1 | /* glpapi13.c (branch-and-bound interface routines) */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | * E-mail: <mao@gnu.org>. |
---|
10 | * |
---|
11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation, either version 3 of the License, or |
---|
14 | * (at your option) any later version. |
---|
15 | * |
---|
16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | * License for more details. |
---|
20 | * |
---|
21 | * You should have received a copy of the GNU General Public License |
---|
22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | ***********************************************************************/ |
---|
24 | |
---|
25 | #include "glpios.h" |
---|
26 | |
---|
27 | /*********************************************************************** |
---|
28 | * NAME |
---|
29 | * |
---|
30 | * glp_ios_reason - determine reason for calling the callback routine |
---|
31 | * |
---|
32 | * SYNOPSIS |
---|
33 | * |
---|
34 | * glp_ios_reason(glp_tree *tree); |
---|
35 | * |
---|
36 | * RETURNS |
---|
37 | * |
---|
38 | * The routine glp_ios_reason returns a code, which indicates why the |
---|
39 | * user-defined callback routine is being called. */ |
---|
40 | |
---|
41 | int glp_ios_reason(glp_tree *tree) |
---|
42 | { return |
---|
43 | tree->reason; |
---|
44 | } |
---|
45 | |
---|
46 | /*********************************************************************** |
---|
47 | * NAME |
---|
48 | * |
---|
49 | * glp_ios_get_prob - access the problem object |
---|
50 | * |
---|
51 | * SYNOPSIS |
---|
52 | * |
---|
53 | * glp_prob *glp_ios_get_prob(glp_tree *tree); |
---|
54 | * |
---|
55 | * DESCRIPTION |
---|
56 | * |
---|
57 | * The routine glp_ios_get_prob can be called from the user-defined |
---|
58 | * callback routine to access the problem object, which is used by the |
---|
59 | * MIP solver. It is the original problem object passed to the routine |
---|
60 | * glp_intopt if the MIP presolver is not used; otherwise it is an |
---|
61 | * internal problem object built by the presolver. If the current |
---|
62 | * subproblem exists, LP segment of the problem object corresponds to |
---|
63 | * its LP relaxation. |
---|
64 | * |
---|
65 | * RETURNS |
---|
66 | * |
---|
67 | * The routine glp_ios_get_prob returns a pointer to the problem object |
---|
68 | * used by the MIP solver. */ |
---|
69 | |
---|
70 | glp_prob *glp_ios_get_prob(glp_tree *tree) |
---|
71 | { return |
---|
72 | tree->mip; |
---|
73 | } |
---|
74 | |
---|
75 | /*********************************************************************** |
---|
76 | * NAME |
---|
77 | * |
---|
78 | * glp_ios_tree_size - determine size of the branch-and-bound tree |
---|
79 | * |
---|
80 | * SYNOPSIS |
---|
81 | * |
---|
82 | * void glp_ios_tree_size(glp_tree *tree, int *a_cnt, int *n_cnt, |
---|
83 | * int *t_cnt); |
---|
84 | * |
---|
85 | * DESCRIPTION |
---|
86 | * |
---|
87 | * The routine glp_ios_tree_size stores the following three counts which |
---|
88 | * characterize the current size of the branch-and-bound tree: |
---|
89 | * |
---|
90 | * a_cnt is the current number of active nodes, i.e. the current size of |
---|
91 | * the active list; |
---|
92 | * |
---|
93 | * n_cnt is the current number of all (active and inactive) nodes; |
---|
94 | * |
---|
95 | * t_cnt is the total number of nodes including those which have been |
---|
96 | * already removed from the tree. This count is increased whenever |
---|
97 | * a new node appears in the tree and never decreased. |
---|
98 | * |
---|
99 | * If some of the parameters a_cnt, n_cnt, t_cnt is a null pointer, the |
---|
100 | * corresponding count is not stored. */ |
