1 | /* glpapi17.c (flow network problems) */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | * E-mail: <mao@gnu.org>. |
---|
10 | * |
---|
11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation, either version 3 of the License, or |
---|
14 | * (at your option) any later version. |
---|
15 | * |
---|
16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | * License for more details. |
---|
20 | * |
---|
21 | * You should have received a copy of the GNU General Public License |
---|
22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | ***********************************************************************/ |
---|
24 | |
---|
25 | #include "glpapi.h" |
---|
26 | #include "glpnet.h" |
---|
27 | |
---|
28 | /*********************************************************************** |
---|
29 | * NAME |
---|
30 | * |
---|
31 | * glp_mincost_lp - convert minimum cost flow problem to LP |
---|
32 | * |
---|
33 | * SYNOPSIS |
---|
34 | * |
---|
35 | * void glp_mincost_lp(glp_prob *lp, glp_graph *G, int names, |
---|
36 | * int v_rhs, int a_low, int a_cap, int a_cost); |
---|
37 | * |
---|
38 | * DESCRIPTION |
---|
39 | * |
---|
40 | * The routine glp_mincost_lp builds an LP problem, which corresponds |
---|
41 | * to the minimum cost flow problem on the specified network G. */ |
---|
42 | |
---|
43 | void glp_mincost_lp(glp_prob *lp, glp_graph *G, int names, int v_rhs, |
---|
44 | int a_low, int a_cap, int a_cost) |
---|
45 | { glp_vertex *v; |
---|
46 | glp_arc *a; |
---|
47 | int i, j, type, ind[1+2]; |
---|
48 | double rhs, low, cap, cost, val[1+2]; |
---|
49 | if (!(names == GLP_ON || names == GLP_OFF)) |
---|
50 | xerror("glp_mincost_lp: names = %d; invalid parameter\n", |
---|
51 | names); |
---|
52 | if (v_rhs >= 0 && v_rhs > G->v_size - (int)sizeof(double)) |
---|
53 | xerror("glp_mincost_lp: v_rhs = %d; invalid offset\n", v_rhs); |
---|
54 | if (a_low >= 0 && a_low > G->a_size - (int)sizeof(double)) |
---|
55 | xerror("glp_mincost_lp: a_low = %d; invalid offset\n", a_low); |
---|
56 | if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double)) |
---|
57 | xerror("glp_mincost_lp: a_cap = %d; invalid offset\n", a_cap); |
---|
58 | if (a_cost >= 0 && a_cost > G->a_size - (int)sizeof(double)) |
---|
59 | xerror("glp_mincost_lp: a_cost = %d; invalid offset\n", a_cost) |
---|
60 | ; |
---|
61 | glp_erase_prob(lp); |
---|
62 | if (names) glp_set_prob_name(lp, G->name); |
---|
63 | if (G->nv > 0) glp_add_rows(lp, G->nv); |
---|
64 | for (i = 1; i <= G->nv; i++) |
---|
65 | { v = G->v[i]; |
---|
66 | if (names) glp_set_row_name(lp, i, v->name); |
---|
67 | if (v_rhs >= 0) |
---|
68 | memcpy(&rhs, (char *)v->data + v_rhs, sizeof(double)); |
---|
69 | else |
---|
70 | rhs = 0.0; |
---|
71 | glp_set_row_bnds(lp, i, GLP_FX, rhs, rhs); |
---|
72 | } |
---|
73 | if (G->na > 0) glp_add_cols(lp, G->na); |
---|
74 | for (i = 1, j = 0; i <= G->nv; i++) |
---|
75 | { v = G->v[i]; |
---|
76 | for (a = v->out; a != NULL; a = a->t_next) |
---|
77 | { j++; |
---|
78 | if (names) |
---|
79 | { char name[50+1]; |
---|
80 | sprintf(name, "x[%d,%d]", a->tail->i, a->head->i); |
---|
81 | xassert(strlen(name) < sizeof(name)); |
---|
82 | glp_set_col_name(lp, j, name); |
---|
83 | } |
---|
84 | if (a->tail->i != a->head->i) |
---|
85 | { ind[1] = a->tail->i, val[1] = +1.0; |
---|
86 | ind[2] = a->head->i, val[2] = -1.0; |
---|
87 | glp_set_mat_col(lp, j, 2, ind, val); |
---|
88 | } |
---|
89 | if (a_low >= 0) |
---|
90 | memcpy(&low, (char *)a->data + a_low, sizeof(double)); |
---|
91 | else |
---|
92 | low = 0.0; |
---|
93 | if (a_cap >= 0) |
---|
94 | memcpy(&cap, (char *)a->data + a_cap, sizeof(double)); |
---|
95 | else |
---|
96 | cap = 1.0; |
---|
97 | if (cap == DBL_MAX) |
---|
98 | type = GLP_LO; |
---|
99 | else if (low != cap) |
---|
100 | type = GLP_DB; |
---|
101 | else |
---|
102 | type = GLP_FX; |
---|
103 | glp_set_col_bnds(lp, j, type, low, cap); |
---|
104 | if (a_cost >= 0) |
---|
105 | memcpy(&cost, (char *)a->data + a_cost, sizeof(double)); |
---|
106 | else |
---|
107 | cost = 0.0; |
---|
108 | glp_set_obj_coef(lp, j, cost); |
---|
109 | } |
---|
110 | } |
---|
111 | xassert(j == G->na); |
---|
112 | return; |
---|
113 | } |
---|
114 | |
---|
115 | /**********************************************************************/ |
---|
116 | |
---|
117 | int glp_mincost_okalg(glp_graph *G, int v_rhs, int a_low, int a_cap, |
---|
118 | int a_cost, double *sol, int a_x, int v_pi) |
---|
119 | { /* find minimum-cost flow with out-of-kilter algorithm */ |
---|
120 | glp_vertex *v; |
---|
121 | glp_arc *a; |
---|
122 | int nv, na, i, k, s, t, *tail, *head, *low, *cap, *cost, *x, *pi, |
---|
123 | ret; |
---|
124 | double sum, temp; |
---|
125 | if (v_rhs >= 0 && v_rhs > G->v_size - (int)sizeof(double)) |
---|
126 | xerror("glp_mincost_okalg: v_rhs = %d; invalid offset\n", |
---|
127 | v_rhs); |
---|
128 | if (a_low >= 0 && a_low > G->a_size - (int)sizeof(double)) |
---|
129 | xerror("glp_mincost_okalg: a_low = %d; invalid offset\n", |
