1 | /* glpios06.c (MIR cut generator) */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | * E-mail: <mao@gnu.org>. |
---|
10 | * |
---|
11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation, either version 3 of the License, or |
---|
14 | * (at your option) any later version. |
---|
15 | * |
---|
16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | * License for more details. |
---|
20 | * |
---|
21 | * You should have received a copy of the GNU General Public License |
---|
22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | ***********************************************************************/ |
---|
24 | |
---|
25 | #include "glpios.h" |
---|
26 | |
---|
27 | #define _MIR_DEBUG 0 |
---|
28 | |
---|
29 | #define MAXAGGR 5 |
---|
30 | /* maximal number of rows which can be aggregated */ |
---|
31 | |
---|
32 | struct MIR |
---|
33 | { /* MIR cut generator working area */ |
---|
34 | /*--------------------------------------------------------------*/ |
---|
35 | /* global information valid for the root subproblem */ |
---|
36 | int m; |
---|
37 | /* number of rows (in the root subproblem) */ |
---|
38 | int n; |
---|
39 | /* number of columns */ |
---|
40 | char *skip; /* char skip[1+m]; */ |
---|
41 | /* skip[i], 1 <= i <= m, is a flag that means that row i should |
---|
42 | not be used because (1) it is not suitable, or (2) because it |
---|
43 | has been used in the aggregated constraint */ |
---|
44 | char *isint; /* char isint[1+m+n]; */ |
---|
45 | /* isint[k], 1 <= k <= m+n, is a flag that means that variable |
---|
46 | x[k] is integer (otherwise, continuous) */ |
---|
47 | double *lb; /* double lb[1+m+n]; */ |
---|
48 | /* lb[k], 1 <= k <= m+n, is lower bound of x[k]; -DBL_MAX means |
---|
49 | that x[k] has no lower bound */ |
---|
50 | int *vlb; /* int vlb[1+m+n]; */ |
---|
51 | /* vlb[k] = k', 1 <= k <= m+n, is the number of integer variable, |
---|
52 | which defines variable lower bound x[k] >= lb[k] * x[k']; zero |
---|
53 | means that x[k] has simple lower bound */ |
---|
54 | double *ub; /* double ub[1+m+n]; */ |
---|
55 | /* ub[k], 1 <= k <= m+n, is upper bound of x[k]; +DBL_MAX means |
---|
56 | that x[k] has no upper bound */ |
---|
57 | int *vub; /* int vub[1+m+n]; */ |
---|
58 | /* vub[k] = k', 1 <= k <= m+n, is the number of integer variable, |
---|
59 | which defines variable upper bound x[k] <= ub[k] * x[k']; zero |
---|
60 | means that x[k] has simple upper bound */ |
---|
61 | /*--------------------------------------------------------------*/ |
---|
62 | /* current (fractional) point to be separated */ |
---|
63 | double *x; /* double x[1+m+n]; */ |
---|
64 | /* x[k] is current value of auxiliary (1 <= k <= m) or structural |
---|
65 | (m+1 <= k <= m+n) variable */ |
---|
66 | /*--------------------------------------------------------------*/ |
---|
67 | /* aggregated constraint sum a[k] * x[k] = b, which is a linear |
---|
