[1] | 1 | /* ========================================================================= */ |
---|
| 2 | /* === AMD_1 =============================================================== */ |
---|
| 3 | /* ========================================================================= */ |
---|
| 4 | |
---|
| 5 | /* ------------------------------------------------------------------------- */ |
---|
| 6 | /* AMD, Copyright (c) Timothy A. Davis, */ |
---|
| 7 | /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ |
---|
| 8 | /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ |
---|
| 9 | /* web: http://www.cise.ufl.edu/research/sparse/amd */ |
---|
| 10 | /* ------------------------------------------------------------------------- */ |
---|
| 11 | |
---|
| 12 | /* AMD_1: Construct A+A' for a sparse matrix A and perform the AMD ordering. |
---|
| 13 | * |
---|
| 14 | * The n-by-n sparse matrix A can be unsymmetric. It is stored in MATLAB-style |
---|
| 15 | * compressed-column form, with sorted row indices in each column, and no |
---|
| 16 | * duplicate entries. Diagonal entries may be present, but they are ignored. |
---|
| 17 | * Row indices of column j of A are stored in Ai [Ap [j] ... Ap [j+1]-1]. |
---|
| 18 | * Ap [0] must be zero, and nz = Ap [n] is the number of entries in A. The |
---|
| 19 | * size of the matrix, n, must be greater than or equal to zero. |
---|
| 20 | * |
---|
| 21 | * This routine must be preceded by a call to AMD_aat, which computes the |
---|
| 22 | * number of entries in each row/column in A+A', excluding the diagonal. |
---|
| 23 | * Len [j], on input, is the number of entries in row/column j of A+A'. This |
---|
| 24 | * routine constructs the matrix A+A' and then calls AMD_2. No error checking |
---|
| 25 | * is performed (this was done in AMD_valid). |
---|
| 26 | */ |
---|
| 27 | |
---|
| 28 | #include "amd_internal.h" |
---|
| 29 | |
---|
| 30 | GLOBAL void AMD_1 |
---|
| 31 | ( |
---|
| 32 | Int n, /* n > 0 */ |
---|
| 33 | const Int Ap [ ], /* input of size n+1, not modified */ |
---|
| 34 | const Int Ai [ ], /* input of size nz = Ap [n], not modified */ |
---|
| 35 | Int P [ ], /* size n output permutation */ |
---|
| 36 | Int Pinv [ ], /* size n output inverse permutation */ |
---|
| 37 | Int Len [ ], /* size n input, undefined on output */ |
---|
| 38 | Int slen, /* slen >= sum (Len [0..n-1]) + 7n, |
---|
| 39 | * ideally slen = 1.2 * sum (Len) + 8n */ |
---|
| 40 | Int S [ ], /* size slen workspace */ |
---|
| 41 | double Control [ ], /* input array of size AMD_CONTROL */ |
---|
| 42 | double Info [ ] /* output array of size AMD_INFO */ |
---|
| 43 | ) |
---|
| 44 | { |
---|
| 45 | Int i, j, k, p, pfree, iwlen, pj, p1, p2, pj2, *Iw, *Pe, *Nv, *Head, |
---|
| 46 | *Elen, *Degree, *s, *W, *Sp, *Tp ; |
---|
| 47 | |
---|
| 48 | /* --------------------------------------------------------------------- */ |
---|
| 49 | /* construct the matrix for AMD_2 */ |
---|
| 50 | /* --------------------------------------------------------------------- */ |
---|
| 51 | |
---|
| 52 | ASSERT (n > 0) ; |
---|
| 53 | |
---|
| 54 | iwlen = slen - 6*n ; |
---|
| 55 | s = S ; |
---|
| 56 | Pe = s ; s += n ; |
---|
| 57 | Nv = s ; s += n ; |
---|
| 58 | Head = s ; s += n ; |
---|
| 59 | Elen = s ; s += n ; |
---|
| 60 | Degree = s ; s += n ; |
---|
| 61 | W = s ; s += n ; |
---|
| 62 | Iw = s ; s += iwlen ; |
---|
| 63 | |
---|
| 64 | ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ; |
---|
| 65 | |
---|
| 66 | /* construct the pointers for A+A' */ |
---|
| 67 | Sp = Nv ; /* use Nv and W as workspace for Sp and Tp [ */ |
---|
| 68 | Tp = W ; |
---|
| 69 | pfree = 0 ; |
---|
| 70 | for (j = 0 ; j < n ; j++) |
---|
| 71 | { |
---|
| 72 | Pe [j] = pfree ; |
---|
| 73 | Sp [j] = pfree ; |
---|
| 74 | pfree += Len [j] ; |
---|
| 75 | } |
---|
| 76 | |
---|
| 77 | /* Note that this restriction on iwlen is slightly more restrictive than |