---|
130 | a_low); |
---|
131 | if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double)) |
---|
132 | xerror("glp_mincost_okalg: a_cap = %d; invalid offset\n", |
---|
133 | a_cap); |
---|
134 | if (a_cost >= 0 && a_cost > G->a_size - (int)sizeof(double)) |
---|
135 | xerror("glp_mincost_okalg: a_cost = %d; invalid offset\n", |
---|
136 | a_cost); |
---|
137 | if (a_x >= 0 && a_x > G->a_size - (int)sizeof(double)) |
---|
138 | xerror("glp_mincost_okalg: a_x = %d; invalid offset\n", a_x); |
---|
139 | if (v_pi >= 0 && v_pi > G->v_size - (int)sizeof(double)) |
---|
140 | xerror("glp_mincost_okalg: v_pi = %d; invalid offset\n", v_pi); |
---|
141 | /* s is artificial source node */ |
---|
142 | s = G->nv + 1; |
---|
143 | /* t is artificial sink node */ |
---|
144 | t = s + 1; |
---|
145 | /* nv is the total number of nodes in the resulting network */ |
---|
146 | nv = t; |
---|
147 | /* na is the total number of arcs in the resulting network */ |
---|
148 | na = G->na + 1; |
---|
149 | for (i = 1; i <= G->nv; i++) |
---|
150 | { v = G->v[i]; |
---|
151 | if (v_rhs >= 0) |
---|
152 | memcpy(&temp, (char *)v->data + v_rhs, sizeof(double)); |
---|
153 | else |
---|
154 | temp = 0.0; |
---|
155 | if (temp != 0.0) na++; |
---|
156 | } |
---|
157 | /* allocate working arrays */ |
---|
158 | tail = xcalloc(1+na, sizeof(int)); |
---|
159 | head = xcalloc(1+na, sizeof(int)); |
---|
160 | low = xcalloc(1+na, sizeof(int)); |
---|
161 | cap = xcalloc(1+na, sizeof(int)); |
---|
162 | cost = xcalloc(1+na, sizeof(int)); |
---|
163 | x = xcalloc(1+na, sizeof(int)); |
---|
164 | pi = xcalloc(1+nv, sizeof(int)); |
---|
165 | /* construct the resulting network */ |
---|
166 | k = 0; |
---|
167 | /* (original arcs) */ |
---|
168 | for (i = 1; i <= G->nv; i++) |
---|
169 | { v = G->v[i]; |
---|
170 | for (a = v->out; a != NULL; a = a->t_next) |
---|
171 | { k++; |
---|
172 | tail[k] = a->tail->i; |
---|
173 | head[k] = a->head->i; |
---|
174 | if (tail[k] == head[k]) |
---|
175 | { ret = GLP_EDATA; |
---|
176 | goto done; |
---|
177 | } |
---|
178 | if (a_low >= 0) |
---|
179 | memcpy(&temp, (char *)a->data + a_low, sizeof(double)); |
---|
180 | else |
---|
181 | temp = 0.0; |
---|
182 | if (!(0.0 <= temp && temp <= (double)INT_MAX && |
---|
183 | temp == floor(temp))) |
---|
184 | { ret = GLP_EDATA; |
---|
185 | goto done; |
---|
186 | } |
---|
187 | low[k] = (int)temp; |
---|
188 | if (a_cap >= 0) |
---|
189 | memcpy(&temp, (char *)a->data + a_cap, sizeof(double)); |
---|
190 | else |
---|
191 | temp = 1.0; |
---|
192 | if (!((double)low[k] <= temp && temp <= (double)INT_MAX && |
---|
193 | temp == floor(temp))) |
---|
194 | { ret = GLP_EDATA; |
---|
195 | goto done; |
---|
196 | } |
---|
197 | cap[k] = (int)temp; |
---|
198 | if (a_cost >= 0) |
---|
199 | memcpy(&temp, (char *)a->data + a_cost, sizeof(double)); |
---|
200 | else |
---|
201 | temp = 0.0; |
---|
202 | if (!(fabs(temp) <= (double)INT_MAX && temp == floor(temp))) |
---|
203 | { ret = GLP_EDATA; |
---|
204 | goto done; |
---|
205 | } |
---|
206 | cost[k] = (int)temp; |
---|
207 | } |
---|
208 | } |
---|
209 | /* (artificial arcs) */ |
---|
210 | sum = 0.0; |
---|
211 | for (i = 1; i <= G->nv; i++) |
---|
212 | { v = G->v[i]; |
---|
213 | if (v_rhs >= 0) |
---|
214 | memcpy(&temp, (char *)v->data + v_rhs, sizeof(double)); |
---|
215 | else |
---|
216 | temp = 0.0; |
---|
217 | if (!(fabs(temp) <= (double)INT_MAX && temp == floor(temp))) |
---|
218 | { ret = GLP_EDATA; |
---|
219 | goto done; |
---|
220 | } |
---|
221 | if (temp > 0.0) |
---|
222 | { /* artificial arc from s to original source i */ |
---|
223 | k++; |
---|
224 | tail[k] = s; |
---|
225 | head[k] = i; |
---|
226 | low[k] = cap[k] = (int)(+temp); /* supply */ |
---|
227 | cost[k] = 0; |
---|
228 | sum += (double)temp; |
---|
229 | } |
---|
230 | else if (temp < 0.0) |
---|
231 | { /* artificial arc from original sink i to t */ |
---|
232 | k++; |
---|
233 | tail[k] = i; |
---|
234 | head[k] = t; |
---|
235 | low[k] = cap[k] = (int)(-temp); /* demand */ |
---|
236 | cost[k] = 0; |
---|
237 | } |
---|
238 | } |
---|
239 | /* (feedback arc from t to s) */ |
---|
240 | k++; |
---|
241 | xassert(k == na); |
---|
242 | tail[k] = t; |
---|
243 | head[k] = s; |
---|
244 | if (sum > (double)INT_MAX) |
---|
245 | { ret = GLP_EDATA; |
---|
246 | goto done; |
---|
247 | } |
---|
248 | low[k] = cap[k] = (int)sum; /* total supply/demand */ |
---|
249 | cost[k] = 0; |
---|
250 | /* find minimal-cost circulation in the resulting network */ |
---|
251 | ret = okalg(nv, na, tail, head, low, cap, cost, x, pi); |
---|
252 | switch (ret) |
---|
253 | { case 0: |
---|
254 | /* optimal circulation found */ |
---|
255 | ret = 0; |
---|
256 | break; |
---|
257 | case 1: |
---|
258 | /* no feasible circulation exists */ |
---|
259 | ret = GLP_ENOPFS; |
---|
260 | break; |
---|
261 | case 2: |
---|
262 | /* integer overflow occured */ |
---|
263 | ret = GLP_ERANGE; |
---|
264 | goto done; |