68 | combination of original constraints transformed to equalities |
---|
69 | by introducing auxiliary variables */ |
---|
70 | int agg_cnt; |
---|
71 | /* number of rows (original constraints) used to build aggregated |
---|
72 | constraint, 1 <= agg_cnt <= MAXAGGR */ |
---|
73 | int *agg_row; /* int agg_row[1+MAXAGGR]; */ |
---|
74 | /* agg_row[k], 1 <= k <= agg_cnt, is the row number used to build |
---|
75 | aggregated constraint */ |
---|
76 | IOSVEC *agg_vec; /* IOSVEC agg_vec[1:m+n]; */ |
---|
77 | /* sparse vector of aggregated constraint coefficients, a[k] */ |
---|
78 | double agg_rhs; |
---|
79 | /* right-hand side of the aggregated constraint, b */ |
---|
80 | /*--------------------------------------------------------------*/ |
---|
81 | /* bound substitution flags for modified constraint */ |
---|
82 | char *subst; /* char subst[1+m+n]; */ |
---|
83 | /* subst[k], 1 <= k <= m+n, is a bound substitution flag used for |
---|
84 | variable x[k]: |
---|
85 | '?' - x[k] is missing in modified constraint |
---|
86 | 'L' - x[k] = (lower bound) + x'[k] |
---|
87 | 'U' - x[k] = (upper bound) - x'[k] */ |
---|
88 | /*--------------------------------------------------------------*/ |
---|
89 | /* modified constraint sum a'[k] * x'[k] = b', where x'[k] >= 0, |
---|
90 | derived from aggregated constraint by substituting bounds; |
---|
91 | note that due to substitution of variable bounds there may be |
---|
92 | additional terms in the modified constraint */ |
---|
93 | IOSVEC *mod_vec; /* IOSVEC mod_vec[1:m+n]; */ |
---|
94 | /* sparse vector of modified constraint coefficients, a'[k] */ |
---|
95 | double mod_rhs; |
---|
96 | /* right-hand side of the modified constraint, b' */ |
---|
97 | /*--------------------------------------------------------------*/ |
---|
98 | /* cutting plane sum alpha[k] * x[k] <= beta */ |
---|
99 | IOSVEC *cut_vec; /* IOSVEC cut_vec[1:m+n]; */ |
---|
100 | /* sparse vector of cutting plane coefficients, alpha[k] */ |
---|
101 | double cut_rhs; |
---|
102 | /* right-hand size of the cutting plane, beta */ |
---|
103 | }; |
---|
104 | |
---|
105 | /*********************************************************************** |
---|
106 | * NAME |
---|
107 | * |
---|
108 | * ios_mir_init - initialize MIR cut generator |
---|
109 | * |
---|
110 | * SYNOPSIS |
---|
111 | * |
---|
112 | * #include "glpios.h" |
---|
113 | * void *ios_mir_init(glp_tree *tree); |
---|
114 | * |
---|
115 | * DESCRIPTION |
---|
116 | * |
---|
117 | * The routine ios_mir_init initializes the MIR cut generator assuming |
---|
118 | * that the current subproblem is the root subproblem. |
---|
119 | * |
---|
120 | * RETURNS |
---|
121 | * |
---|
122 | * The routine ios_mir_init returns a pointer to the MIR cut generator |
---|
123 | * working area. */ |
---|
124 | |
---|
125 | static void set_row_attrib(glp_tree *tree, struct MIR *mir) |
---|
126 | { /* set global row attributes */ |
---|
127 | glp_prob *mip = tree->mip; |
