[1] | 1 | /* glpios01.c */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpios.h" |
---|
| 26 | |
---|
| 27 | /*********************************************************************** |
---|
| 28 | * NAME |
---|
| 29 | * |
---|
| 30 | * ios_create_tree - create branch-and-bound tree |
---|
| 31 | * |
---|
| 32 | * SYNOPSIS |
---|
| 33 | * |
---|
| 34 | * #include "glpios.h" |
---|
| 35 | * glp_tree *ios_create_tree(glp_prob *mip, const glp_iocp *parm); |
---|
| 36 | * |
---|
| 37 | * DESCRIPTION |
---|
| 38 | * |
---|
| 39 | * The routine ios_create_tree creates the branch-and-bound tree. |
---|
| 40 | * |
---|
| 41 | * Being created the tree consists of the only root subproblem whose |
---|
| 42 | * reference number is 1. Note that initially the root subproblem is in |
---|
| 43 | * frozen state and therefore needs to be revived. |
---|
| 44 | * |
---|
| 45 | * RETURNS |
---|
| 46 | * |
---|
| 47 | * The routine returns a pointer to the tree created. */ |
---|
| 48 | |
---|
| 49 | static IOSNPD *new_node(glp_tree *tree, IOSNPD *parent); |
---|
| 50 | |
---|
| 51 | glp_tree *ios_create_tree(glp_prob *mip, const glp_iocp *parm) |
---|
| 52 | { int m = mip->m; |
---|
| 53 | int n = mip->n; |
---|
| 54 | glp_tree *tree; |
---|
| 55 | int i, j; |
---|
| 56 | xassert(mip->tree == NULL); |
---|
| 57 | mip->tree = tree = xmalloc(sizeof(glp_tree)); |
---|
| 58 | tree->pool = dmp_create_pool(); |
---|
| 59 | tree->n = n; |
---|
| 60 | /* save original problem components */ |
---|
| 61 | tree->orig_m = m; |
---|
| 62 | tree->orig_type = xcalloc(1+m+n, sizeof(char)); |
---|
| 63 | tree->orig_lb = xcalloc(1+m+n, sizeof(double)); |
---|
| 64 | tree->orig_ub = xcalloc(1+m+n, sizeof(double)); |
---|
| 65 | tree->orig_stat = xcalloc(1+m+n, sizeof(char)); |
---|
| 66 | tree->orig_prim = xcalloc(1+m+n, sizeof(double)); |
---|
| 67 | tree->orig_dual = xcalloc(1+m+n, sizeof(double)); |
---|
| 68 | for (i = 1; i <= m; i++) |
---|
| 69 | { GLPROW *row = mip->row[i]; |
---|
| 70 | tree->orig_type[i] = (char)row->type; |
---|
| 71 | tree->orig_lb[i] = row->lb; |
---|
| 72 | tree->orig_ub[i] = row->ub; |
---|
| 73 | tree->orig_stat[i] = (char)row->stat; |
---|
| 74 | tree->orig_prim[i] = row->prim; |
---|
| 75 | tree->orig_dual[i] = row->dual; |
---|
| 76 | } |
---|
| 77 | for (j = 1; j <= n; j++) |
---|
| 78 | { GLPCOL *col = mip->col[j]; |
---|
| 79 | tree->orig_type[m+j] = (char)col->type; |
---|
| 80 | tree->orig_lb[m+j] = col->lb; |
---|
| 81 | tree->orig_ub[m+j] = col->ub; |
---|
| 82 | tree->orig_stat[m+j] = (char)col->stat; |
---|
| 83 | tree->orig_prim[m+j] = col->prim; |
---|
| 84 | tree->orig_dual[m+j] = col->dual; |
---|
| 85 | } |
---|
| 86 | tree->orig_obj = mip->obj_val; |
---|
| 87 | /* initialize the branch-and-bound tree */ |
---|
| 88 | tree->nslots = 0; |
---|
| 89 | tree->avail = 0; |
---|
| 90 | tree->slot = NULL; |
---|
| 91 | tree->head = tree->tail = NULL; |
---|
| 92 | tree->a_cnt = tree->n_cnt = tree->t_cnt = 0; |
---|
| 93 | /* the root subproblem is not solved yet, so its final components |
---|
| 94 | are unknown so far */ |
---|
| 95 | tree->root_m = 0; |
---|
| 96 | tree->root_type = NULL; |
---|
| 97 | tree->root_lb = tree->root_ub = NULL; |
---|
| 98 | tree->root_stat = NULL; |
---|
| 99 | /* the current subproblem does not exist yet */ |
---|
| 100 | tree->curr = NULL; |
---|
| 101 | tree->mip = mip; |
---|
| 102 | /*tree->solved = 0;*/ |
---|
| 103 | tree->non_int = xcalloc(1+n, sizeof(char)); |
---|
| 104 | memset(&tree->non_int[1], 0, n); |
---|
| 105 | /* arrays to save parent subproblem components will be allocated |
---|
| 106 | later */ |
---|
| 107 | tree->pred_m = tree->pred_max = 0; |
---|
| 108 | tree->pred_type = NULL; |
---|
| 109 | tree->pred_lb = tree->pred_ub = NULL; |
---|
| 110 | tree->pred_stat = NULL; |
---|
| 111 | /* cut generator */ |
---|
| 112 | tree->local = ios_create_pool(tree); |
---|
| 113 | /*tree->first_attempt = 1;*/ |
---|
| 114 | /*tree->max_added_cuts = 0;*/ |
---|
| 115 | /*tree->min_eff = 0.0;*/ |
---|
| 116 | /*tree->miss = 0;*/ |
---|
| 117 | /*tree->just_selected = 0;*/ |
---|
| 118 | tree->mir_gen = NULL; |
---|
| 119 | tree->clq_gen = NULL; |
---|
| 120 | /*tree->round = 0;*/ |
---|
| 121 | #if 0 |
---|
| 122 | /* create the conflict graph */ |
---|
| 123 | tree->n_ref = xcalloc(1+n, sizeof(int)); |
---|
| 124 | memset(&tree->n_ref[1], 0, n * sizeof(int)); |
---|
| 125 | tree->c_ref = xcalloc(1+n, sizeof(int)); |
---|
| 126 | memset(&tree->c_ref[1], 0, n * sizeof(int)); |
---|
| 127 | tree->g = scg_create_graph(0); |
---|
| 128 | tree->j_ref = xcalloc(1+tree->g->n_max, sizeof(int)); |
---|
| 129 | #endif |
---|
| 130 | /* pseudocost branching */ |
---|
| 131 | tree->pcost = NULL; |
---|
| 132 | tree->iwrk = xcalloc(1+n, sizeof(int)); |
---|
| 133 | tree->dwrk = xcalloc(1+n, sizeof(double)); |
---|
| 134 | /* initialize control parameters */ |
---|
| 135 | tree->parm = parm; |
---|
| 136 | tree->tm_beg = xtime(); |
---|
| 137 | tree->tm_lag = xlset(0); |
---|
| 138 | tree->sol_cnt = 0; |
---|
| 139 | /* initialize advanced solver interface */ |
---|
| 140 | tree->reason = 0; |
---|
| 141 | tree->reopt = 0; |
---|
| 142 | tree->reinv = 0; |
---|
| 143 | tree->br_var = 0; |
---|
| 144 | tree->br_sel = 0; |
---|
| 145 | tree->child = 0; |
---|
| 146 | tree->next_p = 0; |
---|
| 147 | /*tree->btrack = NULL;*/ |
---|
| 148 | tree->stop = 0; |
---|
| 149 | /* create the root subproblem, which initially is identical to |
---|
| 150 | the original MIP */ |
---|
| 151 | new_node(tree, NULL); |
---|
| 152 | return tree; |
---|
| 153 | } |
---|
| 154 | |
---|
| 155 | /*********************************************************************** |
---|
| 156 | * NAME |
---|
| 157 | * |
---|
| 158 | * ios_revive_node - revive specified subproblem |
---|
| 159 | * |
---|
| 160 | * SYNOPSIS |
---|
| 161 | * |
---|
| 162 | * #include "glpios.h" |
---|
| 163 | * void ios_revive_node(glp_tree *tree, int p); |
---|
| 164 | * |
---|
| 165 | * DESCRIPTION |
---|
| 166 | * |
---|
| 167 | * The routine ios_revive_node revives the specified subproblem, whose |
---|
| 168 | * reference number is p, and thereby makes it the current subproblem. |
---|
| 169 | * Note that the specified subproblem must be active. Besides, if the |
---|
| 170 | * current subproblem already exists, it must be frozen before reviving |
---|
| 171 | * another subproblem. */ |
---|
| 172 | |
---|
| 173 | void ios_revive_node(glp_tree *tree, int p) |
---|
| 174 | { glp_prob *mip = tree->mip; |
---|
| 175 | IOSNPD *node, *root; |
---|
| 176 | /* obtain pointer to the specified subproblem */ |
---|
| 177 | xassert(1 <= p && p <= tree->nslots); |
---|
| 178 | node = tree->slot[p].node; |
---|
| 179 | xassert(node != NULL); |
---|
| 180 | /* the specified subproblem must be active */ |
---|
| 181 | xassert(node->count == 0); |
---|
| 182 | /* the current subproblem must not exist */ |
---|
| 183 | xassert(tree->curr == NULL); |
---|
| 184 | /* the specified subproblem becomes current */ |
---|
| 185 | tree->curr = node; |
---|
| 186 | /*tree->solved = 0;*/ |
---|
| 187 | /* obtain pointer to the root subproblem */ |
---|
| 188 | root = tree->slot[1].node; |
---|
| 189 | xassert(root != NULL); |
---|
| 190 | /* at this point problem object components correspond to the root |
---|
| 191 | subproblem, so if the root subproblem should be revived, there |
---|
| 192 | is nothing more to do */ |
---|
| 193 | if (node == root) goto done; |
---|
| 194 | xassert(mip->m == tree->root_m); |
---|
| 195 | /* build path from the root to the current node */ |
---|
| 196 | node->temp = NULL; |
---|
| 197 | for (node = node; node != NULL; node = node->up) |
---|
| 198 | { if (node->up == NULL) |
---|
| 199 | xassert(node == root); |
---|
| 200 | else |
---|
| 201 | node->up->temp = node; |
---|
| 202 | } |
---|
| 203 | /* go down from the root to the current node and make necessary |
---|
| 204 | changes to restore components of the current subproblem */ |
---|
| 205 | for (node = root; node != NULL; node = node->temp) |
---|
| 206 | { int m = mip->m; |
---|
| 207 | int n = mip->n; |
---|
| 208 | /* if the current node is reached, the problem object at this |
---|
