1 | /* ========================================================================= */ |
---|
2 | /* === AMD_1 =============================================================== */ |
---|
3 | /* ========================================================================= */ |
---|
4 | |
---|
5 | /* ------------------------------------------------------------------------- */ |
---|
6 | /* AMD, Copyright (c) Timothy A. Davis, */ |
---|
7 | /* Patrick R. Amestoy, and Iain S. Duff. See ../README.txt for License. */ |
---|
8 | /* email: davis at cise.ufl.edu CISE Department, Univ. of Florida. */ |
---|
9 | /* web: http://www.cise.ufl.edu/research/sparse/amd */ |
---|
10 | /* ------------------------------------------------------------------------- */ |
---|
11 | |
---|
12 | /* AMD_1: Construct A+A' for a sparse matrix A and perform the AMD ordering. |
---|
13 | * |
---|
14 | * The n-by-n sparse matrix A can be unsymmetric. It is stored in MATLAB-style |
---|
15 | * compressed-column form, with sorted row indices in each column, and no |
---|
16 | * duplicate entries. Diagonal entries may be present, but they are ignored. |
---|
17 | * Row indices of column j of A are stored in Ai [Ap [j] ... Ap [j+1]-1]. |
---|
18 | * Ap [0] must be zero, and nz = Ap [n] is the number of entries in A. The |
---|
19 | * size of the matrix, n, must be greater than or equal to zero. |
---|
20 | * |
---|
21 | * This routine must be preceded by a call to AMD_aat, which computes the |
---|
22 | * number of entries in each row/column in A+A', excluding the diagonal. |
---|
23 | * Len [j], on input, is the number of entries in row/column j of A+A'. This |
---|
24 | * routine constructs the matrix A+A' and then calls AMD_2. No error checking |
---|
25 | * is performed (this was done in AMD_valid). |
---|
26 | */ |
---|
27 | |
---|
28 | #include "amd_internal.h" |
---|
29 | |
---|
30 | GLOBAL void AMD_1 |
---|
31 | ( |
---|
32 | Int n, /* n > 0 */ |
---|
33 | const Int Ap [ ], /* input of size n+1, not modified */ |
---|
34 | const Int Ai [ ], /* input of size nz = Ap [n], not modified */ |
---|
35 | Int P [ ], /* size n output permutation */ |
---|
36 | Int Pinv [ ], /* size n output inverse permutation */ |
---|
37 | Int Len [ ], /* size n input, undefined on output */ |
---|
38 | Int slen, /* slen >= sum (Len [0..n-1]) + 7n, |
---|
39 | * ideally slen = 1.2 * sum (Len) + 8n */ |
---|
40 | Int S [ ], /* size slen workspace */ |
---|
41 | double Control [ ], /* input array of size AMD_CONTROL */ |
---|
42 | double Info [ ] /* output array of size AMD_INFO */ |
---|
43 | ) |
---|
44 | { |
---|
45 | Int i, j, k, p, pfree, iwlen, pj, p1, p2, pj2, *Iw, *Pe, *Nv, *Head, |
---|
46 | *Elen, *Degree, *s, *W, *Sp, *Tp ; |
---|
47 | |
---|
48 | /* --------------------------------------------------------------------- */ |
---|
49 | /* construct the matrix for AMD_2 */ |
---|
50 | /* --------------------------------------------------------------------- */ |
---|
51 | |
---|
52 | ASSERT (n > 0) ; |
---|
53 | |
---|
54 | iwlen = slen - 6*n ; |
---|
55 | s = S ; |
---|
56 | Pe = s ; s += n ; |
---|
57 | Nv = s ; s += n ; |
---|
58 | Head = s ; s += n ; |
---|
59 | Elen = s ; s += n ; |
---|
60 | Degree = s ; s += n ; |
---|
61 | W = s ; s += n ; |
---|
62 | Iw = s ; s += iwlen ; |
---|
63 | |
---|
64 | ASSERT (AMD_valid (n, n, Ap, Ai) == AMD_OK) ; |
---|
65 | |
---|
66 | /* construct the pointers for A+A' */ |
---|
67 | Sp = Nv ; /* use Nv and W as workspace for Sp and Tp [ */ |
---|
68 | Tp = W ; |
---|
69 | pfree = 0 ; |
---|
70 | for (j = 0 ; j < n ; j++) |
---|
71 | { |
---|
72 | Pe [j] = pfree ; |
---|
73 | Sp [j] = pfree ; |
---|
74 | pfree += Len [j] ; |
---|
75 | } |
---|
76 | |
---|