---|
128 | int m = mir->m; |
---|
129 | int k; |
---|
130 | for (k = 1; k <= m; k++) |
---|
131 | { GLPROW *row = mip->row[k]; |
---|
132 | mir->skip[k] = 0; |
---|
133 | mir->isint[k] = 0; |
---|
134 | switch (row->type) |
---|
135 | { case GLP_FR: |
---|
136 | mir->lb[k] = -DBL_MAX, mir->ub[k] = +DBL_MAX; break; |
---|
137 | case GLP_LO: |
---|
138 | mir->lb[k] = row->lb, mir->ub[k] = +DBL_MAX; break; |
---|
139 | case GLP_UP: |
---|
140 | mir->lb[k] = -DBL_MAX, mir->ub[k] = row->ub; break; |
---|
141 | case GLP_DB: |
---|
142 | mir->lb[k] = row->lb, mir->ub[k] = row->ub; break; |
---|
143 | case GLP_FX: |
---|
144 | mir->lb[k] = mir->ub[k] = row->lb; break; |
---|
145 | default: |
---|
146 | xassert(row != row); |
---|
147 | } |
---|
148 | mir->vlb[k] = mir->vub[k] = 0; |
---|
149 | } |
---|
150 | return; |
---|
151 | } |
---|
152 | |
---|
153 | static void set_col_attrib(glp_tree *tree, struct MIR *mir) |
---|
154 | { /* set global column attributes */ |
---|
155 | glp_prob *mip = tree->mip; |
---|
156 | int m = mir->m; |
---|
157 | int n = mir->n; |
---|
158 | int k; |
---|
159 | for (k = m+1; k <= m+n; k++) |
---|
160 | { GLPCOL *col = mip->col[k-m]; |
---|
161 | switch (col->kind) |
---|
162 | { case GLP_CV: |
---|
163 | mir->isint[k] = 0; break; |
---|
164 | case GLP_IV: |
---|
165 | mir->isint[k] = 1; break; |
---|
166 | default: |
---|
167 | xassert(col != col); |
---|
168 | } |
---|
169 | switch (col->type) |
---|
170 | { case GLP_FR: |
---|
171 | mir->lb[k] = -DBL_MAX, mir->ub[k] = +DBL_MAX; break; |
---|
172 | case GLP_LO: |
---|
173 | mir->lb[k] = col->lb, mir->ub[k] = +DBL_MAX; break; |
---|
174 | case GLP_UP: |
---|
175 | mir->lb[k] = -DBL_MAX, mir->ub[k] = col->ub; break; |
---|
176 | case GLP_DB: |
---|
177 | mir->lb[k] = col->lb, mir->ub[k] = col->ub; break; |
---|
178 | case GLP_FX: |
---|
179 | mir->lb[k] = mir->ub[k] = col->lb; break; |
---|
180 | default: |
---|
181 | xassert(col != col); |
---|
182 | } |
---|
183 | mir->vlb[k] = mir->vub[k] = 0; |
---|
184 | } |
---|
185 | return; |
---|
186 | } |
---|
187 | |
---|
188 | static void set_var_bounds(glp_tree *tree, struct MIR *mir) |
---|
189 | { /* set variable bounds */ |
---|
190 | glp_prob *mip = tree->mip; |
---|
191 | int m = mir->m; |
---|
192 | GLPAIJ *aij; |
---|
193 | int i, k1, k2; |
---|
194 | double a1, a2; |
---|
195 | for (i = 1; i <= m; i++) |
---|
196 | { /* we need the row to be '>= 0' or '<= 0' */ |
---|
197 | if (!(mir->lb[i] == 0.0 && mir->ub[i] == +DBL_MAX || |
---|
198 | mir->lb[i] == -DBL_MAX && mir->ub[i] == 0.0)) continue; |
---|
199 | /* take first term */ |
---|
200 | aij = mip->row[i]->ptr; |
---|
201 | if (aij == NULL) continue; |
---|
202 | k1 = m + aij->col->j, a1 = aij->val; |
---|
203 | /* take second term */ |
---|
204 | aij = aij->r_next; |
---|
205 | if (aij == NULL) continue; |
---|
206 | k2 = m + aij->col->j, a2 = aij->val; |
---|
207 | /* there must be only two terms */ |
---|