| 209 | point corresponds to its parent, so save attributes of rows |
---|
| 210 | and columns for the parent subproblem */ |
---|
| 211 | if (node->temp == NULL) |
---|
| 212 | { int i, j; |
---|
| 213 | tree->pred_m = m; |
---|
| 214 | /* allocate/reallocate arrays, if necessary */ |
---|
| 215 | if (tree->pred_max < m + n) |
---|
| 216 | { int new_size = m + n + 100; |
---|
| 217 | if (tree->pred_type != NULL) xfree(tree->pred_type); |
---|
| 218 | if (tree->pred_lb != NULL) xfree(tree->pred_lb); |
---|
| 219 | if (tree->pred_ub != NULL) xfree(tree->pred_ub); |
---|
| 220 | if (tree->pred_stat != NULL) xfree(tree->pred_stat); |
---|
| 221 | tree->pred_max = new_size; |
---|
| 222 | tree->pred_type = xcalloc(1+new_size, sizeof(char)); |
---|
| 223 | tree->pred_lb = xcalloc(1+new_size, sizeof(double)); |
---|
| 224 | tree->pred_ub = xcalloc(1+new_size, sizeof(double)); |
---|
| 225 | tree->pred_stat = xcalloc(1+new_size, sizeof(char)); |
---|
| 226 | } |
---|
| 227 | /* save row attributes */ |
---|
| 228 | for (i = 1; i <= m; i++) |
---|
| 229 | { GLPROW *row = mip->row[i]; |
---|
| 230 | tree->pred_type[i] = (char)row->type; |
---|
| 231 | tree->pred_lb[i] = row->lb; |
---|
| 232 | tree->pred_ub[i] = row->ub; |
---|
| 233 | tree->pred_stat[i] = (char)row->stat; |
---|
| 234 | } |
---|
| 235 | /* save column attributes */ |
---|
| 236 | for (j = 1; j <= n; j++) |
---|
| 237 | { GLPCOL *col = mip->col[j]; |
---|
| 238 | tree->pred_type[mip->m+j] = (char)col->type; |
---|
| 239 | tree->pred_lb[mip->m+j] = col->lb; |
---|
| 240 | tree->pred_ub[mip->m+j] = col->ub; |
---|
| 241 | tree->pred_stat[mip->m+j] = (char)col->stat; |
---|
| 242 | } |
---|
| 243 | } |
---|
| 244 | /* change bounds of rows and columns */ |
---|
| 245 | { IOSBND *b; |
---|
| 246 | for (b = node->b_ptr; b != NULL; b = b->next) |
---|
| 247 | { if (b->k <= m) |
---|
| 248 | glp_set_row_bnds(mip, b->k, b->type, b->lb, b->ub); |
---|
| 249 | else |
---|
| 250 | glp_set_col_bnds(mip, b->k-m, b->type, b->lb, b->ub); |
---|
| 251 | } |
---|
| 252 | } |
---|
| 253 | /* change statuses of rows and columns */ |
---|
| 254 | { IOSTAT *s; |
---|
| 255 | for (s = node->s_ptr; s != NULL; s = s->next) |
---|
| 256 | { if (s->k <= m) |
---|
| 257 | glp_set_row_stat(mip, s->k, s->stat); |
---|
| 258 | else |
---|
| 259 | glp_set_col_stat(mip, s->k-m, s->stat); |
---|
| 260 | } |
---|
| 261 | } |
---|
| 262 | /* add new rows */ |
---|
| 263 | if (node->r_ptr != NULL) |
---|
| 264 | { IOSROW *r; |
---|
| 265 | IOSAIJ *a; |
---|
| 266 | int i, len, *ind; |
---|
| 267 | double *val; |
---|
| 268 | ind = xcalloc(1+n, sizeof(int)); |
---|
| 269 | val = xcalloc(1+n, sizeof(double)); |
---|
| 270 | for (r = node->r_ptr; r != NULL; r = r->next) |
---|
| 271 | { i = glp_add_rows(mip, 1); |
---|
| 272 | glp_set_row_name(mip, i, r->name); |
---|
| 273 | #if 1 /* 20/IX-2008 */ |
---|
| 274 | xassert(mip->row[i]->level == 0); |
---|
| 275 | mip->row[i]->level = node->level; |
---|
| 276 | mip->row[i]->origin = r->origin; |
---|
| 277 | mip->row[i]->klass = r->klass; |
---|
| 278 | #endif |
---|
| 279 | glp_set_row_bnds(mip, i, r->type, r->lb, r->ub); |
---|
| 280 | len = 0; |
---|
| 281 | for (a = r->ptr; a != NULL; a = a->next) |
---|
| 282 | len++, ind[len] = a->j, val[len] = a->val; |
---|
| 283 | glp_set_mat_row(mip, i, len, ind, val); |
---|
| 284 | glp_set_rii(mip, i, r->rii); |
---|
| 285 | glp_set_row_stat(mip, i, r->stat); |
---|
| 286 | } |
---|
| 287 | xfree(ind); |
---|
| 288 | xfree(val); |
---|
| 289 | } |
---|
| 290 | #if 0 |
---|
| 291 | /* add new edges to the conflict graph */ |
---|
| 292 | /* add new cliques to the conflict graph */ |
---|
| 293 | /* (not implemented yet) */ |
---|
| 294 | xassert(node->own_nn == 0); |
---|
| 295 | xassert(node->own_nc == 0); |
---|
| 296 | xassert(node->e_ptr == NULL); |
---|
| 297 | #endif |
---|
| 298 | } |
---|
| 299 | /* the specified subproblem has been revived */ |
---|
| 300 | node = tree->curr; |
---|
| 301 | /* delete its bound change list */ |
---|
| 302 | while (node->b_ptr != NULL) |
---|
| 303 | { IOSBND *b; |
---|
| 304 | b = node->b_ptr; |
---|
| 305 | node->b_ptr = b->next; |
---|
| 306 | dmp_free_atom(tree->pool, b, sizeof(IOSBND)); |
---|
| 307 | } |
---|
| 308 | /* delete its status change list */ |
---|
| 309 | while (node->s_ptr != NULL) |
---|
| 310 | { IOSTAT *s; |
---|
| 311 | s = node->s_ptr; |
---|
| 312 | node->s_ptr = s->next; |
---|
| 313 | dmp_free_atom(tree->pool, s, sizeof(IOSTAT)); |
---|
| 314 | } |
---|
| 315 | #if 1 /* 20/XI-2009 */ |
---|
| 316 | /* delete its row addition list (additional rows may appear, for |
---|
| 317 | example, due to branching on GUB constraints */ |
---|
| 318 | while (node->r_ptr != NULL) |
---|
| 319 | { IOSROW *r; |
---|
| 320 | r = node->r_ptr; |
---|
| 321 | node->r_ptr = r->next; |
---|
| 322 | xassert(r->name == NULL); |
---|
| 323 | while (r->ptr != NULL) |
---|
| 324 | { IOSAIJ *a; |
---|
| 325 | a = r->ptr; |
---|
| 326 | r->ptr = a->next; |
---|
| 327 | dmp_free_atom(tree->pool, a, sizeof(IOSAIJ)); |
---|
| 328 | } |
---|
| 329 | dmp_free_atom(tree->pool, r, sizeof(IOSROW)); |
---|
| 330 | } |
---|
| 331 | #endif |
---|
| 332 | done: return; |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | /*********************************************************************** |
---|
| 336 | * NAME |
---|
| 337 | * |
---|
| 338 | * ios_freeze_node - freeze current subproblem |
---|
| 339 | * |
---|
| 340 | * SYNOPSIS |
---|
| 341 | * |
---|
| 342 | * #include "glpios.h" |
---|
| 343 | * void ios_freeze_node(glp_tree *tree); |
---|
| 344 | * |
---|
| 345 | * DESCRIPTION |
---|
| 346 | * |
---|
| 347 | * The routine ios_freeze_node freezes the current subproblem. */ |
---|
| 348 | |
---|
| 349 | void ios_freeze_node(glp_tree *tree) |
---|
| 350 | { glp_prob *mip = tree->mip; |
---|
| 351 | int m = mip->m; |
---|
| 352 | int n = mip->n; |
---|
| 353 | IOSNPD *node; |
---|
| 354 | /* obtain pointer to the current subproblem */ |
---|
| 355 | node = tree->curr; |
---|
| 356 | xassert(node != NULL); |
---|
| 357 | if (node->up == NULL) |
---|
| 358 | { /* freeze the root subproblem */ |
---|
| 359 | int k; |
---|
| 360 | xassert(node->p == 1); |
---|
| 361 | xassert(tree->root_m == 0); |
---|
| 362 | xassert(tree->root_type == NULL); |
---|
| 363 | xassert(tree->root_lb == NULL); |
---|
| 364 | xassert(tree->root_ub == NULL); |
---|
| 365 | xassert(tree->root_stat == NULL); |
---|
| 366 | tree->root_m = m; |
---|
| 367 | tree->root_type = xcalloc(1+m+n, sizeof(char)); |
---|
| 368 | tree->root_lb = xcalloc(1+m+n, sizeof(double)); |
---|
| 369 | tree->root_ub = xcalloc(1+m+n, sizeof(double)); |
---|
| 370 | tree->root_stat = xcalloc(1+m+n, sizeof(char)); |
---|
| 371 | for (k = 1; k <= m+n; k++) |
---|
| 372 | { if (k <= m) |
---|
| 373 | { GLPROW *row = mip->row[k]; |
---|
| 374 | tree->root_type[k] = (char)row->type; |
---|
| 375 | tree->root_lb[k] = row->lb; |
---|
| 376 | tree->root_ub[k] = row->ub; |
---|
| 377 | tree->root_stat[k] = (char)row->stat; |
---|
| 378 | } |
---|
| 379 | else |
---|
| 380 | { GLPCOL *col = mip->col[k-m]; |
---|
| 381 | tree->root_type[k] = (char)col->type; |
---|
| 382 | tree->root_lb[k] = col->lb; |
---|
| 383 | tree->root_ub[k] = col->ub; |
---|
| 384 | tree->root_stat[k] = (char)col->stat; |
---|
| 385 | } |
---|
| 386 | } |
---|
| 387 | } |
---|
| 388 | else |
---|
| 389 | { /* freeze non-root subproblem */ |
---|
| 390 | int root_m = tree->root_m; |
---|
| 391 | int pred_m = tree->pred_m; |
---|
| 392 | int i, j, k; |
---|
| 393 | xassert(pred_m <= m); |
---|
| 394 | /* build change lists for rows and columns which exist in the |
---|
| 395 | parent subproblem */ |
---|
| 396 | xassert(node->b_ptr == NULL); |
---|
| 397 | xassert(node->s_ptr == NULL); |
---|
| 398 | for (k = 1; k <= pred_m + n; k++) |
---|
| 399 | { int pred_type, pred_stat, type, stat; |
---|
| 400 | double pred_lb, pred_ub, lb, ub; |
---|
| 401 | /* determine attributes in the parent subproblem */ |
---|
| 402 | pred_type = tree->pred_type[k]; |
---|
| 403 | pred_lb = tree->pred_lb[k]; |
---|
| 404 | pred_ub = tree->pred_ub[k]; |
---|
| 405 | pred_stat = tree->pred_stat[k]; |
---|