---|
265 | case 3: |
---|
266 | /* optimality test failed (logic error) */ |
---|
267 | ret = GLP_EFAIL; |
---|
268 | goto done; |
---|
269 | default: |
---|
270 | xassert(ret != ret); |
---|
271 | } |
---|
272 | /* store solution components */ |
---|
273 | /* (objective function = the total cost) */ |
---|
274 | if (sol != NULL) |
---|
275 | { temp = 0.0; |
---|
276 | for (k = 1; k <= na; k++) |
---|
277 | temp += (double)cost[k] * (double)x[k]; |
---|
278 | *sol = temp; |
---|
279 | } |
---|
280 | /* (arc flows) */ |
---|
281 | if (a_x >= 0) |
---|
282 | { k = 0; |
---|
283 | for (i = 1; i <= G->nv; i++) |
---|
284 | { v = G->v[i]; |
---|
285 | for (a = v->out; a != NULL; a = a->t_next) |
---|
286 | { temp = (double)x[++k]; |
---|
287 | memcpy((char *)a->data + a_x, &temp, sizeof(double)); |
---|
288 | } |
---|
289 | } |
---|
290 | } |
---|
291 | /* (node potentials = Lagrange multipliers) */ |
---|
292 | if (v_pi >= 0) |
---|
293 | { for (i = 1; i <= G->nv; i++) |
---|
294 | { v = G->v[i]; |
---|
295 | temp = - (double)pi[i]; |
---|
296 | memcpy((char *)v->data + v_pi, &temp, sizeof(double)); |
---|
297 | } |
---|
298 | } |
---|
299 | done: /* free working arrays */ |
---|
300 | xfree(tail); |
---|
301 | xfree(head); |
---|
302 | xfree(low); |
---|
303 | xfree(cap); |
---|
304 | xfree(cost); |
---|
305 | xfree(x); |
---|
306 | xfree(pi); |
---|
307 | return ret; |
---|
308 | } |
---|
309 | |
---|
310 | /*********************************************************************** |
---|
311 | * NAME |
---|
312 | * |
---|
313 | * glp_maxflow_lp - convert maximum flow problem to LP |
---|
314 | * |
---|
315 | * SYNOPSIS |
---|
316 | * |
---|
317 | * void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names, int s, |
---|
318 | * int t, int a_cap); |
---|
319 | * |
---|
320 | * DESCRIPTION |
---|
321 | * |
---|
322 | * The routine glp_maxflow_lp builds an LP problem, which corresponds |
---|
323 | * to the maximum flow problem on the specified network G. */ |
---|
324 | |
---|
325 | void glp_maxflow_lp(glp_prob *lp, glp_graph *G, int names, int s, |
---|
326 | int t, int a_cap) |
---|
327 | { glp_vertex *v; |
---|
328 | glp_arc *a; |
---|
329 | int i, j, type, ind[1+2]; |
---|
330 | double cap, val[1+2]; |
---|
331 | if (!(names == GLP_ON || names == GLP_OFF)) |
---|
332 | xerror("glp_maxflow_lp: names = %d; invalid parameter\n", |
---|
333 | names); |
---|
334 | if (!(1 <= s && s <= G->nv)) |
---|
335 | xerror("glp_maxflow_lp: s = %d; source node number out of rang" |
---|
336 | "e\n", s); |
---|
337 | if (!(1 <= t && t <= G->nv)) |
---|
338 | xerror("glp_maxflow_lp: t = %d: sink node number out of range " |
---|
339 | "\n", t); |
---|
340 | if (s == t) |
---|
341 | xerror("glp_maxflow_lp: s = t = %d; source and sink nodes must" |
---|
342 | " be distinct\n", s); |
---|
343 | if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double)) |
---|
344 | xerror("glp_maxflow_lp: a_cap = %d; invalid offset\n", a_cap); |
---|
345 | glp_erase_prob(lp); |
---|
346 | if (names) glp_set_prob_name(lp, G->name); |
---|
347 | glp_set_obj_dir(lp, GLP_MAX); |
---|
348 | glp_add_rows(lp, G->nv); |
---|
349 | for (i = 1; i <= G->nv; i++) |
---|
350 | { v = G->v[i]; |
---|
351 | if (names) glp_set_row_name(lp, i, v->name); |
---|
352 | if (i == s) |
---|
353 | type = GLP_LO; |
---|
354 | else if (i == t) |
---|
355 | type = GLP_UP; |
---|
356 | else |
---|
357 | type = GLP_FX; |
---|
358 | glp_set_row_bnds(lp, i, type, 0.0, 0.0); |
---|
359 | } |
---|
360 | if (G->na > 0) glp_add_cols(lp, G->na); |
---|
361 | for (i = 1, j = 0; i <= G->nv; i++) |
---|
362 | { v = G->v[i]; |
---|
363 | for (a = v->out; a != NULL; a = a->t_next) |
---|
364 | { j++; |
---|
365 | if (names) |
---|
366 | { char name[50+1]; |
---|
367 | sprintf(name, "x[%d,%d]", a->tail->i, a->head->i); |
---|
368 | xassert(strlen(name) < sizeof(name)); |
---|
369 | glp_set_col_name(lp, j, name); |
---|
370 | } |
---|
371 | if (a->tail->i != a->head->i) |
---|
372 | { ind[1] = a->tail->i, val[1] = +1.0; |
---|
373 | ind[2] = a->head->i, val[2] = -1.0; |
---|
374 | glp_set_mat_col(lp, j, 2, ind, val); |
---|
375 | } |
---|
376 | if (a_cap >= 0) |
---|
377 | memcpy(&cap, (char *)a->data + a_cap, sizeof(double)); |
---|
378 | else |
---|
379 | cap = 1.0; |
---|
380 | if (cap == DBL_MAX) |
---|
381 | type = GLP_LO; |
---|
382 | else if (cap != 0.0) |
---|
383 | type = GLP_DB; |
---|
384 | else |
---|
385 | type = GLP_FX; |
---|
386 | glp_set_col_bnds(lp, j, type, 0.0, cap); |
---|
387 | if (a->tail->i == s) |
---|
388 | glp_set_obj_coef(lp, j, +1.0); |
---|
389 | else if (a->head->i == s) |
---|
390 | glp_set_obj_coef(lp, j, -1.0); |
---|
391 | } |
---|
392 | } |
---|
393 | xassert(j == G->na); |
---|
394 | return; |
---|
395 | } |
---|
396 | |
---|
397 | int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap, |
---|
398 | double *sol, int a_x, int v_cut) |
---|
399 | { /* find maximal flow with Ford-Fulkerson algorithm */ |
---|
400 | glp_vertex *v; |
---|