208 | if (aij->r_next != NULL) continue; |
---|
209 | /* interchange terms, if needed */ |
---|
210 | if (!mir->isint[k1] && mir->isint[k2]) |
---|
211 | ; |
---|
212 | else if (mir->isint[k1] && !mir->isint[k2]) |
---|
213 | { k2 = k1, a2 = a1; |
---|
214 | k1 = m + aij->col->j, a1 = aij->val; |
---|
215 | } |
---|
216 | else |
---|
217 | { /* both terms are either continuous or integer */ |
---|
218 | continue; |
---|
219 | } |
---|
220 | /* x[k2] should be double-bounded */ |
---|
221 | if (mir->lb[k2] == -DBL_MAX || mir->ub[k2] == +DBL_MAX || |
---|
222 | mir->lb[k2] == mir->ub[k2]) continue; |
---|
223 | /* change signs, if necessary */ |
---|
224 | if (mir->ub[i] == 0.0) a1 = - a1, a2 = - a2; |
---|
225 | /* now the row has the form a1 * x1 + a2 * x2 >= 0, where x1 |
---|
226 | is continuous, x2 is integer */ |
---|
227 | if (a1 > 0.0) |
---|
228 | { /* x1 >= - (a2 / a1) * x2 */ |
---|
229 | if (mir->vlb[k1] == 0) |
---|
230 | { /* set variable lower bound for x1 */ |
---|
231 | mir->lb[k1] = - a2 / a1; |
---|
232 | mir->vlb[k1] = k2; |
---|
233 | /* the row should not be used */ |
---|
234 | mir->skip[i] = 1; |
---|
235 | } |
---|
236 | } |
---|
237 | else /* a1 < 0.0 */ |
---|
238 | { /* x1 <= - (a2 / a1) * x2 */ |
---|
239 | if (mir->vub[k1] == 0) |
---|
240 | { /* set variable upper bound for x1 */ |
---|
241 | mir->ub[k1] = - a2 / a1; |
---|
242 | mir->vub[k1] = k2; |
---|
243 | /* the row should not be used */ |
---|
244 | mir->skip[i] = 1; |
---|
245 | } |
---|
246 | } |
---|
247 | } |
---|
248 | return; |
---|
249 | } |
---|
250 | |
---|
251 | static void mark_useless_rows(glp_tree *tree, struct MIR *mir) |
---|
252 | { /* mark rows which should not be used */ |
---|
253 | glp_prob *mip = tree->mip; |
---|
254 | int m = mir->m; |
---|
255 | GLPAIJ *aij; |
---|
256 | int i, k, nv; |
---|
257 | for (i = 1; i <= m; i++) |
---|
258 | { /* free rows should not be used */ |
---|
259 | if (mir->lb[i] == -DBL_MAX && mir->ub[i] == +DBL_MAX) |
---|
260 | { mir->skip[i] = 1; |
---|
261 | continue; |
---|
262 | } |
---|
263 | nv = 0; |
---|
264 | for (aij = mip->row[i]->ptr; aij != NULL; aij = aij->r_next) |
---|
265 | { k = m + aij->col->j; |
---|
266 | /* rows with free variables should not be used */ |
---|
267 | if (mir->lb[k] == -DBL_MAX && mir->ub[k] == +DBL_MAX) |
---|
268 | { mir->skip[i] = 1; |
---|
269 | break; |
---|
270 | } |
---|
271 | /* rows with integer variables having infinite (lower or |
---|
272 | upper) bound should not be used */ |
---|
273 | if (mir->isint[k] && mir->lb[k] == -DBL_MAX || |
---|
274 | mir->isint[k] && mir->ub[k] == +DBL_MAX) |
---|
275 | { mir->skip[i] = 1; |
---|
276 | break; |
---|
277 | } |
---|
278 | /* count non-fixed variables */ |
---|
279 | if (!(mir->vlb[k] == 0 && mir->vub[k] == 0 && |
---|
280 | mir->lb[k] == mir->ub[k])) nv++; |
---|
281 | } |
---|
282 | /* rows with all variables fixed should not be used */ |
---|
283 | if (nv == 0) |
---|