---|
101 | |
---|
102 | void glp_ios_tree_size(glp_tree *tree, int *a_cnt, int *n_cnt, |
---|
103 | int *t_cnt) |
---|
104 | { if (a_cnt != NULL) *a_cnt = tree->a_cnt; |
---|
105 | if (n_cnt != NULL) *n_cnt = tree->n_cnt; |
---|
106 | if (t_cnt != NULL) *t_cnt = tree->t_cnt; |
---|
107 | return; |
---|
108 | } |
---|
109 | |
---|
110 | /*********************************************************************** |
---|
111 | * NAME |
---|
112 | * |
---|
113 | * glp_ios_curr_node - determine current active subproblem |
---|
114 | * |
---|
115 | * SYNOPSIS |
---|
116 | * |
---|
117 | * int glp_ios_curr_node(glp_tree *tree); |
---|
118 | * |
---|
119 | * RETURNS |
---|
120 | * |
---|
121 | * The routine glp_ios_curr_node returns the reference number of the |
---|
122 | * current active subproblem. However, if the current subproblem does |
---|
123 | * not exist, the routine returns zero. */ |
---|
124 | |
---|
125 | int glp_ios_curr_node(glp_tree *tree) |
---|
126 | { IOSNPD *node; |
---|
127 | /* obtain pointer to the current subproblem */ |
---|
128 | node = tree->curr; |
---|
129 | /* return its reference number */ |
---|
130 | return node == NULL ? 0 : node->p; |
---|
131 | } |
---|
132 | |
---|
133 | /*********************************************************************** |
---|
134 | * NAME |
---|
135 | * |
---|
136 | * glp_ios_next_node - determine next active subproblem |
---|
137 | * |
---|
138 | * SYNOPSIS |
---|
139 | * |
---|
140 | * int glp_ios_next_node(glp_tree *tree, int p); |
---|
141 | * |
---|
142 | * RETURNS |
---|
143 | * |
---|
144 | * If the parameter p is zero, the routine glp_ios_next_node returns |
---|
145 | * the reference number of the first active subproblem. However, if the |
---|
146 | * tree is empty, zero is returned. |
---|
147 | * |
---|
148 | * If the parameter p is not zero, it must specify the reference number |
---|
149 | * of some active subproblem, in which case the routine returns the |
---|
150 | * reference number of the next active subproblem. However, if there is |
---|
151 | * no next active subproblem in the list, zero is returned. |
---|
152 | * |
---|
153 | * All subproblems in the active list are ordered chronologically, i.e. |
---|
154 | * subproblem A precedes subproblem B if A was created before B. */ |
---|
155 | |
---|
156 | int glp_ios_next_node(glp_tree *tree, int p) |
---|
157 | { IOSNPD *node; |
---|
158 | if (p == 0) |
---|
159 | { /* obtain pointer to the first active subproblem */ |
---|
160 | node = tree->head; |
---|
161 | } |
---|
162 | else |
---|
163 | { /* obtain pointer to the specified subproblem */ |
---|
164 | if (!(1 <= p && p <= tree->nslots)) |
---|
165 | err: xerror("glp_ios_next_node: p = %d; invalid subproblem refer" |
---|
166 | "ence number\n", p); |
---|
167 | node = tree->slot[p].node; |
---|
168 | if (node == NULL) goto err; |
---|
169 | /* the specified subproblem must be active */ |
---|
170 | if (node->count != 0) |
---|
171 | xerror("glp_ios_next_node: p = %d; subproblem not in the ac" |
---|
172 | "tive list\n", p); |
---|
173 | /* obtain pointer to the next active subproblem */ |
---|
174 | node = node->next; |
---|
175 | } |
---|
176 | /* return the reference number */ |
---|
177 | return node == NULL ? 0 : node->p; |
---|
178 | } |
---|
179 | |
---|
180 | /*********************************************************************** |
---|
181 | * NAME |
---|
182 | * |
---|
183 | * glp_ios_prev_node - determine previous active subproblem |
---|
184 | * |
---|
185 | * SYNOPSIS |
---|
186 | * |
---|
187 | * int glp_ios_prev_node(glp_tree *tree, int p); |
---|
188 | * |
---|
189 | * RETURNS |
---|