401 | glp_arc *a; |
---|
402 | int nv, na, i, k, flag, *tail, *head, *cap, *x, ret; |
---|
403 | char *cut; |
---|
404 | double temp; |
---|
405 | if (!(1 <= s && s <= G->nv)) |
---|
406 | xerror("glp_maxflow_ffalg: s = %d; source node number out of r" |
---|
407 | "ange\n", s); |
---|
408 | if (!(1 <= t && t <= G->nv)) |
---|
409 | xerror("glp_maxflow_ffalg: t = %d: sink node number out of ran" |
---|
410 | "ge\n", t); |
---|
411 | if (s == t) |
---|
412 | xerror("glp_maxflow_ffalg: s = t = %d; source and sink nodes m" |
---|
413 | "ust be distinct\n", s); |
---|
414 | if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double)) |
---|
415 | xerror("glp_maxflow_ffalg: a_cap = %d; invalid offset\n", |
---|
416 | a_cap); |
---|
417 | if (v_cut >= 0 && v_cut > G->v_size - (int)sizeof(int)) |
---|
418 | xerror("glp_maxflow_ffalg: v_cut = %d; invalid offset\n", |
---|
419 | v_cut); |
---|
420 | /* allocate working arrays */ |
---|
421 | nv = G->nv; |
---|
422 | na = G->na; |
---|
423 | tail = xcalloc(1+na, sizeof(int)); |
---|
424 | head = xcalloc(1+na, sizeof(int)); |
---|
425 | cap = xcalloc(1+na, sizeof(int)); |
---|
426 | x = xcalloc(1+na, sizeof(int)); |
---|
427 | if (v_cut < 0) |
---|
428 | cut = NULL; |
---|
429 | else |
---|
430 | cut = xcalloc(1+nv, sizeof(char)); |
---|
431 | /* copy the flow network */ |
---|
432 | k = 0; |
---|
433 | for (i = 1; i <= G->nv; i++) |
---|
434 | { v = G->v[i]; |
---|
435 | for (a = v->out; a != NULL; a = a->t_next) |
---|
436 | { k++; |
---|
437 | tail[k] = a->tail->i; |
---|
438 | head[k] = a->head->i; |
---|
439 | if (tail[k] == head[k]) |
---|
440 | { ret = GLP_EDATA; |
---|
441 | goto done; |
---|
442 | } |
---|
443 | if (a_cap >= 0) |
---|
444 | memcpy(&temp, (char *)a->data + a_cap, sizeof(double)); |
---|
445 | else |
---|
446 | temp = 1.0; |
---|
447 | if (!(0.0 <= temp && temp <= (double)INT_MAX && |
---|
448 | temp == floor(temp))) |
---|
449 | { ret = GLP_EDATA; |
---|
450 | goto done; |
---|
451 | } |
---|
452 | cap[k] = (int)temp; |
---|
453 | } |
---|
454 | } |
---|
455 | xassert(k == na); |
---|
456 | /* find maximal flow in the flow network */ |
---|
457 | ffalg(nv, na, tail, head, s, t, cap, x, cut); |
---|
458 | ret = 0; |
---|
459 | /* store solution components */ |
---|
460 | /* (objective function = total flow through the network) */ |
---|
461 | if (sol != NULL) |
---|
462 | { temp = 0.0; |
---|
463 | for (k = 1; k <= na; k++) |
---|
464 | { if (tail[k] == s) |
---|
465 | temp += (double)x[k]; |
---|
466 | else if (head[k] == s) |
---|
467 | temp -= (double)x[k]; |
---|
468 | } |
---|
469 | *sol = temp; |
---|
470 | } |
---|
471 | /* (arc flows) */ |
---|
472 | if (a_x >= 0) |
---|
473 | { k = 0; |
---|
474 | for (i = 1; i <= G->nv; i++) |
---|
475 | { v = G->v[i]; |
---|
476 | for (a = v->out; a != NULL; a = a->t_next) |
---|
477 | { temp = (double)x[++k]; |
---|
478 | memcpy((char *)a->data + a_x, &temp, sizeof(double)); |
---|
479 | } |
---|
480 | } |
---|
481 | } |
---|
482 | /* (node flags) */ |
---|
483 | if (v_cut >= 0) |
---|
484 | { for (i = 1; i <= G->nv; i++) |
---|
485 | { v = G->v[i]; |
---|
486 | flag = cut[i]; |
---|
487 | memcpy((char *)v->data + v_cut, &flag, sizeof(int)); |
---|
488 | } |
---|
489 | } |
---|
490 | done: /* free working arrays */ |
---|
491 | xfree(tail); |
---|
492 | xfree(head); |
---|
493 | xfree(cap); |
---|
494 | xfree(x); |
---|
495 | if (cut != NULL) xfree(cut); |
---|
496 | return ret; |
---|
497 | } |
---|
498 | |
---|
499 | /*********************************************************************** |
---|
500 | * NAME |
---|
501 | * |
---|
502 | * glp_check_asnprob - check correctness of assignment problem data |
---|
503 | * |
---|
504 | * SYNOPSIS |
---|
505 | * |
---|
506 | * int glp_check_asnprob(glp_graph *G, int v_set); |
---|
507 | * |
---|
508 | * RETURNS |
---|
509 | * |
---|
510 | * If the specified assignment problem data are correct, the routine |
---|
511 | * glp_check_asnprob returns zero, otherwise, non-zero. */ |
---|
512 | |
---|
513 | int glp_check_asnprob(glp_graph *G, int v_set) |
---|
514 | { glp_vertex *v; |
---|
515 | int i, k, ret = 0; |
---|
516 | if (v_set >= 0 && v_set > G->v_size - (int)sizeof(int)) |
---|
517 | xerror("glp_check_asnprob: v_set = %d; invalid offset\n", |
---|
518 | v_set); |
---|
519 | for (i = 1; i <= G->nv; i++) |
---|
520 | { v = G->v[i]; |
---|
521 | if (v_set >= 0) |
---|
522 | { memcpy(&k, (char *)v->data + v_set, sizeof(int)); |
---|
523 | if (k == 0) |
---|
524 | { if (v->in != NULL) |
---|
525 | { ret = 1; |
---|
526 | break; |
---|
527 | } |
---|
528 | } |
---|
529 | else if (k == 1) |
---|
530 | { if (v->out != NULL) |
---|
531 | { ret = 2; |
---|
532 | break; |
---|
533 | } |
---|
534 | } |
---|
535 | else |
---|
536 | { ret = 3; |
---|
537 | break; |
---|
538 | } |
---|
539 | } |
---|
540 | else |
---|
541 | { if (v->in != NULL && v->out != NULL) |
---|
542 | { ret = 4; |
---|
543 | break; |
---|
544 | } |
---|
545 | } |
---|
546 | } |
---|