284 | { mir->skip[i] = 1; |
---|
285 | continue; |
---|
286 | } |
---|
287 | } |
---|
288 | return; |
---|
289 | } |
---|
290 | |
---|
291 | void *ios_mir_init(glp_tree *tree) |
---|
292 | { /* initialize MIR cut generator */ |
---|
293 | glp_prob *mip = tree->mip; |
---|
294 | int m = mip->m; |
---|
295 | int n = mip->n; |
---|
296 | struct MIR *mir; |
---|
297 | #if _MIR_DEBUG |
---|
298 | xprintf("ios_mir_init: warning: debug mode enabled\n"); |
---|
299 | #endif |
---|
300 | /* allocate working area */ |
---|
301 | mir = xmalloc(sizeof(struct MIR)); |
---|
302 | mir->m = m; |
---|
303 | mir->n = n; |
---|
304 | mir->skip = xcalloc(1+m, sizeof(char)); |
---|
305 | mir->isint = xcalloc(1+m+n, sizeof(char)); |
---|
306 | mir->lb = xcalloc(1+m+n, sizeof(double)); |
---|
307 | mir->vlb = xcalloc(1+m+n, sizeof(int)); |
---|
308 | mir->ub = xcalloc(1+m+n, sizeof(double)); |
---|
309 | mir->vub = xcalloc(1+m+n, sizeof(int)); |
---|
310 | mir->x = xcalloc(1+m+n, sizeof(double)); |
---|
311 | mir->agg_row = xcalloc(1+MAXAGGR, sizeof(int)); |
---|
312 | mir->agg_vec = ios_create_vec(m+n); |
---|
313 | mir->subst = xcalloc(1+m+n, sizeof(char)); |
---|
314 | mir->mod_vec = ios_create_vec(m+n); |
---|
315 | mir->cut_vec = ios_create_vec(m+n); |
---|
316 | /* set global row attributes */ |
---|
317 | set_row_attrib(tree, mir); |
---|
318 | /* set global column attributes */ |
---|
319 | set_col_attrib(tree, mir); |
---|
320 | /* set variable bounds */ |
---|
321 | set_var_bounds(tree, mir); |
---|
322 | /* mark rows which should not be used */ |
---|
323 | mark_useless_rows(tree, mir); |
---|
324 | return mir; |
---|
325 | } |
---|
326 | |
---|
327 | /*********************************************************************** |
---|
328 | * NAME |
---|
329 | * |
---|
330 | * ios_mir_gen - generate MIR cuts |
---|
331 | * |
---|
332 | * SYNOPSIS |
---|
333 | * |
---|
334 | * #include "glpios.h" |
---|
335 | * void ios_mir_gen(glp_tree *tree, void *gen, IOSPOOL *pool); |
---|
336 | * |
---|
337 | * DESCRIPTION |
---|
338 | * |
---|
339 | * The routine ios_mir_gen generates MIR cuts for the current point and |
---|
340 | * adds them to the cut pool. */ |
---|
341 | |
---|
342 | static void get_current_point(glp_tree *tree, struct MIR *mir) |
---|
343 | { /* obtain current point */ |
---|
344 | glp_prob *mip = tree->mip; |
---|
345 | int m = mir->m; |
---|
346 | int n = mir->n; |
---|
347 | int k; |
---|
348 | for (k = 1; k <= m; k++) |
---|
349 | mir->x[k] = mip->row[k]->prim; |
---|
350 | for (k = m+1; k <= m+n; k++) |
---|
351 | mir->x[k] = mip->col[k-m]->prim; |
---|
352 | return; |
---|
353 | } |
---|
354 | |
---|
355 | #if _MIR_DEBUG |
---|
356 | static void check_current_point(struct MIR *mir) |
---|
357 | { /* check current point */ |
---|
358 | int m = mir->m; |
---|
359 | int n = mir->n; |
---|
360 | int k, kk; |
---|
361 | double lb, ub, eps; |
---|
362 | for (k = 1; k <= m+n; k++) |
---|