77 | /* Note that this restriction on iwlen is slightly more restrictive than |
---|
78 | * what is strictly required in AMD_2. AMD_2 can operate with no elbow |
---|
79 | * room at all, but it will be very slow. For better performance, at |
---|
80 | * least size-n elbow room is enforced. */ |
---|
81 | ASSERT (iwlen >= pfree + n) ; |
---|
82 | |
---|
83 | #ifndef NDEBUG |
---|
84 | for (p = 0 ; p < iwlen ; p++) Iw [p] = EMPTY ; |
---|
85 | #endif |
---|
86 | |
---|
87 | for (k = 0 ; k < n ; k++) |
---|
88 | { |
---|
89 | AMD_DEBUG1 (("Construct row/column k= "ID" of A+A'\n", k)) ; |
---|
90 | p1 = Ap [k] ; |
---|
91 | p2 = Ap [k+1] ; |
---|
92 | |
---|
93 | /* construct A+A' */ |
---|
94 | for (p = p1 ; p < p2 ; ) |
---|
95 | { |
---|
96 | /* scan the upper triangular part of A */ |
---|
97 | j = Ai [p] ; |
---|
98 | ASSERT (j >= 0 && j < n) ; |
---|
99 | if (j < k) |
---|
100 | { |
---|
101 | /* entry A (j,k) in the strictly upper triangular part */ |
---|
102 | ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; |
---|
103 | ASSERT (Sp [k] < (k == n-1 ? pfree : Pe [k+1])) ; |
---|
104 | Iw [Sp [j]++] = k ; |
---|
105 | Iw [Sp [k]++] = j ; |
---|
106 | p++ ; |
---|
107 | } |
---|
108 | else if (j == k) |
---|
109 | { |
---|
110 | /* skip the diagonal */ |
---|
111 | p++ ; |
---|
112 | break ; |
---|
113 | } |
---|
114 | else /* j > k */ |
---|
115 | { |
---|
116 | /* first entry below the diagonal */ |
---|
117 | break ; |
---|
118 | } |
---|
119 | /* scan lower triangular part of A, in column j until reaching |
---|
120 | * row k. Start where last scan left off. */ |
---|
121 | ASSERT (Ap [j] <= Tp [j] && Tp [j] <= Ap [j+1]) ; |
---|
122 | pj2 = Ap [j+1] ; |
---|
123 | for (pj = Tp [j] ; pj < pj2 ; ) |
---|
124 | { |
---|
125 | i = Ai [pj] ; |
---|
126 | ASSERT (i >= 0 && i < n) ; |
---|
127 | if (i < k) |
---|
128 | { |
---|
129 | /* A (i,j) is only in the lower part, not in upper */ |
---|
130 | ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; |
---|
131 | ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; |
---|
132 | Iw [Sp [i]++] = j ; |
---|
133 | Iw [Sp [j]++] = i ; |
---|
134 | pj++ ; |
---|
135 | } |
---|
136 | else if (i == k) |
---|
137 | { |
---|
138 | /* entry A (k,j) in lower part and A (j,k) in upper */ |
---|
139 | pj++ ; |
---|
140 | break ; |
---|
141 | } |
---|
142 | else /* i > k */ |
---|
143 | { |
---|
144 | /* consider this entry later, when k advances to i */ |
---|
145 | break ; |
---|
146 | } |
---|
147 | } |
---|
148 | Tp [j] = pj ; |
---|
149 | } |
---|
150 | Tp [k] = p ; |
---|
151 | } |
---|
152 | |
---|
153 | /* clean up, for remaining mismatched entries */ |
---|
154 | for (j = 0 ; j < n ; j++) |
---|
155 | { |
---|
156 | for (pj = Tp [j] ; pj < Ap [j+1] ; pj++) |
---|
157 | { |
---|
158 | i = Ai [pj] ; |
---|
159 | ASSERT (i >= 0 && i < n) ; |
---|
160 | /* A (i,j) is only in the lower part, not in upper */ |
---|
161 | ASSERT (Sp [i] < (i == n-1 ? pfree : Pe [i+1])) ; |
---|
162 | ASSERT (Sp [j] < (j == n-1 ? pfree : Pe [j+1])) ; |
---|
163 | Iw [Sp [i]++] = j ; |
---|
164 | Iw [Sp [j]++] = i ; |
---|
165 | } |
---|
166 | } |
---|
167 | |
---|
168 | #ifndef NDEBUG |
---|
169 | for (j = 0 ; j < n-1 ; j++) ASSERT (Sp [j] == Pe [j+1]) ; |
---|
170 | ASSERT (Sp [n-1] == pfree) ; |
---|
171 | #endif |
---|
172 | |
---|
173 | /* Tp and Sp no longer needed ] */ |
---|
174 | |
---|
175 | /* --------------------------------------------------------------------- */ |
---|
176 | /* order the matrix */ |
---|
177 | /* --------------------------------------------------------------------- */ |
---|
178 | |
---|
179 | AMD_2 (n, Pe, Iw, Len, iwlen, pfree, |
---|
180 | Nv, Pinv, P, Head, Elen, Degree, W, Control, Info) ; |
---|
181 | } |
---|