547 | return ret; |
---|
548 | } |
---|
549 | |
---|
550 | /*********************************************************************** |
---|
551 | * NAME |
---|
552 | * |
---|
553 | * glp_asnprob_lp - convert assignment problem to LP |
---|
554 | * |
---|
555 | * SYNOPSIS |
---|
556 | * |
---|
557 | * int glp_asnprob_lp(glp_prob *P, int form, glp_graph *G, int names, |
---|
558 | * int v_set, int a_cost); |
---|
559 | * |
---|
560 | * DESCRIPTION |
---|
561 | * |
---|
562 | * The routine glp_asnprob_lp builds an LP problem, which corresponds |
---|
563 | * to the assignment problem on the specified graph G. |
---|
564 | * |
---|
565 | * RETURNS |
---|
566 | * |
---|
567 | * If the LP problem has been successfully built, the routine returns |
---|
568 | * zero, otherwise, non-zero. */ |
---|
569 | |
---|
570 | int glp_asnprob_lp(glp_prob *P, int form, glp_graph *G, int names, |
---|
571 | int v_set, int a_cost) |
---|
572 | { glp_vertex *v; |
---|
573 | glp_arc *a; |
---|
574 | int i, j, ret, ind[1+2]; |
---|
575 | double cost, val[1+2]; |
---|
576 | if (!(form == GLP_ASN_MIN || form == GLP_ASN_MAX || |
---|
577 | form == GLP_ASN_MMP)) |
---|
578 | xerror("glp_asnprob_lp: form = %d; invalid parameter\n", |
---|
579 | form); |
---|
580 | if (!(names == GLP_ON || names == GLP_OFF)) |
---|
581 | xerror("glp_asnprob_lp: names = %d; invalid parameter\n", |
---|
582 | names); |
---|
583 | if (v_set >= 0 && v_set > G->v_size - (int)sizeof(int)) |
---|
584 | xerror("glp_asnprob_lp: v_set = %d; invalid offset\n", |
---|
585 | v_set); |
---|
586 | if (a_cost >= 0 && a_cost > G->a_size - (int)sizeof(double)) |
---|
587 | xerror("glp_asnprob_lp: a_cost = %d; invalid offset\n", |
---|
588 | a_cost); |
---|
589 | ret = glp_check_asnprob(G, v_set); |
---|
590 | if (ret != 0) goto done; |
---|
591 | glp_erase_prob(P); |
---|
592 | if (names) glp_set_prob_name(P, G->name); |
---|
593 | glp_set_obj_dir(P, form == GLP_ASN_MIN ? GLP_MIN : GLP_MAX); |
---|
594 | if (G->nv > 0) glp_add_rows(P, G->nv); |
---|
595 | for (i = 1; i <= G->nv; i++) |
---|
596 | { v = G->v[i]; |
---|
597 | if (names) glp_set_row_name(P, i, v->name); |
---|
598 | glp_set_row_bnds(P, i, form == GLP_ASN_MMP ? GLP_UP : GLP_FX, |
---|
599 | 1.0, 1.0); |
---|
600 | } |
---|
601 | if (G->na > 0) glp_add_cols(P, G->na); |
---|
602 | for (i = 1, j = 0; i <= G->nv; i++) |
---|
603 | { v = G->v[i]; |
---|
604 | for (a = v->out; a != NULL; a = a->t_next) |
---|
605 | { j++; |
---|
606 | if (names) |
---|
607 | { char name[50+1]; |
---|
608 | sprintf(name, "x[%d,%d]", a->tail->i, a->head->i); |
---|
609 | xassert(strlen(name) < sizeof(name)); |
---|
610 | glp_set_col_name(P, j, name); |
---|
611 | } |
---|
612 | ind[1] = a->tail->i, val[1] = +1.0; |
---|
613 | ind[2] = a->head->i, val[2] = +1.0; |
---|
614 | glp_set_mat_col(P, j, 2, ind, val); |
---|
615 | glp_set_col_bnds(P, j, GLP_DB, 0.0, 1.0); |
---|
616 | if (a_cost >= 0) |
---|
617 | memcpy(&cost, (char *)a->data + a_cost, sizeof(double)); |
---|
618 | else |
---|
619 | cost = 1.0; |
---|
620 | glp_set_obj_coef(P, j, cost); |
---|
621 | } |
---|
622 | } |
---|
623 | xassert(j == G->na); |
---|
624 | done: return ret; |
---|
625 | } |
---|
626 | |
---|
627 | /**********************************************************************/ |
---|
628 | |
---|
629 | int glp_asnprob_okalg(int form, glp_graph *G, int v_set, int a_cost, |
---|
630 | double *sol, int a_x) |
---|
631 | { /* solve assignment problem with out-of-kilter algorithm */ |
---|
632 | glp_vertex *v; |
---|
633 | glp_arc *a; |
---|
634 | int nv, na, i, k, *tail, *head, *low, *cap, *cost, *x, *pi, ret; |
---|
635 | double temp; |
---|
636 | if (!(form == GLP_ASN_MIN || form == GLP_ASN_MAX || |
---|
637 | form == GLP_ASN_MMP)) |
---|
638 | xerror("glp_asnprob_okalg: form = %d; invalid parameter\n", |
---|
639 | form); |
---|
640 | if (v_set >= 0 && v_set > G->v_size - (int)sizeof(int)) |
---|
641 | xerror("glp_asnprob_okalg: v_set = %d; invalid offset\n", |
---|
642 | v_set); |
---|
643 | if (a_cost >= 0 && a_cost > G->a_size - (int)sizeof(double)) |
---|
644 | xerror("glp_asnprob_okalg: a_cost = %d; invalid offset\n", |
---|
645 | a_cost); |
---|
646 | if (a_x >= 0 && a_x > G->a_size - (int)sizeof(int)) |
---|
647 | xerror("glp_asnprob_okalg: a_x = %d; invalid offset\n", a_x); |
---|
648 | if (glp_check_asnprob(G, v_set)) |
---|
649 | return GLP_EDATA; |
---|
650 | /* nv is the total number of nodes in the resulting network */ |
---|
651 | nv = G->nv + 1; |
---|
652 | /* na is the total number of arcs in the resulting network */ |
---|
653 | na = G->na + G->nv; |
---|
654 | /* allocate working arrays */ |
---|
655 | tail = xcalloc(1+na, sizeof(int)); |
---|
656 | head = xcalloc(1+na, sizeof(int)); |
---|
657 | low = xcalloc(1+na, sizeof(int)); |
---|
658 | cap = xcalloc(1+na, sizeof(int)); |
---|
659 | cost = xcalloc(1+na, sizeof(int)); |
---|
660 | x = xcalloc(1+na, sizeof(int)); |
---|
661 | pi = xcalloc(1+nv, sizeof(int)); |
---|