363 | { /* determine lower bound */ |
---|
364 | lb = mir->lb[k]; |
---|
365 | kk = mir->vlb[k]; |
---|
366 | if (kk != 0) |
---|
367 | { xassert(lb != -DBL_MAX); |
---|
368 | xassert(!mir->isint[k]); |
---|
369 | xassert(mir->isint[kk]); |
---|
370 | lb *= mir->x[kk]; |
---|
371 | } |
---|
372 | /* check lower bound */ |
---|
373 | if (lb != -DBL_MAX) |
---|
374 | { eps = 1e-6 * (1.0 + fabs(lb)); |
---|
375 | xassert(mir->x[k] >= lb - eps); |
---|
376 | } |
---|
377 | /* determine upper bound */ |
---|
378 | ub = mir->ub[k]; |
---|
379 | kk = mir->vub[k]; |
---|
380 | if (kk != 0) |
---|
381 | { xassert(ub != +DBL_MAX); |
---|
382 | xassert(!mir->isint[k]); |
---|
383 | xassert(mir->isint[kk]); |
---|
384 | ub *= mir->x[kk]; |
---|
385 | } |
---|
386 | /* check upper bound */ |
---|
387 | if (ub != +DBL_MAX) |
---|
388 | { eps = 1e-6 * (1.0 + fabs(ub)); |
---|
389 | xassert(mir->x[k] <= ub + eps); |
---|
390 | } |
---|
391 | } |
---|
392 | return; |
---|
393 | } |
---|
394 | #endif |
---|
395 | |
---|
396 | static void initial_agg_row(glp_tree *tree, struct MIR *mir, int i) |
---|
397 | { /* use original i-th row as initial aggregated constraint */ |
---|
398 | glp_prob *mip = tree->mip; |
---|
399 | int m = mir->m; |
---|
400 | GLPAIJ *aij; |
---|
401 | xassert(1 <= i && i <= m); |
---|
402 | xassert(!mir->skip[i]); |
---|
403 | /* mark i-th row in order not to use it in the same aggregated |
---|
404 | constraint */ |
---|
405 | mir->skip[i] = 2; |
---|
406 | mir->agg_cnt = 1; |
---|
407 | mir->agg_row[1] = i; |
---|
408 | /* use x[i] - sum a[i,j] * x[m+j] = 0, where x[i] is auxiliary |
---|
409 | variable of row i, x[m+j] are structural variables */ |
---|
410 | ios_clear_vec(mir->agg_vec); |
---|
411 | ios_set_vj(mir->agg_vec, i, 1.0); |
---|
412 | for (aij = mip->row[i]->ptr; aij != NULL; aij = aij->r_next) |
---|
413 | ios_set_vj(mir->agg_vec, m + aij->col->j, - aij->val); |
---|
414 | mir->agg_rhs = 0.0; |
---|
415 | #if _MIR_DEBUG |
---|
416 | ios_check_vec(mir->agg_vec); |
---|
417 | #endif |
---|
418 | return; |
---|
419 | } |
---|
420 | |
---|
421 | #if _MIR_DEBUG |
---|
422 | static void check_agg_row(struct MIR *mir) |
---|
423 | { /* check aggregated constraint */ |
---|
424 | int m = mir->m; |
---|
425 | int n = mir->n; |
---|
426 | int j, k; |
---|
427 | double r, big; |
---|
428 | /* compute the residual r = sum a[k] * x[k] - b and determine |
---|
429 | big = max(1, |a[k]|, |b|) */ |
---|
430 | r = 0.0, big = 1.0; |
---|
431 | for (j = 1; j <= mir->agg_vec->nnz; j++) |
---|
432 | { k = mir->agg_vec->ind[j]; |
---|
433 | xassert(1 <= k && k <= m+n); |
---|
434 | r += mir->agg_vec->val[j] * mir->x[k]; |
---|
435 | if (big < fabs(mir->agg_vec->val[j])) |
---|
436 | big = fabs(mir->agg_vec->val[j]); |
---|
437 | } |
---|
438 | r -= mir->agg_rhs; |
---|
439 | if (big < fabs(mir->agg_rhs)) |
---|
440 | big = fabs(mir->agg_rhs); |
---|
441 | /* the residual must be close to zero */ |
---|
