174         4  2 . . .
175         5  3 3 . .
176         6  1 4 . .
177         7  2 5 . .
178         8  2 5 . .
179         9  1 1 . .
180        10  3 . . . ;
181
182param col : 1 2 3 4 :=
183         1  2 3 . .
184         2  1 2 . .
185         3  1 1 1 1
186         4  1 2 . .
187         5  1 1 1 1
188         6  1 2 . .
189         7  2 3 . .
190         8  3 4 . .
191         9  8 . . .
192        10  9 . . . ;
193
194end;
Note: See TracBrowser for help on using the repository browser.