662 | /* construct the resulting network */ |
---|
663 | k = 0; |
---|
664 | /* (original arcs) */ |
---|
665 | for (i = 1; i <= G->nv; i++) |
---|
666 | { v = G->v[i]; |
---|
667 | for (a = v->out; a != NULL; a = a->t_next) |
---|
668 | { k++; |
---|
669 | tail[k] = a->tail->i; |
---|
670 | head[k] = a->head->i; |
---|
671 | low[k] = 0; |
---|
672 | cap[k] = 1; |
---|
673 | if (a_cost >= 0) |
---|
674 | memcpy(&temp, (char *)a->data + a_cost, sizeof(double)); |
---|
675 | else |
---|
676 | temp = 1.0; |
---|
677 | if (!(fabs(temp) <= (double)INT_MAX && temp == floor(temp))) |
---|
678 | { ret = GLP_EDATA; |
---|
679 | goto done; |
---|
680 | } |
---|
681 | cost[k] = (int)temp; |
---|
682 | if (form != GLP_ASN_MIN) cost[k] = - cost[k]; |
---|
683 | } |
---|
684 | } |
---|
685 | /* (artificial arcs) */ |
---|
686 | for (i = 1; i <= G->nv; i++) |
---|
687 | { v = G->v[i]; |
---|
688 | k++; |
---|
689 | if (v->out == NULL) |
---|
690 | tail[k] = i, head[k] = nv; |
---|
691 | else if (v->in == NULL) |
---|
692 | tail[k] = nv, head[k] = i; |
---|
693 | else |
---|
694 | xassert(v != v); |
---|
695 | low[k] = (form == GLP_ASN_MMP ? 0 : 1); |
---|
696 | cap[k] = 1; |
---|
697 | cost[k] = 0; |
---|
698 | } |
---|
699 | xassert(k == na); |
---|
700 | /* find minimal-cost circulation in the resulting network */ |
---|
701 | ret = okalg(nv, na, tail, head, low, cap, cost, x, pi); |
---|
702 | switch (ret) |
---|
703 | { case 0: |
---|
704 | /* optimal circulation found */ |
---|
705 | ret = 0; |
---|
706 | break; |
---|
707 | case 1: |
---|
708 | /* no feasible circulation exists */ |
---|
709 | ret = GLP_ENOPFS; |
---|
710 | break; |
---|
711 | case 2: |
---|
712 | /* integer overflow occured */ |
---|
713 | ret = GLP_ERANGE; |
---|
714 | goto done; |
---|
715 | case 3: |
---|
716 | /* optimality test failed (logic error) */ |
---|
717 | ret = GLP_EFAIL; |
---|
718 | goto done; |
---|
719 | default: |
---|
720 | xassert(ret != ret); |
---|
721 | } |
---|
722 | /* store solution components */ |
---|
723 | /* (objective function = the total cost) */ |
---|
724 | if (sol != NULL) |
---|
725 | { temp = 0.0; |
---|
726 | for (k = 1; k <= na; k++) |
---|
727 | temp += (double)cost[k] * (double)x[k]; |
---|
728 | if (form != GLP_ASN_MIN) temp = - temp; |
---|
729 | *sol = temp; |
---|
730 | } |
---|
731 | /* (arc flows) */ |
---|
732 | if (a_x >= 0) |
---|
733 | { k = 0; |
---|
734 | for (i = 1; i <= G->nv; i++) |
---|
735 | { v = G->v[i]; |
---|
736 | for (a = v->out; a != NULL; a = a->t_next) |
---|
737 | { k++; |
---|
738 | if (ret == 0) |
---|
739 | xassert(x[k] == 0 || x[k] == 1); |
---|
740 | memcpy((char *)a->data + a_x, &x[k], sizeof(int)); |
---|
741 | } |
---|
742 | } |
---|
743 | } |
---|
744 | done: /* free working arrays */ |
---|
745 | xfree(tail); |
---|
746 | xfree(head); |
---|
747 | xfree(low); |
---|
748 | xfree(cap); |
---|
749 | xfree(cost); |
---|
750 | xfree(x); |
---|
751 | xfree(pi); |
---|
752 | return ret; |
---|
753 | } |
---|
754 | |
---|
755 | /*********************************************************************** |
---|
756 | * NAME |
---|
757 | * |
---|
758 | * glp_asnprob_hall - find bipartite matching of maximum cardinality |
---|
759 | * |
---|
760 | * SYNOPSIS |
---|
761 | * |
---|
762 | * int glp_asnprob_hall(glp_graph *G, int v_set, int a_x); |
---|
763 | * |
---|
764 | * DESCRIPTION |
---|
765 | * |
---|
766 | * The routine glp_asnprob_hall finds a matching of maximal cardinality |
---|
767 | * in the specified bipartite graph G. It uses a version of the Fortran |
---|
768 | * routine MC21A developed by I.S.Duff [1], which implements Hall's |
---|
769 | * algorithm [2]. |
---|
770 | * |
---|
771 | * RETURNS |
---|
772 | * |
---|
773 | * The routine glp_asnprob_hall returns the cardinality of the matching |
---|
774 | * found. However, if the specified graph is incorrect (as detected by |
---|
775 | * the routine glp_check_asnprob), the routine returns negative value. |
---|
776 | * |
---|
777 | * REFERENCES |
---|
778 | * |
---|
779 | * 1. I.S.Duff, Algorithm 575: Permutations for zero-free diagonal, ACM |
---|
780 | * Trans. on Math. Softw. 7 (1981), 387-390. |
---|
781 | * |
---|
782 | * 2. M.Hall, "An Algorithm for distinct representatives," Amer. Math. |
---|
783 | * Monthly 63 (1956), 716-717. */ |
---|
784 | |
---|
785 | int glp_asnprob_hall(glp_graph *G, int v_set, int a_x) |
---|
786 | { glp_vertex *v; |
---|
787 | glp_arc *a; |
---|
788 | int card, i, k, loc, n, n1, n2, xij; |
---|
789 | int *num, *icn, *ip, *lenr, *iperm, *pr, *arp, *cv, *out; |
---|
790 | if (v_set >= 0 && v_set > G->v_size - (int)sizeof(int)) |
---|
791 | xerror("glp_asnprob_hall: v_set = %d; invalid offset\n", |
---|
792 | v_set); |
---|
793 | if (a_x >= 0 && a_x > G->a_size - (int)sizeof(int)) |
---|
794 | xerror("glp_asnprob_hall: a_x = %d; invalid offset\n", a_x); |
---|
795 | if (glp_check_asnprob(G, v_set)) |
---|
796 | return -1; |
---|
797 | /* determine the number of vertices in sets R and S and renumber |
---|