190 | * |
---|
191 | * If the parameter p is zero, the routine glp_ios_prev_node returns |
---|
192 | * the reference number of the last active subproblem. However, if the |
---|
193 | * tree is empty, zero is returned. |
---|
194 | * |
---|
195 | * If the parameter p is not zero, it must specify the reference number |
---|
196 | * of some active subproblem, in which case the routine returns the |
---|
197 | * reference number of the previous active subproblem. However, if there |
---|
198 | * is no previous active subproblem in the list, zero is returned. |
---|
199 | * |
---|
200 | * All subproblems in the active list are ordered chronologically, i.e. |
---|
201 | * subproblem A precedes subproblem B if A was created before B. */ |
---|
202 | |
---|
203 | int glp_ios_prev_node(glp_tree *tree, int p) |
---|
204 | { IOSNPD *node; |
---|
205 | if (p == 0) |
---|
206 | { /* obtain pointer to the last active subproblem */ |
---|
207 | node = tree->tail; |
---|
208 | } |
---|
209 | else |
---|
210 | { /* obtain pointer to the specified subproblem */ |
---|
211 | if (!(1 <= p && p <= tree->nslots)) |
---|
212 | err: xerror("glp_ios_prev_node: p = %d; invalid subproblem refer" |
---|
213 | "ence number\n", p); |
---|
214 | node = tree->slot[p].node; |
---|
215 | if (node == NULL) goto err; |
---|
216 | /* the specified subproblem must be active */ |
---|
217 | if (node->count != 0) |
---|
218 | xerror("glp_ios_prev_node: p = %d; subproblem not in the ac" |
---|
219 | "tive list\n", p); |
---|
220 | /* obtain pointer to the previous active subproblem */ |
---|
221 | node = node->prev; |
---|
222 | } |
---|
223 | /* return the reference number */ |
---|
224 | return node == NULL ? 0 : node->p; |
---|
225 | } |
---|
226 | |
---|
227 | /*********************************************************************** |
---|
228 | * NAME |
---|
229 | * |
---|
230 | * glp_ios_up_node - determine parent subproblem |
---|
231 | * |
---|
232 | * SYNOPSIS |
---|
233 | * |
---|
234 | * int glp_ios_up_node(glp_tree *tree, int p); |
---|
235 | * |
---|
236 | * RETURNS |
---|
237 | * |
---|
238 | * The parameter p must specify the reference number of some (active or |
---|
239 | * inactive) subproblem, in which case the routine iet_get_up_node |
---|
240 | * returns the reference number of its parent subproblem. However, if |
---|
241 | * the specified subproblem is the root of the tree and, therefore, has |
---|
242 | * no parent, the routine returns zero. */ |
---|
243 | |
---|
244 | int glp_ios_up_node(glp_tree *tree, int p) |
---|
245 | { IOSNPD *node; |
---|
246 | /* obtain pointer to the specified subproblem */ |
---|
247 | if (!(1 <= p && p <= tree->nslots)) |
---|
248 | err: xerror("glp_ios_up_node: p = %d; invalid subproblem reference " |
---|
249 | "number\n", p); |
---|
250 | node = tree->slot[p].node; |
---|
251 | if (node == NULL) goto err; |
---|
252 | /* obtain pointer to the parent subproblem */ |
---|
253 | node = node->up; |
---|
254 | /* return the reference number */ |
---|
255 | return node == NULL ? 0 : node->p; |
---|
256 | } |
---|
257 | |
---|
258 | /*********************************************************************** |
---|
259 | * NAME |
---|
260 | * |
---|
261 | * glp_ios_node_level - determine subproblem level |
---|
262 | * |
---|
263 | * SYNOPSIS |
---|
264 | * |
---|
265 | * int glp_ios_node_level(glp_tree *tree, int p); |
---|
266 | * |
---|
267 | * RETURNS |
---|
268 | * |
---|
269 | * The routine glp_ios_node_level returns the level of the subproblem, |
---|
270 | * whose reference number is p, in the branch-and-bound tree. (The root |
---|