| 406 | /* determine attributes in the current subproblem */ |
---|
| 407 | if (k <= pred_m) |
---|
| 408 | { GLPROW *row = mip->row[k]; |
---|
| 409 | type = row->type; |
---|
| 410 | lb = row->lb; |
---|
| 411 | ub = row->ub; |
---|
| 412 | stat = row->stat; |
---|
| 413 | } |
---|
| 414 | else |
---|
| 415 | { GLPCOL *col = mip->col[k - pred_m]; |
---|
| 416 | type = col->type; |
---|
| 417 | lb = col->lb; |
---|
| 418 | ub = col->ub; |
---|
| 419 | stat = col->stat; |
---|
| 420 | } |
---|
| 421 | /* save type and bounds of a row/column, if changed */ |
---|
| 422 | if (!(pred_type == type && pred_lb == lb && pred_ub == ub)) |
---|
| 423 | { IOSBND *b; |
---|
| 424 | b = dmp_get_atom(tree->pool, sizeof(IOSBND)); |
---|
| 425 | b->k = k; |
---|
| 426 | b->type = (unsigned char)type; |
---|
| 427 | b->lb = lb; |
---|
| 428 | b->ub = ub; |
---|
| 429 | b->next = node->b_ptr; |
---|
| 430 | node->b_ptr = b; |
---|
| 431 | } |
---|
| 432 | /* save status of a row/column, if changed */ |
---|
| 433 | if (pred_stat != stat) |
---|
| 434 | { IOSTAT *s; |
---|
| 435 | s = dmp_get_atom(tree->pool, sizeof(IOSTAT)); |
---|
| 436 | s->k = k; |
---|
| 437 | s->stat = (unsigned char)stat; |
---|
| 438 | s->next = node->s_ptr; |
---|
| 439 | node->s_ptr = s; |
---|
| 440 | } |
---|
| 441 | } |
---|
| 442 | /* save new rows added to the current subproblem */ |
---|
| 443 | xassert(node->r_ptr == NULL); |
---|
| 444 | if (pred_m < m) |
---|
| 445 | { int i, len, *ind; |
---|
| 446 | double *val; |
---|
| 447 | ind = xcalloc(1+n, sizeof(int)); |
---|
| 448 | val = xcalloc(1+n, sizeof(double)); |
---|
| 449 | for (i = m; i > pred_m; i--) |
---|
| 450 | { GLPROW *row = mip->row[i]; |
---|
| 451 | IOSROW *r; |
---|
| 452 | const char *name; |
---|
| 453 | r = dmp_get_atom(tree->pool, sizeof(IOSROW)); |
---|
| 454 | name = glp_get_row_name(mip, i); |
---|
| 455 | if (name == NULL) |
---|
| 456 | r->name = NULL; |
---|
| 457 | else |
---|
| 458 | { r->name = dmp_get_atom(tree->pool, strlen(name)+1); |
---|
| 459 | strcpy(r->name, name); |
---|
| 460 | } |
---|
| 461 | #if 1 /* 20/IX-2008 */ |
---|
| 462 | r->origin = row->origin; |
---|
| 463 | r->klass = row->klass; |
---|
| 464 | #endif |
---|
| 465 | r->type = (unsigned char)row->type; |
---|
| 466 | r->lb = row->lb; |
---|
| 467 | r->ub = row->ub; |
---|
| 468 | r->ptr = NULL; |
---|
| 469 | len = glp_get_mat_row(mip, i, ind, val); |
---|
| 470 | for (k = 1; k <= len; k++) |
---|
| 471 | { IOSAIJ *a; |
---|
| 472 | a = dmp_get_atom(tree->pool, sizeof(IOSAIJ)); |
---|
| 473 | a->j = ind[k]; |
---|
| 474 | a->val = val[k]; |
---|
| 475 | a->next = r->ptr; |
---|
| 476 | r->ptr = a; |
---|
| 477 | } |
---|
| 478 | r->rii = row->rii; |
---|
| 479 | r->stat = (unsigned char)row->stat; |
---|
| 480 | r->next = node->r_ptr; |
---|
| 481 | node->r_ptr = r; |
---|
| 482 | } |
---|
| 483 | xfree(ind); |
---|
| 484 | xfree(val); |
---|
| 485 | } |
---|
| 486 | /* remove all rows missing in the root subproblem */ |
---|
| 487 | if (m != root_m) |
---|
| 488 | { int nrs, *num; |
---|
| 489 | nrs = m - root_m; |
---|
| 490 | xassert(nrs > 0); |
---|
| 491 | num = xcalloc(1+nrs, sizeof(int)); |
---|
| 492 | for (i = 1; i <= nrs; i++) num[i] = root_m + i; |
---|
| 493 | glp_del_rows(mip, nrs, num); |
---|
| 494 | xfree(num); |
---|
| 495 | } |
---|
| 496 | m = mip->m; |
---|
| 497 | /* and restore attributes of all rows and columns for the root |
---|
| 498 | subproblem */ |
---|
| 499 | xassert(m == root_m); |
---|
| 500 | for (i = 1; i <= m; i++) |
---|
| 501 | { glp_set_row_bnds(mip, i, tree->root_type[i], |
---|
| 502 | tree->root_lb[i], tree->root_ub[i]); |
---|
| 503 | glp_set_row_stat(mip, i, tree->root_stat[i]); |
---|
| 504 | } |
---|
| 505 | for (j = 1; j <= n; j++) |
---|
| 506 | { glp_set_col_bnds(mip, j, tree->root_type[m+j], |
---|
| 507 | tree->root_lb[m+j], tree->root_ub[m+j]); |
---|
| 508 | glp_set_col_stat(mip, j, tree->root_stat[m+j]); |
---|
| 509 | } |
---|
| 510 | #if 1 |
---|
| 511 | /* remove all edges and cliques missing in the conflict graph |
---|
| 512 | for the root subproblem */ |
---|
| 513 | /* (not implemented yet) */ |
---|
| 514 | #endif |
---|
| 515 | } |
---|
| 516 | /* the current subproblem has been frozen */ |
---|
| 517 | tree->curr = NULL; |
---|
| 518 | return; |
---|
| 519 | } |
---|
| 520 | |
---|
| 521 | /*********************************************************************** |
---|
| 522 | * NAME |
---|
| 523 | * |
---|
| 524 | * ios_clone_node - clone specified subproblem |
---|
| 525 | * |
---|
| 526 | * SYNOPSIS |
---|
| 527 | * |
---|
| 528 | * #include "glpios.h" |
---|
| 529 | * void ios_clone_node(glp_tree *tree, int p, int nnn, int ref[]); |
---|
| 530 | * |
---|
| 531 | * DESCRIPTION |
---|
| 532 | * |
---|
| 533 | * The routine ios_clone_node clones the specified subproblem, whose |
---|
| 534 | * reference number is p, creating its nnn exact copies. Note that the |
---|
| 535 | * specified subproblem must be active and must be in the frozen state |
---|
| 536 | * (i.e. it must not be the current subproblem). |
---|
| 537 | * |
---|
| 538 | * Each clone, an exact copy of the specified subproblem, becomes a new |
---|
| 539 | * active subproblem added to the end of the active list. After cloning |
---|
| 540 | * the specified subproblem becomes inactive. |
---|
| 541 | * |
---|
| 542 | * The reference numbers of clone subproblems are stored to locations |
---|
| 543 | * ref[1], ..., ref[nnn]. */ |
---|
| 544 | |
---|
| 545 | static int get_slot(glp_tree *tree) |
---|
| 546 | { int p; |
---|
| 547 | /* if no free slots are available, increase the room */ |
---|
| 548 | if (tree->avail == 0) |
---|
| 549 | { int nslots = tree->nslots; |
---|
| 550 | IOSLOT *save = tree->slot; |
---|
| 551 | if (nslots == 0) |
---|
| 552 | tree->nslots = 20; |
---|
| 553 | else |
---|
| 554 | { tree->nslots = nslots + nslots; |
---|
| 555 | xassert(tree->nslots > nslots); |
---|
| 556 | } |
---|
| 557 | tree->slot = xcalloc(1+tree->nslots, sizeof(IOSLOT)); |
---|
| 558 | if (save != NULL) |
---|
| 559 | { memcpy(&tree->slot[1], &save[1], nslots * sizeof(IOSLOT)); |
---|
| 560 | xfree(save); |
---|
| 561 | } |
---|
| 562 | /* push more free slots into the stack */ |
---|
| 563 | for (p = tree->nslots; p > nslots; p--) |
---|
| 564 | { tree->slot[p].node = NULL; |
---|
| 565 | tree->slot[p].next = tree->avail; |
---|
| 566 | tree->avail = p; |
---|
| 567 | } |
---|
| 568 | } |
---|
| 569 | /* pull a free slot from the stack */ |
---|
| 570 | p = tree->avail; |
---|
| 571 | tree->avail = tree->slot[p].next; |
---|
| 572 | xassert(tree->slot[p].node == NULL); |
---|
| 573 | tree->slot[p].next = 0; |
---|
| 574 | return p; |
---|
| 575 | } |
---|
| 576 | |
---|
| 577 | static IOSNPD *new_node(glp_tree *tree, IOSNPD *parent) |
---|
| 578 | { IOSNPD *node; |
---|
| 579 | int p; |
---|
| 580 | /* pull a free slot for the new node */ |
---|
| 581 | p = get_slot(tree); |
---|
| 582 | /* create descriptor of the new subproblem */ |
---|
| 583 | node = dmp_get_atom(tree->pool, sizeof(IOSNPD)); |
---|
| 584 | tree->slot[p].node = node; |
---|
| 585 | node->p = p; |
---|
| 586 | node->up = parent; |
---|
| 587 | node->level = (parent == NULL ? 0 : parent->level + 1); |
---|
| 588 | node->count = 0; |
---|
| 589 | node->b_ptr = NULL; |
---|
| 590 | node->s_ptr = NULL; |
---|
| 591 | node->r_ptr = NULL; |
---|
| 592 | node->solved = 0; |
---|
| 593 | #if 0 |
---|
| 594 | node->own_nn = node->own_nc = 0; |
---|
| 595 | node->e_ptr = NULL; |
---|
| 596 | #endif |
---|
| 597 | #if 1 /* 04/X-2008 */ |
---|
| 598 | node->lp_obj = (parent == NULL ? (tree->mip->dir == GLP_MIN ? |
---|
| 599 | -DBL_MAX : +DBL_MAX) : parent->lp_obj); |
---|
| 600 | #endif |
---|
| 601 | node->bound = (parent == NULL ? (tree->mip->dir == GLP_MIN ? |
---|
| 602 | -DBL_MAX : +DBL_MAX) : parent->bound); |
---|
| 603 | node->br_var = 0; |
---|
| 604 | node->br_val = 0.0; |
---|
| 605 | node->ii_cnt = 0; |
---|
| 606 | node->ii_sum = 0.0; |
---|
| 607 | #if 1 /* 30/XI-2009 */ |
---|
| 608 | node->changed = 0; |
---|
| 609 | #endif |
---|
| 610 | if (tree->parm->cb_size == 0) |
---|
| 611 | node->data = NULL; |
---|
| 612 | else |
---|