798 | vertices in S which correspond to columns of the matrix; skip |
---|
799 | all isolated vertices */ |
---|
800 | num = xcalloc(1+G->nv, sizeof(int)); |
---|
801 | n1 = n2 = 0; |
---|
802 | for (i = 1; i <= G->nv; i++) |
---|
803 | { v = G->v[i]; |
---|
804 | if (v->in == NULL && v->out != NULL) |
---|
805 | n1++, num[i] = 0; /* vertex in R */ |
---|
806 | else if (v->in != NULL && v->out == NULL) |
---|
807 | n2++, num[i] = n2; /* vertex in S */ |
---|
808 | else |
---|
809 | { xassert(v->in == NULL && v->out == NULL); |
---|
810 | num[i] = -1; /* isolated vertex */ |
---|
811 | } |
---|
812 | } |
---|
813 | /* the matrix must be square, thus, if it has more columns than |
---|
814 | rows, extra rows will be just empty, and vice versa */ |
---|
815 | n = (n1 >= n2 ? n1 : n2); |
---|
816 | /* allocate working arrays */ |
---|
817 | icn = xcalloc(1+G->na, sizeof(int)); |
---|
818 | ip = xcalloc(1+n, sizeof(int)); |
---|
819 | lenr = xcalloc(1+n, sizeof(int)); |
---|
820 | iperm = xcalloc(1+n, sizeof(int)); |
---|
821 | pr = xcalloc(1+n, sizeof(int)); |
---|
822 | arp = xcalloc(1+n, sizeof(int)); |
---|
823 | cv = xcalloc(1+n, sizeof(int)); |
---|
824 | out = xcalloc(1+n, sizeof(int)); |
---|
825 | /* build the adjacency matrix of the bipartite graph in row-wise |
---|
826 | format (rows are vertices in R, columns are vertices in S) */ |
---|
827 | k = 0, loc = 1; |
---|
828 | for (i = 1; i <= G->nv; i++) |
---|
829 | { if (num[i] != 0) continue; |
---|
830 | /* vertex i in R */ |
---|
831 | ip[++k] = loc; |
---|
832 | v = G->v[i]; |
---|
833 | for (a = v->out; a != NULL; a = a->t_next) |
---|
834 | { xassert(num[a->head->i] != 0); |
---|
835 | icn[loc++] = num[a->head->i]; |
---|
836 | } |
---|
837 | lenr[k] = loc - ip[k]; |
---|
838 | } |
---|
839 | xassert(loc-1 == G->na); |
---|
840 | /* make all extra rows empty (all extra columns are empty due to |
---|
841 | the row-wise format used) */ |
---|
842 | for (k++; k <= n; k++) |
---|
843 | ip[k] = loc, lenr[k] = 0; |
---|
844 | /* find a row permutation that maximizes the number of non-zeros |
---|
845 | on the main diagonal */ |
---|
846 | card = mc21a(n, icn, ip, lenr, iperm, pr, arp, cv, out); |
---|
847 | #if 1 /* 18/II-2010 */ |
---|
848 | /* FIXED: if card = n, arp remains clobbered on exit */ |
---|
849 | for (i = 1; i <= n; i++) |
---|
850 | arp[i] = 0; |
---|
851 | for (i = 1; i <= card; i++) |
---|
852 | { k = iperm[i]; |
---|
853 | xassert(1 <= k && k <= n); |
---|
854 | xassert(arp[k] == 0); |
---|
855 | arp[k] = i; |
---|
856 | } |
---|
857 | #endif |
---|
858 | /* store solution, if necessary */ |
---|
859 | if (a_x < 0) goto skip; |
---|
860 | k = 0; |
---|
861 | for (i = 1; i <= G->nv; i++) |
---|
862 | { if (num[i] != 0) continue; |
---|
863 | /* vertex i in R */ |
---|
864 | k++; |
---|
865 | v = G->v[i]; |
---|
866 | for (a = v->out; a != NULL; a = a->t_next) |
---|
867 | { /* arp[k] is the number of matched column or zero */ |
---|
868 | if (arp[k] == num[a->head->i]) |
---|
869 | { xassert(arp[k] != 0); |
---|
870 | xij = 1; |
---|
871 | } |
---|
872 | else |
---|
873 | xij = 0; |
---|
874 | memcpy((char *)a->data + a_x, &xij, sizeof(int)); |
---|
875 | } |
---|
876 | } |
---|
877 | skip: /* free working arrays */ |
---|
878 | xfree(num); |
---|
879 | xfree(icn); |
---|
880 | xfree(ip); |
---|
881 | xfree(lenr); |
---|
882 | xfree(iperm); |
---|
883 | xfree(pr); |
---|
884 | xfree(arp); |
---|
885 | xfree(cv); |
---|
886 | xfree(out); |
---|
887 | return card; |
---|
888 | } |
---|
889 | |
---|
890 | /*********************************************************************** |
---|
891 | * NAME |
---|
892 | * |
---|
893 | * glp_cpp - solve critical path problem |
---|
894 | * |
---|
895 | * SYNOPSIS |
---|
896 | * |
---|
897 | * double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls); |
---|
898 | * |
---|
899 | * DESCRIPTION |
---|
900 | * |
---|
901 | * The routine glp_cpp solves the critical path problem represented in |
---|
902 | * the form of the project network. |
---|
903 | * |
---|
904 | * The parameter G is a pointer to the graph object, which specifies |
---|
905 | * the project network. This graph must be acyclic. Multiple arcs are |
---|
906 | * allowed being considered as single arcs. |
---|
907 | * |
---|
908 | * The parameter v_t specifies an offset of the field of type double |
---|
909 | * in the vertex data block, which contains time t[i] >= 0 needed to |
---|
910 | * perform corresponding job j. If v_t < 0, it is assumed that t[i] = 1 |
---|
911 | * for all jobs. |
---|
912 | * |
---|
913 | * The parameter v_es specifies an offset of the field of type double |
---|
914 | * in the vertex data block, to which the routine stores earliest start |
---|
915 | * time for corresponding job. If v_es < 0, this time is not stored. |
---|
916 | * |
---|
917 | * The parameter v_ls specifies an offset of the field of type double |
---|
918 | * in the vertex data block, to which the routine stores latest start |
---|