271 | * subproblem has level 0, and the level of any other subproblem is the |
---|
272 | * level of its parent plus one.) */ |
---|
273 | |
---|
274 | int glp_ios_node_level(glp_tree *tree, int p) |
---|
275 | { IOSNPD *node; |
---|
276 | /* obtain pointer to the specified subproblem */ |
---|
277 | if (!(1 <= p && p <= tree->nslots)) |
---|
278 | err: xerror("glp_ios_node_level: p = %d; invalid subproblem referen" |
---|
279 | "ce number\n", p); |
---|
280 | node = tree->slot[p].node; |
---|
281 | if (node == NULL) goto err; |
---|
282 | /* return the node level */ |
---|
283 | return node->level; |
---|
284 | } |
---|
285 | |
---|
286 | /*********************************************************************** |
---|
287 | * NAME |
---|
288 | * |
---|
289 | * glp_ios_node_bound - determine subproblem local bound |
---|
290 | * |
---|
291 | * SYNOPSIS |
---|
292 | * |
---|
293 | * double glp_ios_node_bound(glp_tree *tree, int p); |
---|
294 | * |
---|
295 | * RETURNS |
---|
296 | * |
---|
297 | * The routine glp_ios_node_bound returns the local bound for (active or |
---|
298 | * inactive) subproblem, whose reference number is p. |
---|
299 | * |
---|
300 | * COMMENTS |
---|
301 | * |
---|
302 | * The local bound for subproblem p is an lower (minimization) or upper |
---|
303 | * (maximization) bound for integer optimal solution to this subproblem |
---|
304 | * (not to the original problem). This bound is local in the sense that |
---|
305 | * only subproblems in the subtree rooted at node p cannot have better |
---|
306 | * integer feasible solutions. |
---|
307 | * |
---|
308 | * On creating a subproblem (due to the branching step) its local bound |
---|
309 | * is inherited from its parent and then may get only stronger (never |
---|
310 | * weaker). For the root subproblem its local bound is initially set to |
---|
311 | * -DBL_MAX (minimization) or +DBL_MAX (maximization) and then improved |
---|
312 | * as the root LP relaxation has been solved. |
---|
313 | * |
---|
314 | * Note that the local bound is not necessarily the optimal objective |
---|
315 | * value to corresponding LP relaxation; it may be stronger. */ |
---|
316 | |
---|
317 | double glp_ios_node_bound(glp_tree *tree, int p) |
---|
318 | { IOSNPD *node; |
---|
319 | /* obtain pointer to the specified subproblem */ |
---|
320 | if (!(1 <= p && p <= tree->nslots)) |
---|
321 | err: xerror("glp_ios_node_bound: p = %d; invalid subproblem referen" |
---|
322 | "ce number\n", p); |
---|
323 | node = tree->slot[p].node; |
---|
324 | if (node == NULL) goto err; |
---|
325 | /* return the node local bound */ |
---|
326 | return node->bound; |
---|
327 | } |
---|
328 | |
---|
329 | /*********************************************************************** |
---|
330 | * NAME |
---|
331 | * |
---|
332 | * glp_ios_best_node - find active subproblem with best local bound |
---|
333 | * |
---|
334 | * SYNOPSIS |
---|
335 | * |
---|
336 | * int glp_ios_best_node(glp_tree *tree); |
---|
337 | * |
---|
338 | * RETURNS |
---|
339 | * |
---|
340 | * The routine glp_ios_best_node returns the reference number of the |
---|
341 | * active subproblem, whose local bound is best (i.e. smallest in case |
---|
342 | * of minimization or largest in case of maximization). However, if the |
---|
343 | * tree is empty, the routine returns zero. |
---|
344 | * |
---|
345 | * COMMENTS |
---|
346 | * |
---|
347 | * The best local bound is an lower (minimization) or upper |
---|
348 | * (maximization) bound for integer optimal solution to the original |
---|
349 | * MIP problem. */ |
---|
350 | |
---|
351 | int glp_ios_best_node(glp_tree *tree) |
---|
352 | { return |
---|
