1 | /* glpfhv.h (LP basis factorization, FHV eta file version) */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | * E-mail: <mao@gnu.org>. |
---|
10 | * |
---|
11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation, either version 3 of the License, or |
---|
14 | * (at your option) any later version. |
---|
15 | * |
---|
16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | * License for more details. |
---|
20 | * |
---|
21 | * You should have received a copy of the GNU General Public License |
---|
22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | ***********************************************************************/ |
---|
24 | |
---|
25 | #ifndef GLPFHV_H |
---|
26 | #define GLPFHV_H |
---|
27 | |
---|
28 | #include "glpluf.h" |
---|
29 | |
---|
30 | /*********************************************************************** |
---|
31 | * The structure FHV defines the factorization of the basis mxm-matrix |
---|
32 | * B, where m is the number of rows in corresponding problem instance. |
---|
33 | * |
---|
34 | * This factorization is the following sextet: |
---|
35 | * |
---|
36 | * [B] = (F, H, V, P0, P, Q), (1) |
---|
37 | * |
---|
38 | * where F, H, and V are such matrices that |
---|
39 | * |
---|
40 | * B = F * H * V, (2) |
---|
41 | * |
---|
42 | * and P0, P, and Q are such permutation matrices that the matrix |
---|
43 | * |
---|
44 | * L = P0 * F * inv(P0) (3) |
---|
45 | * |
---|
46 | * is lower triangular with unity diagonal, and the matrix |
---|
47 | * |
---|
48 | * U = P * V * Q (4) |
---|
49 | * |
---|
50 | * is upper triangular. All the matrices have the same order m, which |
---|
51 | * is the order of the basis matrix B. |
---|
52 | * |
---|
53 | * The matrices F, V, P, and Q are stored in the structure LUF (see the |
---|
54 | * module GLPLUF), which is a member of the structure FHV. |
---|
55 | * |
---|
56 | * The matrix H is stored in the form of eta file using row-like format |
---|
57 | * as follows: |
---|
58 | * |
---|
59 | * H = H[1] * H[2] * ... * H[nfs], (5) |
---|
60 | * |
---|
61 | * where H[k], k = 1, 2, ..., nfs, is a row-like factor, which differs |
---|
62 | * from the unity matrix only by one row, nfs is current number of row- |
---|
63 | * like factors. After the factorization has been built for some given |
---|
64 | * basis matrix B the matrix H has no factors and thus it is the unity |
---|
65 | * matrix. Then each time when the factorization is recomputed for an |
---|
66 | * adjacent basis matrix, the next factor H[k], k = 1, 2, ... is built |
---|
67 | * and added to the end of the eta file H. |
---|
68 | * |
---|
69 | * Being sparse vectors non-trivial rows of the factors H[k] are stored |
---|
70 | * in the right part of the sparse vector area (SVA) in the same manner |
---|
71 | * as rows and columns of the matrix F. |
---|
72 | * |
---|
73 | * For more details see the program documentation. */ |
---|
74 | |
---|
75 | typedef struct FHV FHV; |
---|
76 | |
---|
77 | struct FHV |
---|
78 | { /* LP basis factorization */ |
---|
79 | int m_max; |
---|
80 | /* maximal value of m (increased automatically, if necessary) */ |
---|
81 | int m; |
---|
82 | /* the order of matrices B, F, H, V, P0, P, Q */ |
---|
83 | int valid; |
---|
84 | /* the factorization is valid only if this flag is set */ |
---|
85 | LUF *luf; |
---|
86 | /* LU-factorization (contains the matrices F, V, P, Q) */ |
---|
87 | /*--------------------------------------------------------------*/ |
---|
88 | /* matrix H in the form of eta file */ |
---|
89 | int hh_max; |
---|
90 | /* maximal number of row-like factors (which limits the number of |
---|
91 | updates of the factorization) */ |
---|
92 | int hh_nfs; |
---|
93 | /* current number of row-like factors (0 <= hh_nfs <= hh_max) */ |