919 | * time for corresponding job. If v_ls < 0, this time is not stored. |
---|
920 | * |
---|
921 | * RETURNS |
---|
922 | * |
---|
923 | * The routine glp_cpp returns the minimal project duration, that is, |
---|
924 | * minimal time needed to perform all jobs in the project. */ |
---|
925 | |
---|
926 | static void sorting(glp_graph *G, int list[]); |
---|
927 | |
---|
928 | double glp_cpp(glp_graph *G, int v_t, int v_es, int v_ls) |
---|
929 | { glp_vertex *v; |
---|
930 | glp_arc *a; |
---|
931 | int i, j, k, nv, *list; |
---|
932 | double temp, total, *t, *es, *ls; |
---|
933 | if (v_t >= 0 && v_t > G->v_size - (int)sizeof(double)) |
---|
934 | xerror("glp_cpp: v_t = %d; invalid offset\n", v_t); |
---|
935 | if (v_es >= 0 && v_es > G->v_size - (int)sizeof(double)) |
---|
936 | xerror("glp_cpp: v_es = %d; invalid offset\n", v_es); |
---|
937 | if (v_ls >= 0 && v_ls > G->v_size - (int)sizeof(double)) |
---|
938 | xerror("glp_cpp: v_ls = %d; invalid offset\n", v_ls); |
---|
939 | nv = G->nv; |
---|
940 | if (nv == 0) |
---|
941 | { total = 0.0; |
---|
942 | goto done; |
---|
943 | } |
---|
944 | /* allocate working arrays */ |
---|
945 | t = xcalloc(1+nv, sizeof(double)); |
---|
946 | es = xcalloc(1+nv, sizeof(double)); |
---|
947 | ls = xcalloc(1+nv, sizeof(double)); |
---|
948 | list = xcalloc(1+nv, sizeof(int)); |
---|
949 | /* retrieve job times */ |
---|
950 | for (i = 1; i <= nv; i++) |
---|
951 | { v = G->v[i]; |
---|
952 | if (v_t >= 0) |
---|
953 | { memcpy(&t[i], (char *)v->data + v_t, sizeof(double)); |
---|
954 | if (t[i] < 0.0) |
---|
955 | xerror("glp_cpp: t[%d] = %g; invalid time\n", i, t[i]); |
---|
956 | } |
---|
957 | else |
---|
958 | t[i] = 1.0; |
---|
959 | } |
---|
960 | /* perform topological sorting to determine the list of nodes |
---|
961 | (jobs) such that if list[k] = i and list[kk] = j and there |
---|
962 | exists arc (i->j), then k < kk */ |
---|
963 | sorting(G, list); |
---|
964 | /* FORWARD PASS */ |
---|
965 | /* determine earliest start times */ |
---|
966 | for (k = 1; k <= nv; k++) |
---|
967 | { j = list[k]; |
---|
968 | es[j] = 0.0; |
---|
969 | for (a = G->v[j]->in; a != NULL; a = a->h_next) |
---|
970 | { i = a->tail->i; |
---|
971 | /* there exists arc (i->j) in the project network */ |
---|
972 | temp = es[i] + t[i]; |
---|
973 | if (es[j] < temp) es[j] = temp; |
---|
974 | } |
---|
975 | } |
---|
976 | /* determine the minimal project duration */ |
---|
977 | total = 0.0; |
---|
978 | for (i = 1; i <= nv; i++) |
---|
979 | { temp = es[i] + t[i]; |
---|
980 | if (total < temp) total = temp; |
---|
981 | } |
---|
982 | /* BACKWARD PASS */ |
---|
983 | /* determine latest start times */ |
---|
984 | for (k = nv; k >= 1; k--) |
---|
985 | { i = list[k]; |
---|
986 | ls[i] = total - t[i]; |
---|
987 | for (a = G->v[i]->out; a != NULL; a = a->t_next) |
---|
988 | { j = a->head->i; |
---|
989 | /* there exists arc (i->j) in the project network */ |
---|
990 | temp = ls[j] - t[i]; |
---|
991 | if (ls[i] > temp) ls[i] = temp; |
---|
992 | } |
---|
993 | /* avoid possible round-off errors */ |
---|
994 | if (ls[i] < es[i]) ls[i] = es[i]; |
---|
995 | } |
---|
996 | /* store results, if necessary */ |
---|
997 | if (v_es >= 0) |
---|
998 | { for (i = 1; i <= nv; i++) |
---|
999 | { v = G->v[i]; |
---|
1000 | memcpy((char *)v->data + v_es, &es[i], sizeof(double)); |
---|
1001 | } |
---|
1002 | } |
---|
1003 | if (v_ls >= 0) |
---|
1004 | { for (i = 1; i <= nv; i++) |
---|
1005 | { v = G->v[i]; |
---|
1006 | memcpy((char *)v->data + v_ls, &ls[i], sizeof(double)); |
---|
1007 | } |
---|
1008 | } |
---|
1009 | /* free working arrays */ |
---|
1010 | xfree(t); |
---|
1011 | xfree(es); |
---|
1012 | xfree(ls); |
---|
1013 | xfree(list); |
---|
1014 | done: return total; |
---|
1015 | } |
---|
1016 | |
---|
1017 | static void sorting(glp_graph *G, int list[]) |
---|
1018 | { /* perform topological sorting to determine the list of nodes |
---|
1019 | (jobs) such that if list[k] = i and list[kk] = j and there |
---|
1020 | exists arc (i->j), then k < kk */ |
---|
1021 | int i, k, nv, v_size, *num; |
---|
1022 | void **save; |
---|
1023 | nv = G->nv; |
---|
1024 | v_size = G->v_size; |
---|
1025 | save = xcalloc(1+nv, sizeof(void *)); |
---|
1026 | num = xcalloc(1+nv, sizeof(int)); |
---|
1027 | G->v_size = sizeof(int); |
---|
1028 | for (i = 1; i <= nv; i++) |
---|
1029 | { save[i] = G->v[i]->data; |
---|
1030 | G->v[i]->data = &num[i]; |
---|
1031 | list[i] = 0; |
---|
1032 | } |
---|
1033 | if (glp_top_sort(G, 0) != 0) |
---|
1034 | xerror("glp_cpp: project network is not acyclic\n"); |
---|
1035 | G->v_size = v_size; |
---|
1036 | for (i = 1; i <= nv; i++) |
---|
1037 | { G->v[i]->data = save[i]; |
---|
1038 | k = num[i]; |
---|
1039 | xassert(1 <= k && k <= nv); |
---|
1040 | xassert(list[k] == 0); |
---|
1041 | list[k] = i; |
---|
1042 | } |
---|
1043 | xfree(save); |
---|
1044 | xfree(num); |
---|
1045 | return; |
---|
1046 | } |
---|
1047 | |
---|
1048 | /* eof */ |
---|