| 613 | { node->data = dmp_get_atom(tree->pool, tree->parm->cb_size); |
---|
| 614 | memset(node->data, 0, tree->parm->cb_size); |
---|
| 615 | } |
---|
| 616 | node->temp = NULL; |
---|
| 617 | node->prev = tree->tail; |
---|
| 618 | node->next = NULL; |
---|
| 619 | /* add the new subproblem to the end of the active list */ |
---|
| 620 | if (tree->head == NULL) |
---|
| 621 | tree->head = node; |
---|
| 622 | else |
---|
| 623 | tree->tail->next = node; |
---|
| 624 | tree->tail = node; |
---|
| 625 | tree->a_cnt++; |
---|
| 626 | tree->n_cnt++; |
---|
| 627 | tree->t_cnt++; |
---|
| 628 | /* increase the number of child subproblems */ |
---|
| 629 | if (parent == NULL) |
---|
| 630 | xassert(p == 1); |
---|
| 631 | else |
---|
| 632 | parent->count++; |
---|
| 633 | return node; |
---|
| 634 | } |
---|
| 635 | |
---|
| 636 | void ios_clone_node(glp_tree *tree, int p, int nnn, int ref[]) |
---|
| 637 | { IOSNPD *node; |
---|
| 638 | int k; |
---|
| 639 | /* obtain pointer to the subproblem to be cloned */ |
---|
| 640 | xassert(1 <= p && p <= tree->nslots); |
---|
| 641 | node = tree->slot[p].node; |
---|
| 642 | xassert(node != NULL); |
---|
| 643 | /* the specified subproblem must be active */ |
---|
| 644 | xassert(node->count == 0); |
---|
| 645 | /* and must be in the frozen state */ |
---|
| 646 | xassert(tree->curr != node); |
---|
| 647 | /* remove the specified subproblem from the active list, because |
---|
| 648 | it becomes inactive */ |
---|
| 649 | if (node->prev == NULL) |
---|
| 650 | tree->head = node->next; |
---|
| 651 | else |
---|
| 652 | node->prev->next = node->next; |
---|
| 653 | if (node->next == NULL) |
---|
| 654 | tree->tail = node->prev; |
---|
| 655 | else |
---|
| 656 | node->next->prev = node->prev; |
---|
| 657 | node->prev = node->next = NULL; |
---|
| 658 | tree->a_cnt--; |
---|
| 659 | /* create clone subproblems */ |
---|
| 660 | xassert(nnn > 0); |
---|
| 661 | for (k = 1; k <= nnn; k++) |
---|
| 662 | ref[k] = new_node(tree, node)->p; |
---|
| 663 | return; |
---|
| 664 | } |
---|
| 665 | |
---|
| 666 | /*********************************************************************** |
---|
| 667 | * NAME |
---|
| 668 | * |
---|
| 669 | * ios_delete_node - delete specified subproblem |
---|
| 670 | * |
---|
| 671 | * SYNOPSIS |
---|
| 672 | * |
---|
| 673 | * #include "glpios.h" |
---|
| 674 | * void ios_delete_node(glp_tree *tree, int p); |
---|
| 675 | * |
---|
| 676 | * DESCRIPTION |
---|
| 677 | * |
---|
| 678 | * The routine ios_delete_node deletes the specified subproblem, whose |
---|
| 679 | * reference number is p. The subproblem must be active and must be in |
---|
| 680 | * the frozen state (i.e. it must not be the current subproblem). |
---|
| 681 | * |
---|
| 682 | * Note that deletion is performed recursively, i.e. if a subproblem to |
---|
| 683 | * be deleted is the only child of its parent, the parent subproblem is |
---|
| 684 | * also deleted, etc. */ |
---|
| 685 | |
---|
| 686 | void ios_delete_node(glp_tree *tree, int p) |
---|
| 687 | { IOSNPD *node, *temp; |
---|
| 688 | /* obtain pointer to the subproblem to be deleted */ |
---|
| 689 | xassert(1 <= p && p <= tree->nslots); |
---|
| 690 | node = tree->slot[p].node; |
---|
| 691 | xassert(node != NULL); |
---|
| 692 | /* the specified subproblem must be active */ |
---|
| 693 | xassert(node->count == 0); |
---|
| 694 | /* and must be in the frozen state */ |
---|
| 695 | xassert(tree->curr != node); |
---|
| 696 | /* remove the specified subproblem from the active list, because |
---|
| 697 | it is gone from the tree */ |
---|
| 698 | if (node->prev == NULL) |
---|
| 699 | tree->head = node->next; |
---|
| 700 | else |
---|
| 701 | node->prev->next = node->next; |
---|
| 702 | if (node->next == NULL) |
---|
| 703 | tree->tail = node->prev; |
---|
| 704 | else |
---|
| 705 | node->next->prev = node->prev; |
---|
| 706 | node->prev = node->next = NULL; |
---|
| 707 | tree->a_cnt--; |
---|
| 708 | loop: /* recursive deletion starts here */ |
---|
| 709 | /* delete the bound change list */ |
---|
| 710 | { IOSBND *b; |
---|
| 711 | while (node->b_ptr != NULL) |
---|
| 712 | { b = node->b_ptr; |
---|
| 713 | node->b_ptr = b->next; |
---|
| 714 | dmp_free_atom(tree->pool, b, sizeof(IOSBND)); |
---|
| 715 | } |
---|
| 716 | } |
---|
| 717 | /* delete the status change list */ |
---|
| 718 | { IOSTAT *s; |
---|
| 719 | while (node->s_ptr != NULL) |
---|
| 720 | { s = node->s_ptr; |
---|
| 721 | node->s_ptr = s->next; |
---|
| 722 | dmp_free_atom(tree->pool, s, sizeof(IOSTAT)); |
---|
| 723 | } |
---|
| 724 | } |
---|
| 725 | /* delete the row addition list */ |
---|
| 726 | while (node->r_ptr != NULL) |
---|
| 727 | { IOSROW *r; |
---|
| 728 | r = node->r_ptr; |
---|
| 729 | if (r->name != NULL) |
---|
| 730 | dmp_free_atom(tree->pool, r->name, strlen(r->name)+1); |
---|
| 731 | while (r->ptr != NULL) |
---|
| 732 | { IOSAIJ *a; |
---|
| 733 | a = r->ptr; |
---|
| 734 | r->ptr = a->next; |
---|
| 735 | dmp_free_atom(tree->pool, a, sizeof(IOSAIJ)); |
---|
| 736 | } |
---|
| 737 | node->r_ptr = r->next; |
---|
| 738 | dmp_free_atom(tree->pool, r, sizeof(IOSROW)); |
---|
| 739 | } |
---|
| 740 | #if 0 |
---|
| 741 | /* delete the edge addition list */ |
---|
| 742 | /* delete the clique addition list */ |
---|
| 743 | /* (not implemented yet) */ |
---|
| 744 | xassert(node->own_nn == 0); |
---|
| 745 | xassert(node->own_nc == 0); |
---|
| 746 | xassert(node->e_ptr == NULL); |
---|
| 747 | #endif |
---|
| 748 | /* free application-specific data */ |
---|
| 749 | if (tree->parm->cb_size == 0) |
---|
| 750 | xassert(node->data == NULL); |
---|
| 751 | else |
---|
| 752 | dmp_free_atom(tree->pool, node->data, tree->parm->cb_size); |
---|
| 753 | /* free the corresponding node slot */ |
---|
| 754 | p = node->p; |
---|
| 755 | xassert(tree->slot[p].node == node); |
---|
| 756 | tree->slot[p].node = NULL; |
---|
| 757 | tree->slot[p].next = tree->avail; |
---|
| 758 | tree->avail = p; |
---|
| 759 | /* save pointer to the parent subproblem */ |
---|
| 760 | temp = node->up; |
---|
| 761 | /* delete the subproblem descriptor */ |
---|
| 762 | dmp_free_atom(tree->pool, node, sizeof(IOSNPD)); |
---|
| 763 | tree->n_cnt--; |
---|
| 764 | /* take pointer to the parent subproblem */ |
---|
| 765 | node = temp; |
---|
| 766 | if (node != NULL) |
---|
| 767 | { /* the parent subproblem exists; decrease the number of its |
---|
| 768 | child subproblems */ |
---|
| 769 | xassert(node->count > 0); |
---|
| 770 | node->count--; |
---|
| 771 | /* if now the parent subproblem has no childs, it also must be |
---|
| 772 | deleted */ |
---|
| 773 | if (node->count == 0) goto loop; |
---|
| 774 | } |
---|
| 775 | return; |
---|
| 776 | } |
---|
| 777 | |
---|
| 778 | /*********************************************************************** |
---|
| 779 | * NAME |
---|
| 780 | * |
---|
| 781 | * ios_delete_tree - delete branch-and-bound tree |
---|
| 782 | * |
---|
| 783 | * SYNOPSIS |
---|
| 784 | * |
---|
| 785 | * #include "glpios.h" |
---|
| 786 | * void ios_delete_tree(glp_tree *tree); |
---|
| 787 | * |
---|
| 788 | * DESCRIPTION |
---|
| 789 | * |
---|
| 790 | * The routine ios_delete_tree deletes the branch-and-bound tree, which |
---|
| 791 | * the parameter tree points to, and frees all the memory allocated to |
---|
| 792 | * this program object. |
---|
| 793 | * |
---|
| 794 | * On exit components of the problem object are restored to correspond |
---|
| 795 | * to the original MIP passed to the routine ios_create_tree. */ |
---|
| 796 | |
---|
| 797 | void ios_delete_tree(glp_tree *tree) |
---|
| 798 | { glp_prob *mip = tree->mip; |
---|
| 799 | int i, j; |
---|
| 800 | int m = mip->m; |
---|
| 801 | int n = mip->n; |
---|
| 802 | xassert(mip->tree == tree); |
---|
| 803 | /* remove all additional rows */ |
---|
| 804 | if (m != tree->orig_m) |
---|
| 805 | { int nrs, *num; |
---|
| 806 | nrs = m - tree->orig_m; |
---|
| 807 | xassert(nrs > 0); |
---|
| 808 | num = xcalloc(1+nrs, sizeof(int)); |
---|
| 809 | for (i = 1; i <= nrs; i++) num[i] = tree->orig_m + i; |
---|
| 810 | glp_del_rows(mip, nrs, num); |
---|
| 811 | xfree(num); |
---|
| 812 | } |
---|