---|
94 | int *hh_ind; /* int hh_ind[1+hh_max]; */ |
---|
95 | /* hh_ind[k], k = 1, ..., nfs, is the number of a non-trivial row |
---|
96 | of factor H[k] */ |
---|
97 | int *hh_ptr; /* int hh_ptr[1+hh_max]; */ |
---|
98 | /* hh_ptr[k], k = 1, ..., nfs, is a pointer to the first element |
---|
99 | of the non-trivial row of factor H[k] in the SVA */ |
---|
100 | int *hh_len; /* int hh_len[1+hh_max]; */ |
---|
101 | /* hh_len[k], k = 1, ..., nfs, is the number of non-zero elements |
---|
102 | in the non-trivial row of factor H[k] */ |
---|
103 | /*--------------------------------------------------------------*/ |
---|
104 | /* matrix P0 */ |
---|
105 | int *p0_row; /* int p0_row[1+m_max]; */ |
---|
106 | /* p0_row[i] = j means that p0[i,j] = 1 */ |
---|
107 | int *p0_col; /* int p0_col[1+m_max]; */ |
---|
108 | /* p0_col[j] = i means that p0[i,j] = 1 */ |
---|
109 | /* if i-th row or column of the matrix F corresponds to i'-th row |
---|
110 | or column of the matrix L = P0*F*inv(P0), then p0_row[i'] = i |
---|
111 | and p0_col[i] = i' */ |
---|
112 | /*--------------------------------------------------------------*/ |
---|
113 | /* working arrays */ |
---|
114 | int *cc_ind; /* int cc_ind[1+m_max]; */ |
---|
115 | /* integer working array */ |
---|
116 | double *cc_val; /* double cc_val[1+m_max]; */ |
---|
117 | /* floating-point working array */ |
---|
118 | /*--------------------------------------------------------------*/ |
---|
119 | /* control parameters */ |
---|
120 | double upd_tol; |
---|
121 | /* update tolerance; if after updating the factorization absolute |
---|
122 | value of some diagonal element u[k,k] of matrix U = P*V*Q is |
---|
123 | less than upd_tol * max(|u[k,*]|, |u[*,k]|), the factorization |
---|
124 | is considered as inaccurate */ |
---|
125 | /*--------------------------------------------------------------*/ |
---|
126 | /* some statistics */ |
---|
127 | int nnz_h; |
---|
128 | /* current number of non-zeros in all factors of matrix H */ |
---|
129 | }; |
---|
130 | |
---|
131 | /* return codes: */ |
---|
132 | #define FHV_ESING 1 /* singular matrix */ |
---|
133 | #define FHV_ECOND 2 /* ill-conditioned matrix */ |
---|
134 | #define FHV_ECHECK 3 /* insufficient accuracy */ |
---|
135 | #define FHV_ELIMIT 4 /* update limit reached */ |
---|
136 | #define FHV_EROOM 5 /* SVA overflow */ |
---|
137 | |
---|
138 | #define fhv_create_it _glp_fhv_create_it |
---|
139 | FHV *fhv_create_it(void); |
---|
140 | /* create LP basis factorization */ |
---|
141 | |
---|
142 | #define fhv_factorize _glp_fhv_factorize |
---|
143 | int fhv_factorize(FHV *fhv, int m, int (*col)(void *info, int j, |
---|
144 | int ind[], double val[]), void *info); |
---|
145 | /* compute LP basis factorization */ |
---|
146 | |
---|
147 | #define fhv_h_solve _glp_fhv_h_solve |
---|
148 | void fhv_h_solve(FHV *fhv, int tr, double x[]); |
---|
149 | /* solve system H*x = b or H'*x = b */ |
---|
150 | |
---|
151 | #define fhv_ftran _glp_fhv_ftran |
---|
152 | void fhv_ftran(FHV *fhv, double x[]); |
---|
153 | /* perform forward transformation (solve system B*x = b) */ |
---|
154 | |
---|
155 | #define fhv_btran _glp_fhv_btran |
---|
156 | void fhv_btran(FHV *fhv, double x[]); |
---|
157 | /* perform backward transformation (solve system B'*x = b) */ |
---|
158 | |
---|
159 | #define fhv_update_it _glp_fhv_update_it |
---|
160 | int fhv_update_it(FHV *fhv, int j, int len, const int ind[], |
---|
161 | const double val[]); |
---|
162 | /* update LP basis factorization */ |
---|
163 | |
---|
164 | #define fhv_delete_it _glp_fhv_delete_it |
---|
165 | void fhv_delete_it(FHV *fhv); |
---|
166 | /* delete LP basis factorization */ |
---|
167 | |
---|
168 | #endif |
---|
169 | |
---|
170 | /* eof */ |
---|