353 | ios_best_node(tree); |
---|
354 | } |
---|
355 | |
---|
356 | /*********************************************************************** |
---|
357 | * NAME |
---|
358 | * |
---|
359 | * glp_ios_mip_gap - compute relative MIP gap |
---|
360 | * |
---|
361 | * SYNOPSIS |
---|
362 | * |
---|
363 | * double glp_ios_mip_gap(glp_tree *tree); |
---|
364 | * |
---|
365 | * DESCRIPTION |
---|
366 | * |
---|
367 | * The routine glp_ios_mip_gap computes the relative MIP gap with the |
---|
368 | * following formula: |
---|
369 | * |
---|
370 | * gap = |best_mip - best_bnd| / (|best_mip| + DBL_EPSILON), |
---|
371 | * |
---|
372 | * where best_mip is the best integer feasible solution found so far, |
---|
373 | * best_bnd is the best (global) bound. If no integer feasible solution |
---|
374 | * has been found yet, gap is set to DBL_MAX. |
---|
375 | * |
---|
376 | * RETURNS |
---|
377 | * |
---|
378 | * The routine glp_ios_mip_gap returns the relative MIP gap. */ |
---|
379 | |
---|
380 | double glp_ios_mip_gap(glp_tree *tree) |
---|
381 | { return |
---|
382 | ios_relative_gap(tree); |
---|
383 | } |
---|
384 | |
---|
385 | /*********************************************************************** |
---|
386 | * NAME |
---|
387 | * |
---|
388 | * glp_ios_node_data - access subproblem application-specific data |
---|
389 | * |
---|
390 | * SYNOPSIS |
---|
391 | * |
---|
392 | * void *glp_ios_node_data(glp_tree *tree, int p); |
---|
393 | * |
---|
394 | * DESCRIPTION |
---|
395 | * |
---|
396 | * The routine glp_ios_node_data allows the application accessing a |
---|
397 | * memory block allocated for the subproblem (which may be active or |
---|
398 | * inactive), whose reference number is p. |
---|
399 | * |
---|
400 | * The size of the block is defined by the control parameter cb_size |
---|
401 | * passed to the routine glp_intopt. The block is initialized by binary |
---|
402 | * zeros on creating corresponding subproblem, and its contents is kept |
---|
403 | * until the subproblem will be removed from the tree. |
---|
404 | * |
---|
405 | * The application may use these memory blocks to store specific data |
---|
406 | * for each subproblem. |
---|
407 | * |
---|
408 | * RETURNS |
---|
409 | * |
---|
410 | * The routine glp_ios_node_data returns a pointer to the memory block |
---|
411 | * for the specified subproblem. Note that if cb_size = 0, the routine |
---|
412 | * returns a null pointer. */ |
---|
413 | |
---|
414 | void *glp_ios_node_data(glp_tree *tree, int p) |
---|
415 | { IOSNPD *node; |
---|
416 | /* obtain pointer to the specified subproblem */ |
---|
417 | if (!(1 <= p && p <= tree->nslots)) |
---|
418 | err: xerror("glp_ios_node_level: p = %d; invalid subproblem referen" |
---|
419 | "ce number\n", p); |
---|
420 | node = tree->slot[p].node; |
---|
421 | if (node == NULL) goto err; |
---|
422 | /* return pointer to the application-specific data */ |
---|
423 | return node->data; |
---|
424 | } |
---|
425 | |
---|
426 | /*********************************************************************** |
---|
427 | * NAME |
---|
428 | * |
---|
429 | * glp_ios_row_attr - retrieve additional row attributes |
---|
430 | * |
---|
431 | * SYNOPSIS |
---|
432 | * |
---|
433 | * void glp_ios_row_attr(glp_tree *tree, int i, glp_attr *attr); |
---|
434 | * |
---|
435 | * DESCRIPTION |
---|
436 | * |
---|
437 | * The routine glp_ios_row_attr retrieves additional attributes of row |
---|
438 | * i and stores them in the structure glp_attr. */ |
---|
439 | |
---|
440 | void glp_ios_row_attr(glp_tree *tree, int i, glp_attr *attr) |
---|
441 | { GLPROW *row; |
---|
442 | if (!(1 <= i && i <= tree->mip->m)) |