---|
| 78 | * what is strictly required in AMD_2. AMD_2 can operate with no elbow |
---|
| 79 | * room at all, but it will be very slow. For better performance, at |
---|
| 80 | * least size-n elbow room is enforced. */ |
---|
| 81 | ASSERT (iwlen >= pfree + n) ; |
---|
| 82 | |
---|
| 83 | #ifndef NDEBUG |
---|
| 84 | for (p = 0 ; p < iwlen ; p++) Iw [p] = EMPTY ; |
---|
| 85 | #endif |
---|
| 86 | |
---|
| 87 | for (k = 0 ; k < n ; k++) |
---|
| 88 | { |
---|
| 89 | AMD_DEBUG1 (("Construct row/column k= "ID" of A+A'\n", k)) ; |
---|
| 90 | p1 = Ap [k] ; |
---|
| 91 | p2 = Ap [k+1] ; |
---|
| 92 | |
---|
| 93 | /* construct A+A' */ |
---|
| 94 | for (p = p1 ; p < p2 ; ) |
---|
| 95 | { |
---|
| 96 | /* scan the upper triangular part of A */ |
---|
| 97 | j = Ai [p] ; |
---|
| 98 | ASSERT (j >= 0 && j < n) ; |
---|
| 99 | if (j < k) |
---|
| 100 | { |
---|
| 101 | /* entry A (j,k) in the strictly upper triangular part */ |
---|
| 102 | ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; |
---|
| 103 | ASSERT (Sp [k] < (k == n-1 ? pfree : Pe [k+1])) ; |
---|
| 104 | Iw [Sp [j]++] = k ; |
---|
| 105 | Iw [Sp [k]++] = j ; |
---|
| 106 | p++ ; |
---|
| 107 | } |
---|
| 108 | else if (j == k) |
---|
| 109 | { |
---|
| 110 | /* skip the diagonal */ |
---|
| 111 | p++ ; |
---|
| 112 | break ; |
---|
| 113 | } |
---|
| 114 | else /* j > k */ |
---|
| 115 | { |
---|
| 116 | /* first entry below the diagonal */ |
---|
| 117 | break ; |
---|
| 118 | } |
---|
| 119 | /* scan lower triangular part of A, in column j until reaching |
---|
| 120 | * row k. Start where last scan left off. */ |
---|
| 121 | ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ; |
---|
| 122 | pj2 = Ap [j+1] ; |
---|
| 123 | for (pj = Tp [j] ; pj < pj2 ; ) |
---|
| 124 | { |
---|
| 125 | i = Ai [pj] ; |
---|
| 126 | ASSERT (i >= 0 && i < n) ; |
---|
| 127 | if (i < k) |
---|
| 128 | { |
---|
| 129 | /* A (i,j) is only in the lower part, not in upper */ |
---|
| 130 | ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; |
---|
| 131 | ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; |
---|
| 132 | Iw [Sp [i]++] = j ; |
---|
| 133 | Iw [Sp [j]++] = i ; |
---|
| 134 | pj++ ; |
---|
| 135 | } |
---|
| 136 | else if (i == k) |
---|
| 137 | { |
---|
| 138 | /* entry A (k,j) in lower part and A (j,k) in upper */ |
---|
| 139 | pj++ ; |
---|
| 140 | break ; |
---|
| 141 | } |
---|
| 142 | else /* i > k */ |
---|
| 143 | { |
---|
| 144 | /* consider this entry later, when k advances to i */ |
---|
| 145 | break ; |
---|
| 146 | } |
---|
| 147 | } |
---|
| 148 | Tp [j] = pj ; |
---|
| 149 | } |
---|
| 150 | Tp [k] = p ; |
---|
| 151 | } |
---|
| 152 | |
---|
| 153 | /* clean up, for remaining mismatched entries */ |
---|
| 154 | for (j = 0 ; j < n ; j++) |
---|
| 155 | { |
---|
| 156 | for (pj = Tp [j] ; pj < Ap [j+1] ; pj++) |
---|
| 157 | { |
---|
| 158 | i = Ai [pj] ; |
---|
| 159 | ASSERT (i >= 0 && i < n) ; |
---|
| 160 | /* A (i,j) is only in the lower part, not in upper */ |
---|
| 161 | ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; |
---|
| 162 | ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; |
---|
| 163 | Iw [Sp [i]++] = j ; |
---|
| 164 | Iw [Sp [j]++] = i ; |
---|
| 165 | } |
---|
| 166 | } |
---|
| 167 | |
---|
| 168 | #ifndef NDEBUG |
---|
| 169 | for (j = 0 ; j < n-1 ; j++) ASSERT (Sp [j] == Pe [j+1]) ; |
---|
| 170 | ASSERT (Sp [n-1] == pfree) ; |
---|
| 171 | #endif |
---|
| 172 | |
---|
| 173 | /* Tp and Sp no longer needed ] */ |
---|
| 174 | |
---|
| 175 | /* --------------------------------------------------------------------- */ |
---|
| 176 | /* order the matrix */ |
---|
| 177 | /* --------------------------------------------------------------------- */ |
---|
| 178 | |
---|
| 179 | AMD_2 (n, Pe, Iw, Len, iwlen, pfree, |
---|
| 180 | Nv, Pinv, P, Head, Elen, Degree, W, Control, Info) ; |
---|
| 181 | } |
---|