| 813 | m = tree->orig_m; |
---|
| 814 | /* restore original attributes of rows and columns */ |
---|
| 815 | xassert(m == tree->orig_m); |
---|
| 816 | xassert(n == tree->n); |
---|
| 817 | for (i = 1; i <= m; i++) |
---|
| 818 | { glp_set_row_bnds(mip, i, tree->orig_type[i], |
---|
| 819 | tree->orig_lb[i], tree->orig_ub[i]); |
---|
| 820 | glp_set_row_stat(mip, i, tree->orig_stat[i]); |
---|
| 821 | mip->row[i]->prim = tree->orig_prim[i]; |
---|
| 822 | mip->row[i]->dual = tree->orig_dual[i]; |
---|
| 823 | } |
---|
| 824 | for (j = 1; j <= n; j++) |
---|
| 825 | { glp_set_col_bnds(mip, j, tree->orig_type[m+j], |
---|
| 826 | tree->orig_lb[m+j], tree->orig_ub[m+j]); |
---|
| 827 | glp_set_col_stat(mip, j, tree->orig_stat[m+j]); |
---|
| 828 | mip->col[j]->prim = tree->orig_prim[m+j]; |
---|
| 829 | mip->col[j]->dual = tree->orig_dual[m+j]; |
---|
| 830 | } |
---|
| 831 | mip->pbs_stat = mip->dbs_stat = GLP_FEAS; |
---|
| 832 | mip->obj_val = tree->orig_obj; |
---|
| 833 | /* delete the branch-and-bound tree */ |
---|
| 834 | xassert(tree->local != NULL); |
---|
| 835 | ios_delete_pool(tree, tree->local); |
---|
| 836 | dmp_delete_pool(tree->pool); |
---|
| 837 | xfree(tree->orig_type); |
---|
| 838 | xfree(tree->orig_lb); |
---|
| 839 | xfree(tree->orig_ub); |
---|
| 840 | xfree(tree->orig_stat); |
---|
| 841 | xfree(tree->orig_prim); |
---|
| 842 | xfree(tree->orig_dual); |
---|
| 843 | xfree(tree->slot); |
---|
| 844 | if (tree->root_type != NULL) xfree(tree->root_type); |
---|
| 845 | if (tree->root_lb != NULL) xfree(tree->root_lb); |
---|
| 846 | if (tree->root_ub != NULL) xfree(tree->root_ub); |
---|
| 847 | if (tree->root_stat != NULL) xfree(tree->root_stat); |
---|
| 848 | xfree(tree->non_int); |
---|
| 849 | #if 0 |
---|
| 850 | xfree(tree->n_ref); |
---|
| 851 | xfree(tree->c_ref); |
---|
| 852 | xfree(tree->j_ref); |
---|
| 853 | #endif |
---|
| 854 | if (tree->pcost != NULL) ios_pcost_free(tree); |
---|
| 855 | xfree(tree->iwrk); |
---|
| 856 | xfree(tree->dwrk); |
---|
| 857 | #if 0 |
---|
| 858 | scg_delete_graph(tree->g); |
---|
| 859 | #endif |
---|
| 860 | if (tree->pred_type != NULL) xfree(tree->pred_type); |
---|
| 861 | if (tree->pred_lb != NULL) xfree(tree->pred_lb); |
---|
| 862 | if (tree->pred_ub != NULL) xfree(tree->pred_ub); |
---|
| 863 | if (tree->pred_stat != NULL) xfree(tree->pred_stat); |
---|
| 864 | #if 0 |
---|
| 865 | xassert(tree->cut_gen == NULL); |
---|
| 866 | #endif |
---|
| 867 | xassert(tree->mir_gen == NULL); |
---|
| 868 | xassert(tree->clq_gen == NULL); |
---|
| 869 | xfree(tree); |
---|
| 870 | mip->tree = NULL; |
---|
| 871 | return; |
---|
| 872 | } |
---|
| 873 | |
---|
| 874 | /*********************************************************************** |
---|
| 875 | * NAME |
---|
| 876 | * |
---|
| 877 | * ios_eval_degrad - estimate obj. degrad. for down- and up-branches |
---|
| 878 | * |
---|
| 879 | * SYNOPSIS |
---|
| 880 | * |
---|
| 881 | * #include "glpios.h" |
---|
| 882 | * void ios_eval_degrad(glp_tree *tree, int j, double *dn, double *up); |
---|
| 883 | * |
---|
| 884 | * DESCRIPTION |
---|
| 885 | * |
---|
| 886 | * Given optimal basis to LP relaxation of the current subproblem the |
---|
| 887 | * routine ios_eval_degrad performs the dual ratio test to compute the |
---|
| 888 | * objective values in the adjacent basis for down- and up-branches, |
---|
| 889 | * which are stored in locations *dn and *up, assuming that x[j] is a |
---|
| 890 | * variable chosen to branch upon. */ |
---|
| 891 | |
---|
| 892 | void ios_eval_degrad(glp_tree *tree, int j, double *dn, double *up) |
---|
| 893 | { glp_prob *mip = tree->mip; |
---|
| 894 | int m = mip->m, n = mip->n; |
---|
| 895 | int len, kase, k, t, stat; |
---|
| 896 | double alfa, beta, gamma, delta, dz; |
---|
| 897 | int *ind = tree->iwrk; |
---|
| 898 | double *val = tree->dwrk; |
---|
| 899 | /* current basis must be optimal */ |
---|
| 900 | xassert(glp_get_status(mip) == GLP_OPT); |
---|
| 901 | /* basis factorization must exist */ |
---|
| 902 | xassert(glp_bf_exists(mip)); |
---|
| 903 | /* obtain (fractional) value of x[j] in optimal basic solution |
---|
| 904 | to LP relaxation of the current subproblem */ |
---|
| 905 | xassert(1 <= j && j <= n); |
---|
| 906 | beta = mip->col[j]->prim; |
---|
| 907 | /* since the value of x[j] is fractional, it is basic; compute |
---|
| 908 | corresponding row of the simplex table */ |
---|
| 909 | len = lpx_eval_tab_row(mip, m+j, ind, val); |
---|
| 910 | /* kase < 0 means down-branch; kase > 0 means up-branch */ |
---|
| 911 | for (kase = -1; kase <= +1; kase += 2) |
---|
| 912 | { /* for down-branch we introduce new upper bound floor(beta) |
---|
| 913 | for x[j]; similarly, for up-branch we introduce new lower |
---|
| 914 | bound ceil(beta) for x[j]; in the current basis this new |
---|
| 915 | upper/lower bound is violated, so in the adjacent basis |
---|
| 916 | x[j] will leave the basis and go to its new upper/lower |
---|
| 917 | bound; we need to know which non-basic variable x[k] should |
---|
| 918 | enter the basis to keep dual feasibility */ |
---|
| 919 | #if 0 /* 23/XI-2009 */ |
---|
| 920 | k = lpx_dual_ratio_test(mip, len, ind, val, kase, 1e-7); |
---|
| 921 | #else |
---|
| 922 | k = lpx_dual_ratio_test(mip, len, ind, val, kase, 1e-9); |
---|
| 923 | #endif |
---|
| 924 | /* if no variable has been chosen, current basis being primal |
---|
| 925 | infeasible due to the new upper/lower bound of x[j] is dual |
---|
| 926 | unbounded, therefore, LP relaxation to corresponding branch |
---|
| 927 | has no primal feasible solution */ |
---|
| 928 | if (k == 0) |
---|
| 929 | { if (mip->dir == GLP_MIN) |
---|
| 930 | { if (kase < 0) |
---|
| 931 | *dn = +DBL_MAX; |
---|
| 932 | else |
---|
| 933 | *up = +DBL_MAX; |
---|
| 934 | } |
---|
| 935 | else if (mip->dir == GLP_MAX) |
---|
| 936 | { if (kase < 0) |
---|
| 937 | *dn = -DBL_MAX; |
---|
| 938 | else |
---|
| 939 | *up = -DBL_MAX; |
---|
| 940 | } |
---|
| 941 | else |
---|
| 942 | xassert(mip != mip); |
---|
| 943 | continue; |
---|
| 944 | } |
---|
| 945 | xassert(1 <= k && k <= m+n); |
---|
| 946 | /* row of the simplex table corresponding to specified basic |
---|
| 947 | variable x[j] is the following: |
---|
| 948 | x[j] = ... + alfa * x[k] + ... ; |
---|
| 949 | we need to know influence coefficient, alfa, at non-basic |
---|
| 950 | variable x[k] chosen with the dual ratio test */ |
---|
| 951 | for (t = 1; t <= len; t++) |
---|
| 952 | if (ind[t] == k) break; |
---|
| 953 | xassert(1 <= t && t <= len); |
---|
| 954 | alfa = val[t]; |
---|
| 955 | /* determine status and reduced cost of variable x[k] */ |
---|
| 956 | if (k <= m) |
---|
| 957 | { stat = mip->row[k]->stat; |
---|
| 958 | gamma = mip->row[k]->dual; |
---|
| 959 | } |
---|
| 960 | else |
---|
| 961 | { stat = mip->col[k-m]->stat; |
---|
| 962 | gamma = mip->col[k-m]->dual; |
---|
| 963 | } |
---|
| 964 | /* x[k] cannot be basic or fixed non-basic */ |
---|
| 965 | xassert(stat == GLP_NL || stat == GLP_NU || stat == GLP_NF); |
---|
| 966 | /* if the current basis is dual degenerative, some reduced |
---|
| 967 | costs, which are close to zero, may have wrong sign due to |
---|
| 968 | round-off errors, so correct the sign of gamma */ |
---|
| 969 | if (mip->dir == GLP_MIN) |
---|
| 970 | { if (stat == GLP_NL && gamma < 0.0 || |
---|
| 971 | stat == GLP_NU && gamma > 0.0 || |
---|
| 972 | stat == GLP_NF) gamma = 0.0; |
---|
| 973 | } |
---|
| 974 | else if (mip->dir == GLP_MAX) |
---|
| 975 | { if (stat == GLP_NL && gamma > 0.0 || |
---|
| 976 | stat == GLP_NU && gamma < 0.0 || |
---|
| 977 | stat == GLP_NF) gamma = 0.0; |
---|
| 978 | } |
---|
| 979 | else |
---|
| 980 | xassert(mip != mip); |
---|
| 981 | /* determine the change of x[j] in the adjacent basis: |
---|
| 982 | delta x[j] = new x[j] - old x[j] */ |
---|
| 983 | delta = (kase < 0 ? floor(beta) : ceil(beta)) - beta; |
---|
| 984 | /* compute the change of x[k] in the adjacent basis: |
---|
| 985 | delta x[k] = new x[k] - old x[k] = delta x[j] / alfa */ |
---|
| 986 | delta /= alfa; |
---|
| 987 | /* compute the change of the objective in the adjacent basis: |
---|
| 988 | delta z = new z - old z = gamma * delta x[k] */ |