---|
443 | xerror("glp_ios_row_attr: i = %d; row number out of range\n", |
---|
444 | i); |
---|
445 | row = tree->mip->row[i]; |
---|
446 | attr->level = row->level; |
---|
447 | attr->origin = row->origin; |
---|
448 | attr->klass = row->klass; |
---|
449 | return; |
---|
450 | } |
---|
451 | |
---|
452 | /**********************************************************************/ |
---|
453 | |
---|
454 | int glp_ios_pool_size(glp_tree *tree) |
---|
455 | { /* determine current size of the cut pool */ |
---|
456 | if (tree->reason != GLP_ICUTGEN) |
---|
457 | xerror("glp_ios_pool_size: operation not allowed\n"); |
---|
458 | xassert(tree->local != NULL); |
---|
459 | return tree->local->size; |
---|
460 | } |
---|
461 | |
---|
462 | /**********************************************************************/ |
---|
463 | |
---|
464 | int glp_ios_add_row(glp_tree *tree, |
---|
465 | const char *name, int klass, int flags, int len, const int ind[], |
---|
466 | const double val[], int type, double rhs) |
---|
467 | { /* add row (constraint) to the cut pool */ |
---|
468 | int num; |
---|
469 | if (tree->reason != GLP_ICUTGEN) |
---|
470 | xerror("glp_ios_add_row: operation not allowed\n"); |
---|
471 | xassert(tree->local != NULL); |
---|
472 | num = ios_add_row(tree, tree->local, name, klass, flags, len, |
---|
473 | ind, val, type, rhs); |
---|
474 | return num; |
---|
475 | } |
---|
476 | |
---|
477 | /**********************************************************************/ |
---|
478 | |
---|
479 | void glp_ios_del_row(glp_tree *tree, int i) |
---|
480 | { /* remove row (constraint) from the cut pool */ |
---|
481 | if (tree->reason != GLP_ICUTGEN) |
---|
482 | xerror("glp_ios_del_row: operation not allowed\n"); |
---|
483 | ios_del_row(tree, tree->local, i); |
---|
484 | return; |
---|
485 | } |
---|
486 | |
---|
487 | /**********************************************************************/ |
---|
488 | |
---|
489 | void glp_ios_clear_pool(glp_tree *tree) |
---|
490 | { /* remove all rows (constraints) from the cut pool */ |
---|
491 | if (tree->reason != GLP_ICUTGEN) |
---|
492 | xerror("glp_ios_clear_pool: operation not allowed\n"); |
---|
493 | ios_clear_pool(tree, tree->local); |
---|
494 | return; |
---|
495 | } |
---|
496 | |
---|
497 | /*********************************************************************** |
---|
498 | * NAME |
---|
499 | * |
---|
500 | * glp_ios_can_branch - check if can branch upon specified variable |
---|
501 | * |
---|
502 | * SYNOPSIS |
---|
503 | * |
---|
504 | * int glp_ios_can_branch(glp_tree *tree, int j); |
---|
505 | * |
---|
506 | * RETURNS |
---|
507 | * |
---|
508 | * If j-th variable (column) can be used to branch upon, the routine |
---|
509 | * glp_ios_can_branch returns non-zero, otherwise zero. */ |
---|
510 | |
---|
511 | int glp_ios_can_branch(glp_tree *tree, int j) |
---|
512 | { if (!(1 <= j && j <= tree->mip->n)) |
---|
513 | xerror("glp_ios_can_branch: j = %d; column number out of range" |
---|
514 | "\n", j); |
---|
515 | return tree->non_int[j]; |
---|
516 | } |
---|
517 | |
---|
518 | /*********************************************************************** |
---|
519 | * NAME |
---|
520 | * |
---|
521 | * glp_ios_branch_upon - choose variable to branch upon |
---|
522 | * |
---|
523 | * SYNOPSIS |
---|
524 | * |
---|
525 | * void glp_ios_branch_upon(glp_tree *tree, int j, int sel); |
---|
526 | * |
---|
527 | * DESCRIPTION |
---|
528 | * |
---|
529 | * The routine glp_ios_branch_upon can be called from the user-defined |
---|
530 | * callback routine in response to the reason GLP_IBRANCH to choose a |
---|
531 | * branching variable, whose ordinal number is j. Should note that only |
---|
532 | * variables, for which the routine glp_ios_can_branch returns non-zero, |
---|
533 | * can be used to branch upon. |
---|
534 | * |
---|
535 | * The parameter sel is a flag that indicates which branch (subproblem) |
---|
536 | * should be selected next to continue the search: |
---|
537 | * |
---|
538 | * GLP_DN_BRNCH - select down-branch; |
---|
539 | * GLP_UP_BRNCH - select up-branch; |
---|
540 | * GLP_NO_BRNCH - use general selection technique. */ |
---|
541 | |
---|
542 | void glp_ios_branch_upon(glp_tree *tree, int j, int sel) |
---|
543 | { if (!(1 <= j && j <= tree->mip->n)) |
---|
544 | xerror("glp_ios_branch_upon: j = %d; column number out of rang" |
---|
545 | "e\n", j); |
---|
546 | if (!(sel == GLP_DN_BRNCH || sel == GLP_UP_BRNCH || |
---|
547 | sel == GLP_NO_BRNCH)) |
---|
548 | xerror("glp_ios_branch_upon: sel = %d: invalid branch selectio" |
---|
549 | "n flag\n", sel); |
---|
550 | if (!(tree->non_int[j])) |
---|
551 | xerror("glp_ios_branch_upon: j = %d; variable cannot be used t" |
---|
552 | "o branch upon\n", j); |
---|
553 | if (tree->br_var != 0) |
---|
554 | xerror("glp_ios_branch_upon: branching variable already chosen" |
---|
555 | "\n"); |
---|
556 | tree->br_var = j; |
---|
557 | tree->br_sel = sel; |
---|
558 | return; |
---|
559 | } |
---|
560 | |
---|
561 | /*********************************************************************** |
---|
562 | * NAME |
---|
563 | * |
---|
564 | * glp_ios_select_node - select subproblem to continue the search |
---|
565 | * |
---|
566 | * SYNOPSIS |
---|
567 | * |
---|
568 | * void glp_ios_select_node(glp_tree *tree, int p); |
---|
569 | * |
---|
570 | * DESCRIPTION |
---|
571 | * |
---|
572 | * The routine glp_ios_select_node can be called from the user-defined |
---|
573 | * callback routine in response to the reason GLP_ISELECT to select an |
---|
574 | * active subproblem, whose reference number is p. The search will be |
---|
575 | * continued from the subproblem selected. */ |
---|
576 | |
---|
577 | void glp_ios_select_node(glp_tree *tree, int p) |
---|
578 | { IOSNPD *node; |
---|
579 | /* obtain pointer to the specified subproblem */ |
---|
580 | if (!(1 <= p && p <= tree->nslots)) |
---|
581 | err: xerror("glp_ios_select_node: p = %d; invalid subproblem refere" |
---|
582 | "nce number\n", p); |
---|
583 | node = tree->slot[p].node; |
---|
584 | if (node == NULL) goto err; |
---|
585 | /* the specified subproblem must be active */ |
---|
586 | if (node->count != 0) |
---|
587 | xerror("glp_ios_select_node: p = %d; subproblem not in the act" |
---|
588 | "ive list\n", p); |
---|
589 | /* no subproblem must be selected yet */ |
---|
590 | if (tree->next_p != 0) |
---|
591 | xerror("glp_ios_select_node: subproblem already selected\n"); |
---|
592 | /* select the specified subproblem to continue the search */ |
---|
593 | tree->next_p = p; |
---|
594 | return; |
---|
595 | } |
---|
596 | |
---|
597 | /*********************************************************************** |
---|
598 | * NAME |
---|
599 | * |
---|
600 | * glp_ios_heur_sol - provide solution found by heuristic |
---|
601 | * |
---|
602 | * SYNOPSIS |
---|
603 | * |
---|
604 | * int glp_ios_heur_sol(glp_tree *tree, const double x[]); |
---|
605 | * |
---|
606 | * DESCRIPTION |
---|
607 | * |
---|
608 | * The routine glp_ios_heur_sol can be called from the user-defined |
---|
609 | * callback routine in response to the reason GLP_IHEUR to provide an |
---|
610 | * integer feasible solution found by a primal heuristic. |
---|
611 | * |
---|
612 | * Primal values of *all* variables (columns) found by the heuristic |