---|
| 989 | dz = gamma * delta; |
---|
| 990 | if (mip->dir == GLP_MIN) |
---|
| 991 | xassert(dz >= 0.0); |
---|
| 992 | else if (mip->dir == GLP_MAX) |
---|
| 993 | xassert(dz <= 0.0); |
---|
| 994 | else |
---|
| 995 | xassert(mip != mip); |
---|
| 996 | /* compute the new objective value in the adjacent basis: |
---|
| 997 | new z = old z + delta z */ |
---|
| 998 | if (kase < 0) |
---|
| 999 | *dn = mip->obj_val + dz; |
---|
| 1000 | else |
---|
| 1001 | *up = mip->obj_val + dz; |
---|
| 1002 | } |
---|
| 1003 | /*xprintf("obj = %g; dn = %g; up = %g\n", |
---|
| 1004 | mip->obj_val, *dn, *up);*/ |
---|
| 1005 | return; |
---|
| 1006 | } |
---|
| 1007 | |
---|
| 1008 | /*********************************************************************** |
---|
| 1009 | * NAME |
---|
| 1010 | * |
---|
| 1011 | * ios_round_bound - improve local bound by rounding |
---|
| 1012 | * |
---|
| 1013 | * SYNOPSIS |
---|
| 1014 | * |
---|
| 1015 | * #include "glpios.h" |
---|
| 1016 | * double ios_round_bound(glp_tree *tree, double bound); |
---|
| 1017 | * |
---|
| 1018 | * RETURNS |
---|
| 1019 | * |
---|
| 1020 | * For the given local bound for any integer feasible solution to the |
---|
| 1021 | * current subproblem the routine ios_round_bound returns an improved |
---|
| 1022 | * local bound for the same integer feasible solution. |
---|
| 1023 | * |
---|
| 1024 | * BACKGROUND |
---|
| 1025 | * |
---|
| 1026 | * Let the current subproblem has the following objective function: |
---|
| 1027 | * |
---|
| 1028 | * z = sum c[j] * x[j] + s >= b, (1) |
---|
| 1029 | * j in J |
---|
| 1030 | * |
---|
| 1031 | * where J = {j: c[j] is non-zero and integer, x[j] is integer}, s is |
---|
| 1032 | * the sum of terms corresponding to fixed variables, b is an initial |
---|
| 1033 | * local bound (minimization). |
---|
| 1034 | * |
---|
| 1035 | * From (1) it follows that: |
---|
| 1036 | * |
---|
| 1037 | * d * sum (c[j] / d) * x[j] + s >= b, (2) |
---|
| 1038 | * j in J |
---|
| 1039 | * |
---|
| 1040 | * or, equivalently, |
---|
| 1041 | * |
---|
| 1042 | * sum (c[j] / d) * x[j] >= (b - s) / d = h, (3) |
---|
| 1043 | * j in J |
---|
| 1044 | * |
---|
| 1045 | * where d = gcd(c[j]). Since the left-hand side of (3) is integer, |
---|
| 1046 | * h = (b - s) / d can be rounded up to the nearest integer: |
---|
| 1047 | * |
---|
| 1048 | * h' = ceil(h) = (b' - s) / d, (4) |
---|
| 1049 | * |
---|
| 1050 | * that gives an rounded, improved local bound: |
---|
| 1051 | * |
---|
| 1052 | * b' = d * h' + s. (5) |
---|
| 1053 | * |
---|
| 1054 | * In case of maximization '>=' in (1) should be replaced by '<=' that |
---|
| 1055 | * leads to the following formula: |
---|
| 1056 | * |
---|
| 1057 | * h' = floor(h) = (b' - s) / d, (6) |
---|
| 1058 | * |
---|
| 1059 | * which should used in the same way as (4). |
---|
| 1060 | * |
---|
| 1061 | * NOTE: If b is a valid local bound for a child of the current |
---|
| 1062 | * subproblem, b' is also valid for that child subproblem. */ |
---|
| 1063 | |
---|
| 1064 | double ios_round_bound(glp_tree *tree, double bound) |
---|
| 1065 | { glp_prob *mip = tree->mip; |
---|
| 1066 | int n = mip->n; |
---|
| 1067 | int d, j, nn, *c = tree->iwrk; |
---|
| 1068 | double s, h; |
---|
| 1069 | /* determine c[j] and compute s */ |
---|
| 1070 | nn = 0, s = mip->c0, d = 0; |
---|
| 1071 | for (j = 1; j <= n; j++) |
---|
| 1072 | { GLPCOL *col = mip->col[j]; |
---|
| 1073 | if (col->coef == 0.0) continue; |
---|
| 1074 | if (col->type == GLP_FX) |
---|
| 1075 | { /* fixed variable */ |
---|
| 1076 | s += col->coef * col->prim; |
---|
| 1077 | } |
---|
| 1078 | else |
---|
| 1079 | { /* non-fixed variable */ |
---|
| 1080 | if (col->kind != GLP_IV) goto skip; |
---|
| 1081 | if (col->coef != floor(col->coef)) goto skip; |
---|
| 1082 | if (fabs(col->coef) <= (double)INT_MAX) |
---|
| 1083 | c[++nn] = (int)fabs(col->coef); |
---|
| 1084 | else |
---|
| 1085 | d = 1; |
---|
| 1086 | } |
---|
| 1087 | } |
---|
| 1088 | /* compute d = gcd(c[1],...c[nn]) */ |
---|
| 1089 | if (d == 0) |
---|
| 1090 | { if (nn == 0) goto skip; |
---|
| 1091 | d = gcdn(nn, c); |
---|
| 1092 | } |
---|
| 1093 | xassert(d > 0); |
---|
| 1094 | /* compute new local bound */ |
---|
| 1095 | if (mip->dir == GLP_MIN) |
---|
| 1096 | { if (bound != +DBL_MAX) |
---|
| 1097 | { h = (bound - s) / (double)d; |
---|
| 1098 | if (h >= floor(h) + 0.001) |
---|
| 1099 | { /* round up */ |
---|
| 1100 | h = ceil(h); |
---|
| 1101 | /*xprintf("d = %d; old = %g; ", d, bound);*/ |
---|
| 1102 | bound = (double)d * h + s; |
---|
| 1103 | /*xprintf("new = %g\n", bound);*/ |
---|
| 1104 | } |
---|
| 1105 | } |
---|
| 1106 | } |
---|
| 1107 | else if (mip->dir == GLP_MAX) |
---|
| 1108 | { if (bound != -DBL_MAX) |
---|
| 1109 | { h = (bound - s) / (double)d; |
---|
| 1110 | if (h <= ceil(h) - 0.001) |
---|
| 1111 | { /* round down */ |
---|
| 1112 | h = floor(h); |
---|
| 1113 | bound = (double)d * h + s; |
---|
| 1114 | } |
---|
| 1115 | } |
---|
| 1116 | } |
---|
| 1117 | else |
---|
| 1118 | xassert(mip != mip); |
---|
| 1119 | skip: return bound; |
---|
| 1120 | } |
---|
| 1121 | |
---|
| 1122 | /*********************************************************************** |
---|
| 1123 | * NAME |
---|
| 1124 | * |
---|
| 1125 | * ios_is_hopeful - check if subproblem is hopeful |
---|
| 1126 | * |
---|
| 1127 | * SYNOPSIS |
---|
| 1128 | * |
---|
| 1129 | * #include "glpios.h" |
---|
| 1130 | * int ios_is_hopeful(glp_tree *tree, double bound); |
---|
| 1131 | * |
---|
| 1132 | * DESCRIPTION |
---|
| 1133 | * |
---|
| 1134 | * Given the local bound of a subproblem the routine ios_is_hopeful |
---|
| 1135 | * checks if the subproblem can have an integer optimal solution which |
---|
| 1136 | * is better than the best one currently known. |
---|
| 1137 | * |
---|
| 1138 | * RETURNS |
---|
| 1139 | * |
---|
| 1140 | * If the subproblem can have a better integer optimal solution, the |
---|
| 1141 | * routine returns non-zero; otherwise, if the corresponding branch can |
---|
| 1142 | * be pruned, the routine returns zero. */ |
---|
| 1143 | |
---|
| 1144 | int ios_is_hopeful(glp_tree *tree, double bound) |
---|
| 1145 | { glp_prob *mip = tree->mip; |
---|
| 1146 | int ret = 1; |
---|
| 1147 | double eps; |
---|
| 1148 | if (mip->mip_stat == GLP_FEAS) |
---|
| 1149 | { eps = tree->parm->tol_obj * (1.0 + fabs(mip->mip_obj)); |
---|
| 1150 | switch (mip->dir) |
---|
| 1151 | { case GLP_MIN: |
---|
| 1152 | if (bound >= mip->mip_obj - eps) ret = 0; |
---|
| 1153 | break; |
---|
| 1154 | case GLP_MAX: |
---|
| 1155 | if (bound <= mip->mip_obj + eps) ret = 0; |
---|
| 1156 | break; |
---|
| 1157 | default: |
---|
| 1158 | xassert(mip != mip); |
---|
| 1159 | } |
---|
| 1160 | } |
---|
| 1161 | else |
---|
| 1162 | { switch (mip->dir) |
---|
| 1163 | { case GLP_MIN: |
---|
| 1164 | if (bound == +DBL_MAX) ret = 0; |
---|
| 1165 | break; |
---|
| 1166 | case GLP_MAX: |
---|
| 1167 | if (bound == -DBL_MAX) ret = 0; |
---|
| 1168 | break; |
---|
| 1169 | default: |
---|
| 1170 | xassert(mip != mip); |
---|
| 1171 | } |
---|
| 1172 | } |
---|
| 1173 | return ret; |
---|
| 1174 | } |
---|
| 1175 | |
---|
| 1176 | /*********************************************************************** |
---|
| 1177 | * NAME |
---|
| 1178 | * |
---|
| 1179 | * ios_best_node - find active node with best local bound |
---|
| 1180 | * |
---|
| 1181 | * SYNOPSIS |
---|
| 1182 | * |
---|
| 1183 | * #include "glpios.h" |
---|
| 1184 | * int ios_best_node(glp_tree *tree); |
---|
| 1185 | * |
---|
| 1186 | * DESCRIPTION |
---|
| 1187 | * |
---|
| 1188 | * The routine ios_best_node finds an active node whose local bound is |
---|
| 1189 | * best among other active nodes. |
---|
| 1190 | * |
---|
| 1191 | * It is understood that the integer optimal solution of the original |
---|
| 1192 | * mip problem cannot be better than the best bound, so the best bound |
---|
| 1193 | * is an lower (minimization) or upper (maximization) global bound for |
---|
| 1194 | * the original problem. |
---|
| 1195 | * |
---|
| 1196 | * RETURNS |
---|
| 1197 | * |
---|
| 1198 | * The routine ios_best_node returns the subproblem reference number |