---|
613 | * should be placed in locations x[1], ..., x[n], where n is the number |
---|
614 | * of columns in the original problem object. Note that the routine |
---|
615 | * glp_ios_heur_sol *does not* check primal feasibility of the solution |
---|
616 | * provided. |
---|
617 | * |
---|
618 | * Using the solution passed in the array x the routine computes value |
---|
619 | * of the objective function. If the objective value is better than the |
---|
620 | * best known integer feasible solution, the routine computes values of |
---|
621 | * auxiliary variables (rows) and stores all solution components in the |
---|
622 | * problem object. |
---|
623 | * |
---|
624 | * RETURNS |
---|
625 | * |
---|
626 | * If the provided solution is accepted, the routine glp_ios_heur_sol |
---|
627 | * returns zero. Otherwise, if the provided solution is rejected, the |
---|
628 | * routine returns non-zero. */ |
---|
629 | |
---|
630 | int glp_ios_heur_sol(glp_tree *tree, const double x[]) |
---|
631 | { glp_prob *mip = tree->mip; |
---|
632 | int m = tree->orig_m; |
---|
633 | int n = tree->n; |
---|
634 | int i, j; |
---|
635 | double obj; |
---|
636 | xassert(mip->m >= m); |
---|
637 | xassert(mip->n == n); |
---|
638 | /* check values of integer variables and compute value of the |
---|
639 | objective function */ |
---|
640 | obj = mip->c0; |
---|
641 | for (j = 1; j <= n; j++) |
---|
642 | { GLPCOL *col = mip->col[j]; |
---|
643 | if (col->kind == GLP_IV) |
---|
644 | { /* provided value must be integral */ |
---|
645 | if (x[j] != floor(x[j])) return 1; |
---|
646 | } |
---|
647 | obj += col->coef * x[j]; |
---|
648 | } |
---|
649 | /* check if the provided solution is better than the best known |
---|
650 | integer feasible solution */ |
---|
651 | if (mip->mip_stat == GLP_FEAS) |
---|
652 | { switch (mip->dir) |
---|
653 | { case GLP_MIN: |
---|
654 | if (obj >= tree->mip->mip_obj) return 1; |
---|
655 | break; |
---|
656 | case GLP_MAX: |
---|
657 | if (obj <= tree->mip->mip_obj) return 1; |
---|
658 | break; |
---|
659 | default: |
---|
660 | xassert(mip != mip); |
---|
661 | } |
---|
662 | } |
---|
663 | /* it is better; store it in the problem object */ |
---|
664 | if (tree->parm->msg_lev >= GLP_MSG_ON) |
---|
665 | xprintf("Solution found by heuristic: %.12g\n", obj); |
---|
666 | mip->mip_stat = GLP_FEAS; |
---|
667 | mip->mip_obj = obj; |
---|
668 | for (j = 1; j <= n; j++) |
---|
669 | mip->col[j]->mipx = x[j]; |
---|
670 | for (i = 1; i <= m; i++) |
---|
671 | { GLPROW *row = mip->row[i]; |
---|
672 | GLPAIJ *aij; |
---|
673 | row->mipx = 0.0; |
---|
674 | for (aij = row->ptr; aij != NULL; aij = aij->r_next) |
---|
675 | row->mipx += aij->val * aij->col->mipx; |
---|
676 | } |
---|
677 | return 0; |
---|
678 | } |
---|
679 | |
---|
680 | /*********************************************************************** |
---|
681 | * NAME |
---|
682 | * |
---|
683 | * glp_ios_terminate - terminate the solution process. |
---|
684 | * |
---|
685 | * SYNOPSIS |
---|
686 | * |
---|
687 | * void glp_ios_terminate(glp_tree *tree); |
---|
688 | * |
---|
689 | * DESCRIPTION |
---|
690 | * |
---|
691 | * The routine glp_ios_terminate sets a flag indicating that the MIP |
---|
692 | * solver should prematurely terminate the search. */ |
---|
693 | |
---|
694 | void glp_ios_terminate(glp_tree *tree) |
---|
695 | { if (tree->parm->msg_lev >= GLP_MSG_DBG) |
---|
696 | xprintf("The search is prematurely terminated due to applicati" |
---|
697 | "on request\n"); |
---|
698 | tree->stop = 1; |
---|
699 | return; |
---|
700 | } |
---|
701 | |
---|
702 | /* eof */ |
---|