---|
| 1199 | * for the best node. However, if the tree is empty, it returns zero. */ |
---|
| 1200 | |
---|
| 1201 | int ios_best_node(glp_tree *tree) |
---|
| 1202 | { IOSNPD *node, *best = NULL; |
---|
| 1203 | switch (tree->mip->dir) |
---|
| 1204 | { case GLP_MIN: |
---|
| 1205 | /* minimization */ |
---|
| 1206 | for (node = tree->head; node != NULL; node = node->next) |
---|
| 1207 | if (best == NULL || best->bound > node->bound) |
---|
| 1208 | best = node; |
---|
| 1209 | break; |
---|
| 1210 | case GLP_MAX: |
---|
| 1211 | /* maximization */ |
---|
| 1212 | for (node = tree->head; node != NULL; node = node->next) |
---|
| 1213 | if (best == NULL || best->bound < node->bound) |
---|
| 1214 | best = node; |
---|
| 1215 | break; |
---|
| 1216 | default: |
---|
| 1217 | xassert(tree != tree); |
---|
| 1218 | } |
---|
| 1219 | return best == NULL ? 0 : best->p; |
---|
| 1220 | } |
---|
| 1221 | |
---|
| 1222 | /*********************************************************************** |
---|
| 1223 | * NAME |
---|
| 1224 | * |
---|
| 1225 | * ios_relative_gap - compute relative mip gap |
---|
| 1226 | * |
---|
| 1227 | * SYNOPSIS |
---|
| 1228 | * |
---|
| 1229 | * #include "glpios.h" |
---|
| 1230 | * double ios_relative_gap(glp_tree *tree); |
---|
| 1231 | * |
---|
| 1232 | * DESCRIPTION |
---|
| 1233 | * |
---|
| 1234 | * The routine ios_relative_gap computes the relative mip gap using the |
---|
| 1235 | * formula: |
---|
| 1236 | * |
---|
| 1237 | * gap = |best_mip - best_bnd| / (|best_mip| + DBL_EPSILON), |
---|
| 1238 | * |
---|
| 1239 | * where best_mip is the best integer feasible solution found so far, |
---|
| 1240 | * best_bnd is the best (global) bound. If no integer feasible solution |
---|
| 1241 | * has been found yet, rel_gap is set to DBL_MAX. |
---|
| 1242 | * |
---|
| 1243 | * RETURNS |
---|
| 1244 | * |
---|
| 1245 | * The routine ios_relative_gap returns the relative mip gap. */ |
---|
| 1246 | |
---|
| 1247 | double ios_relative_gap(glp_tree *tree) |
---|
| 1248 | { glp_prob *mip = tree->mip; |
---|
| 1249 | int p; |
---|
| 1250 | double best_mip, best_bnd, gap; |
---|
| 1251 | if (mip->mip_stat == GLP_FEAS) |
---|
| 1252 | { best_mip = mip->mip_obj; |
---|
| 1253 | p = ios_best_node(tree); |
---|
| 1254 | if (p == 0) |
---|
| 1255 | { /* the tree is empty */ |
---|
| 1256 | gap = 0.0; |
---|
| 1257 | } |
---|
| 1258 | else |
---|
| 1259 | { best_bnd = tree->slot[p].node->bound; |
---|
| 1260 | gap = fabs(best_mip - best_bnd) / (fabs(best_mip) + |
---|
| 1261 | DBL_EPSILON); |
---|
| 1262 | } |
---|
| 1263 | } |
---|
| 1264 | else |
---|
| 1265 | { /* no integer feasible solution has been found yet */ |
---|
| 1266 | gap = DBL_MAX; |
---|
| 1267 | } |
---|
| 1268 | return gap; |
---|
| 1269 | } |
---|
| 1270 | |
---|
| 1271 | /*********************************************************************** |
---|
| 1272 | * NAME |
---|
| 1273 | * |
---|
| 1274 | * ios_solve_node - solve LP relaxation of current subproblem |
---|
| 1275 | * |
---|
| 1276 | * SYNOPSIS |
---|
| 1277 | * |
---|
| 1278 | * #include "glpios.h" |
---|
| 1279 | * int ios_solve_node(glp_tree *tree); |
---|
| 1280 | * |
---|
| 1281 | * DESCRIPTION |
---|
| 1282 | * |
---|
| 1283 | * The routine ios_solve_node re-optimizes LP relaxation of the current |
---|
| 1284 | * subproblem using the dual simplex method. |
---|
| 1285 | * |
---|
| 1286 | * RETURNS |
---|
| 1287 | * |
---|
| 1288 | * The routine returns the code which is reported by glp_simplex. */ |
---|
| 1289 | |
---|
| 1290 | int ios_solve_node(glp_tree *tree) |
---|
| 1291 | { glp_prob *mip = tree->mip; |
---|
| 1292 | glp_smcp parm; |
---|
| 1293 | int ret; |
---|
| 1294 | /* the current subproblem must exist */ |
---|
| 1295 | xassert(tree->curr != NULL); |
---|
| 1296 | /* set some control parameters */ |
---|
| 1297 | glp_init_smcp(&parm); |
---|
| 1298 | switch (tree->parm->msg_lev) |
---|
| 1299 | { case GLP_MSG_OFF: |
---|
| 1300 | parm.msg_lev = GLP_MSG_OFF; break; |
---|
| 1301 | case GLP_MSG_ERR: |
---|
| 1302 | parm.msg_lev = GLP_MSG_ERR; break; |
---|
| 1303 | case GLP_MSG_ON: |
---|
| 1304 | case GLP_MSG_ALL: |
---|
| 1305 | parm.msg_lev = GLP_MSG_ON; break; |
---|
| 1306 | case GLP_MSG_DBG: |
---|
| 1307 | parm.msg_lev = GLP_MSG_ALL; break; |
---|
| 1308 | default: |
---|
| 1309 | xassert(tree != tree); |
---|
| 1310 | } |
---|
| 1311 | parm.meth = GLP_DUALP; |
---|
| 1312 | if (tree->parm->msg_lev < GLP_MSG_DBG) |
---|
| 1313 | parm.out_dly = tree->parm->out_dly; |
---|
| 1314 | else |
---|
| 1315 | parm.out_dly = 0; |
---|
| 1316 | /* if the incumbent objective value is already known, use it to |
---|
| 1317 | prematurely terminate the dual simplex search */ |
---|
| 1318 | if (mip->mip_stat == GLP_FEAS) |
---|
| 1319 | { switch (tree->mip->dir) |
---|
| 1320 | { case GLP_MIN: |
---|
| 1321 | parm.obj_ul = mip->mip_obj; |
---|
| 1322 | break; |
---|
| 1323 | case GLP_MAX: |
---|
| 1324 | parm.obj_ll = mip->mip_obj; |
---|
| 1325 | break; |
---|
| 1326 | default: |
---|
| 1327 | xassert(mip != mip); |
---|
| 1328 | } |
---|
| 1329 | } |
---|
| 1330 | /* try to solve/re-optimize the LP relaxation */ |
---|
| 1331 | ret = glp_simplex(mip, &parm); |
---|
| 1332 | tree->curr->solved++; |
---|
| 1333 | #if 0 |
---|
| 1334 | xprintf("ret = %d; status = %d; pbs = %d; dbs = %d; some = %d\n", |
---|
| 1335 | ret, glp_get_status(mip), mip->pbs_stat, mip->dbs_stat, |
---|
| 1336 | mip->some); |
---|
| 1337 | lpx_print_sol(mip, "sol"); |
---|
| 1338 | #endif |
---|
| 1339 | return ret; |
---|
| 1340 | } |
---|
| 1341 | |
---|
| 1342 | /**********************************************************************/ |
---|
| 1343 | |
---|
| 1344 | IOSPOOL *ios_create_pool(glp_tree *tree) |
---|
| 1345 | { /* create cut pool */ |
---|
| 1346 | IOSPOOL *pool; |
---|
| 1347 | #if 0 |
---|
| 1348 | pool = dmp_get_atom(tree->pool, sizeof(IOSPOOL)); |
---|
| 1349 | #else |
---|
| 1350 | xassert(tree == tree); |
---|
| 1351 | pool = xmalloc(sizeof(IOSPOOL)); |
---|
| 1352 | #endif |
---|
| 1353 | pool->size = 0; |
---|
| 1354 | pool->head = pool->tail = NULL; |
---|
| 1355 | pool->ord = 0, pool->curr = NULL; |
---|
| 1356 | return pool; |
---|
| 1357 | } |
---|
| 1358 | |
---|
| 1359 | int ios_add_row(glp_tree *tree, IOSPOOL *pool, |
---|
| 1360 | const char *name, int klass, int flags, int len, const int ind[], |
---|
| 1361 | const double val[], int type, double rhs) |
---|
| 1362 | { /* add row (constraint) to the cut pool */ |
---|
| 1363 | IOSCUT *cut; |
---|
| 1364 | IOSAIJ *aij; |
---|
| 1365 | int k; |
---|
| 1366 | xassert(pool != NULL); |
---|
| 1367 | cut = dmp_get_atom(tree->pool, sizeof(IOSCUT)); |
---|
| 1368 | if (name == NULL || name[0] == '\0') |
---|
| 1369 | cut->name = NULL; |
---|
| 1370 | else |
---|
| 1371 | { for (k = 0; name[k] != '\0'; k++) |
---|
| 1372 | { if (k == 256) |
---|
| 1373 | xerror("glp_ios_add_row: cut name too long\n"); |
---|
| 1374 | if (iscntrl((unsigned char)name[k])) |
---|
| 1375 | xerror("glp_ios_add_row: cut name contains invalid chara" |
---|
| 1376 | "cter(s)\n"); |
---|
| 1377 | } |
---|
| 1378 | cut->name = dmp_get_atom(tree->pool, strlen(name)+1); |
---|
| 1379 | strcpy(cut->name, name); |
---|
| 1380 | } |
---|
| 1381 | if (!(0 <= klass && klass <= 255)) |
---|
| 1382 | xerror("glp_ios_add_row: klass = %d; invalid cut class\n", |
---|
| 1383 | klass); |
---|
| 1384 | cut->klass = (unsigned char)klass; |
---|
| 1385 | if (flags != 0) |
---|
| 1386 | xerror("glp_ios_add_row: flags = %d; invalid cut flags\n", |
---|
| 1387 | flags); |
---|
| 1388 | cut->ptr = NULL; |
---|
| 1389 | if (!(0 <= len && len <= tree->n)) |
---|
| 1390 | xerror("glp_ios_add_row: len = %d; invalid cut length\n", |
---|
| 1391 | len); |
---|
| 1392 | for (k = 1; k <= len; k++) |
---|
| 1393 | { aij = dmp_get_atom(tree->pool, sizeof(IOSAIJ)); |
---|
| 1394 | if (!(1 <= ind[k] && ind[k] <= tree->n)) |
---|
| 1395 | xerror("glp_ios_add_row: ind[%d] = %d; column index out of " |
---|
| 1396 | "range\n", k, ind[k]); |
---|
| 1397 | aij->j = ind[k]; |
---|
| 1398 | aij->val = val[k]; |
---|
| 1399 | aij->next = cut->ptr; |
---|
| 1400 | cut->ptr = aij; |
---|
| 1401 | } |
---|
| 1402 | if (!(type == GLP_LO || type == GLP_UP || type == GLP_FX)) |
---|
| 1403 | xerror("glp_ios_add_row: type = %d; invalid cut type\n", |
---|
| 1404 | type); |
---|
| 1405 | cut->type = (unsigned char)type; |
---|
| 1406 | cut->rhs = rhs; |
---|
| 1407 | cut->prev = pool->tail; |
---|
| 1408 | cut->next = NULL; |
---|
| 1409 | if (cut->prev == NULL) |
---|
| 1410 | pool->head = cut; |
---|
| 1411 | else |
---|
| 1412 | cut->prev->next = cut; |
---|
| 1413 | pool->tail = cut; |
---|
| 1414 | pool->size++; |
---|
| 1415 | return pool->size; |
---|
| 1416 | } |
---|
| 1417 | |
---|
| 1418 | IOSCUT *ios_find_row(IOSPOOL *pool, int i) |
---|
| 1419 | { /* find row (constraint) in the cut pool */ |
---|
| 1420 | /* (smart linear search) */ |
---|
| 1421 | xassert(pool != NULL); |
---|
| 1422 | xassert(1 <= i && i <= pool->size); |
---|
| 1423 | if (pool->ord == 0) |
---|
| 1424 | { xassert(pool->curr == NULL); |
---|
| 1425 | pool->ord = 1; |
---|
| 1426 | pool->curr = pool->head; |
---|
| 1427 | } |
---|
| 1428 | xassert(pool->curr != NULL); |
---|
| 1429 | if (i < pool->ord) |
---|
| 1430 | { if (i < pool->ord - i) |
---|
| 1431 | { pool->ord = 1; |
---|
| 1432 | pool->curr = pool->head; |
---|
| 1433 | while (pool->ord != i) |
---|
| 1434 | { pool->ord++; |
---|
| 1435 | xassert(pool->curr != NULL); |
---|
| 1436 | pool->curr = pool->curr->next; |
---|
| 1437 | } |
---|
| 1438 | } |
---|
| 1439 | else |
---|
| 1440 | { while (pool->ord != i) |
---|
| 1441 | { pool->ord--; |
---|
| 1442 | xassert(pool->curr != NULL); |
---|
| 1443 | pool->curr = pool->curr->prev; |
---|
| 1444 | } |
---|
| 1445 | } |
---|
| 1446 | } |
---|
| 1447 | else if (i > pool->ord) |
---|
| 1448 | { if (i - pool->ord < pool->size - i) |
---|
| 1449 | { while (pool->ord != i) |
---|
| 1450 | { pool->ord++; |
---|
| 1451 | xassert(pool->curr != NULL); |
---|
| 1452 | pool->curr = pool->curr->next; |
---|
| 1453 | } |
---|
| 1454 | } |
---|
| 1455 | else |
---|
| 1456 | { pool->ord = pool->size; |
---|
| 1457 | pool->curr = pool->tail; |
---|
| 1458 | while (pool->ord != i) |
---|
| 1459 | { pool->ord--; |
---|
| 1460 | xassert(pool->curr != NULL); |
---|
| 1461 | pool->curr = pool->curr->prev; |
---|
| 1462 | } |
---|
| 1463 | } |
---|
| 1464 | } |
---|
| 1465 | xassert(pool->ord == i); |
---|
| 1466 | xassert(pool->curr != NULL); |
---|
| 1467 | return pool->curr; |
---|
| 1468 | } |
---|
| 1469 | |
---|
| 1470 | void ios_del_row(glp_tree *tree, IOSPOOL *pool, int i) |
---|
| 1471 | { /* remove row (constraint) from the cut pool */ |
---|
| 1472 | IOSCUT *cut; |
---|
| 1473 | IOSAIJ *aij; |
---|
| 1474 | xassert(pool != NULL); |
---|
| 1475 | if (!(1 <= i && i <= pool->size)) |
---|
| 1476 | xerror("glp_ios_del_row: i = %d; cut number out of range\n", |
---|
| 1477 | i); |
---|
| 1478 | cut = ios_find_row(pool, i); |
---|
| 1479 | xassert(pool->curr == cut); |
---|
| 1480 | if (cut->next != NULL) |
---|
| 1481 | pool->curr = cut->next; |
---|
| 1482 | else if (cut->prev != NULL) |
---|
| 1483 | pool->ord--, pool->curr = cut->prev; |
---|
| 1484 | else |
---|
| 1485 | pool->ord = 0, pool->curr = NULL; |
---|
| 1486 | if (cut->name != NULL) |
---|
| 1487 | dmp_free_atom(tree->pool, cut->name, strlen(cut->name)+1); |
---|
| 1488 | if (cut->prev == NULL) |
---|
| 1489 | { xassert(pool->head == cut); |
---|
| 1490 | pool->head = cut->next; |
---|
| 1491 | } |
---|
| 1492 | else |
---|
| 1493 | { xassert(cut->prev->next == cut); |
---|
| 1494 | cut->prev->next = cut->next; |
---|
| 1495 | } |
---|
| 1496 | if (cut->next == NULL) |
---|
| 1497 | { xassert(pool->tail == cut); |
---|
| 1498 | pool->tail = cut->prev; |
---|
| 1499 | } |
---|
| 1500 | else |
---|
| 1501 | { xassert(cut->next->prev == cut); |
---|
| 1502 | cut->next->prev = cut->prev; |
---|
| 1503 | } |
---|
| 1504 | while (cut->ptr != NULL) |
---|
| 1505 | { aij = cut->ptr; |
---|
| 1506 | cut->ptr = aij->next; |
---|
| 1507 | dmp_free_atom(tree->pool, aij, sizeof(IOSAIJ)); |
---|
| 1508 | } |
---|
| 1509 | dmp_free_atom(tree->pool, cut, sizeof(IOSCUT)); |
---|
| 1510 | pool->size--; |
---|
| 1511 | return; |
---|
| 1512 | } |
---|
| 1513 | |
---|
| 1514 | void ios_clear_pool(glp_tree *tree, IOSPOOL *pool) |
---|
| 1515 | { /* remove all rows (constraints) from the cut pool */ |
---|
| 1516 | xassert(pool != NULL); |
---|
| 1517 | while (pool->head != NULL) |
---|
| 1518 | { IOSCUT *cut = pool->head; |
---|
| 1519 | pool->head = cut->next; |
---|
| 1520 | if (cut->name != NULL) |
---|
| 1521 | dmp_free_atom(tree->pool, cut->name, strlen(cut->name)+1); |
---|
| 1522 | while (cut->ptr != NULL) |
---|
| 1523 | { IOSAIJ *aij = cut->ptr; |
---|
| 1524 | cut->ptr = aij->next; |
---|
| 1525 | dmp_free_atom(tree->pool, aij, sizeof(IOSAIJ)); |
---|
| 1526 | } |
---|
| 1527 | dmp_free_atom(tree->pool, cut, sizeof(IOSCUT)); |
---|
| 1528 | } |
---|
| 1529 | pool->size = 0; |
---|
| 1530 | pool->head = pool->tail = NULL; |
---|
| 1531 | pool->ord = 0, pool->curr = NULL; |
---|
| 1532 | return; |
---|
| 1533 | } |
---|
| 1534 | |
---|
| 1535 | void ios_delete_pool(glp_tree *tree, IOSPOOL *pool) |
---|
| 1536 | { /* delete cut pool */ |
---|
| 1537 | xassert(pool != NULL); |
---|
| 1538 | ios_clear_pool(tree, pool); |
---|
| 1539 | xfree(pool); |
---|
| 1540 | return; |
---|
| 1541 | } |
---|
| 1542 | |
---|
| 1543 | /**********************************************************************/ |
---|
| 1544 | |
---|
| 1545 | #if 0 |
---|
| 1546 | static int refer_to_node(glp_tree *tree, int j) |
---|
| 1547 | { /* determine node number corresponding to binary variable x[j] or |
---|
| 1548 | its complement */ |
---|
| 1549 | glp_prob *mip = tree->mip; |
---|
| 1550 | int n = mip->n; |
---|
| 1551 | int *ref; |
---|
| 1552 | if (j > 0) |
---|
| 1553 | ref = tree->n_ref; |
---|
| 1554 | else |
---|
| 1555 | ref = tree->c_ref, j = - j; |
---|
| 1556 | xassert(1 <= j && j <= n); |
---|
| 1557 | if (ref[j] == 0) |
---|
| 1558 | { /* new node is needed */ |
---|
| 1559 | SCG *g = tree->g; |
---|
| 1560 | int n_max = g->n_max; |
---|
| 1561 | ref[j] = scg_add_nodes(g, 1); |
---|
| 1562 | if (g->n_max > n_max) |
---|
| 1563 | { int *save = tree->j_ref; |
---|
| 1564 | tree->j_ref = xcalloc(1+g->n_max, sizeof(int)); |
---|
| 1565 | memcpy(&tree->j_ref[1], &save[1], g->n * sizeof(int)); |
---|
| 1566 | xfree(save); |
---|
| 1567 | } |
---|
| 1568 | xassert(ref[j] == g->n); |
---|
| 1569 | tree->j_ref[ref[j]] = j; |
---|
| 1570 | xassert(tree->curr != NULL); |
---|
| 1571 | if (tree->curr->level > 0) tree->curr->own_nn++; |
---|
| 1572 | } |
---|
| 1573 | return ref[j]; |
---|
| 1574 | } |
---|
| 1575 | #endif |
---|
| 1576 | |
---|
| 1577 | #if 0 |
---|
| 1578 | void ios_add_edge(glp_tree *tree, int j1, int j2) |
---|
| 1579 | { /* add new edge to the conflict graph */ |
---|
| 1580 | glp_prob *mip = tree->mip; |
---|
| 1581 | int n = mip->n; |
---|
| 1582 | SCGRIB *e; |
---|
| 1583 | int first, i1, i2; |
---|
| 1584 | xassert(-n <= j1 && j1 <= +n && j1 != 0); |
---|
| 1585 | xassert(-n <= j2 && j2 <= +n && j2 != 0); |
---|
| 1586 | xassert(j1 != j2); |
---|
| 1587 | /* determine number of the first node, which was added for the |
---|
| 1588 | current subproblem */ |
---|
| 1589 | xassert(tree->curr != NULL); |
---|
| 1590 | first = tree->g->n - tree->curr->own_nn + 1; |
---|
| 1591 | /* determine node numbers for both endpoints */ |
---|
| 1592 | i1 = refer_to_node(tree, j1); |
---|
| 1593 | i2 = refer_to_node(tree, j2); |
---|
| 1594 | /* add edge (i1,i2) to the conflict graph */ |
---|
| 1595 | e = scg_add_edge(tree->g, i1, i2); |
---|
| 1596 | /* if the current subproblem is not the root and both endpoints |
---|
| 1597 | were created on some previous levels, save the edge */ |
---|
| 1598 | if (tree->curr->level > 0 && i1 < first && i2 < first) |
---|
| 1599 | { IOSRIB *rib; |
---|
| 1600 | rib = dmp_get_atom(tree->pool, sizeof(IOSRIB)); |
---|
| 1601 | rib->j1 = j1; |
---|
| 1602 | rib->j2 = j2; |
---|
| 1603 | rib->e = e; |
---|
| 1604 | rib->next = tree->curr->e_ptr; |
---|
| 1605 | tree->curr->e_ptr = rib; |
---|
| 1606 | } |
---|
| 1607 | return; |
---|
| 1608 | } |
---|
| 1609 | #endif |
---|
| 1610 | |
---|
| 1611 | /* eof */ |
---|