442 | xassert(fabs(r) <= 1e-6 * big); |
---|
443 | return; |
---|
444 | } |
---|
445 | #endif |
---|
446 | |
---|
447 | static void subst_fixed_vars(struct MIR *mir) |
---|
448 | { /* substitute fixed variables into aggregated constraint */ |
---|
449 | int m = mir->m; |
---|
450 | int n = mir->n; |
---|
451 | int j, k; |
---|
452 | for (j = 1; j <= mir->agg_vec->nnz; j++) |
---|
453 | { k = mir->agg_vec->ind[j]; |
---|
454 | xassert(1 <= k && k <= m+n); |
---|
455 | if (mir->vlb[k] == 0 && mir->vub[k] == 0 && |
---|
456 | mir->lb[k] == mir->ub[k]) |
---|
457 | { /* x[k] is fixed */ |
---|
458 | mir->agg_rhs -= mir->agg_vec->val[j] * mir->lb[k]; |
---|
459 | mir->agg_vec->val[j] = 0.0; |
---|
460 | } |
---|
461 | } |
---|
462 | /* remove terms corresponding to fixed variables */ |
---|
463 | ios_clean_vec(mir->agg_vec, DBL_EPSILON); |
---|
464 | #if _MIR_DEBUG |
---|
465 | ios_check_vec(mir->agg_vec); |
---|
466 | #endif |
---|
467 | return; |
---|
468 | } |
---|
469 | |
---|
470 | static void bound_subst_heur(struct MIR *mir) |
---|
471 | { /* bound substitution heuristic */ |
---|
472 | int m = mir->m; |
---|
473 | int n = mir->n; |
---|
474 | int j, k, kk; |
---|
475 | double d1, d2; |
---|
476 | for (j = 1; j <= mir->agg_vec->nnz; j++) |
---|
477 | { k = mir->agg_vec->ind[j]; |
---|
478 | xassert(1 <= k && k <= m+n); |
---|
479 | if (mir->isint[k]) continue; /* skip integer variable */ |
---|
480 | /* compute distance from x[k] to its lower bound */ |
---|
481 | kk = mir->vlb[k]; |
---|
482 | if (kk == 0) |
---|
483 | { if (mir->lb[k] == -DBL_MAX) |
---|
484 | d1 = DBL_MAX; |
---|
485 | else |
---|
486 | d1 = mir->x[k] - mir->lb[k]; |
---|
487 | } |
---|
488 | else |
---|
489 | { xassert(1 <= kk && kk <= m+n); |
---|
490 | xassert(mir->isint[kk]); |
---|
491 | xassert(mir->lb[k] != -DBL_MAX); |
---|
492 | d1 = mir->x[k] - mir->lb[k] * mir->x[kk]; |
---|
493 | } |
---|
494 | /* compute distance from x[k] to its upper bound */ |
---|
495 | kk = mir->vub[k]; |
---|
496 | if (kk == 0) |
---|
497 | { if (mir->vub[k] == +DBL_MAX) |
---|
498 | d2 = DBL_MAX; |
---|
499 | else |
---|
500 | d2 = mir->ub[k] - mir->x[k]; |
---|
501 | } |
---|
502 | else |
---|
503 | { xassert(1 <= kk && kk <= m+n); |
---|
504 | xassert(mir->isint[kk]); |
---|
505 | xassert(mir->ub[k] != +DBL_MAX); |
---|
506 | d2 = mir->ub[k] * mir->x[kk] - mir->x[k]; |
---|
507 | } |
---|
508 | /* x[k] cannot be free */ |
---|
509 | xassert(d1 != DBL_MAX || d2 != DBL_MAX); |
---|
510 | /* choose the bound which is closer to x[k] */ |
---|
511 | xassert(mir->subst[k] == '?'); |
---|
512 | if (d1 <= d2) |
---|
513 | mir->subst[k] = 'L'; |
---|
514 | else |
---|
515 | mir->subst[k] = 'U'; |
---|
516 | } |
---|
517 | return; |
---|
518 | } |
---|
519 | |
---|
520 | static void build_mod_row(struct MIR *mir) |
---|
521 | { /* substitute bounds and build modified constraint */ |
---|
522 | int m = mir->m; |
---|
523 | int n = mir->n; |
---|
524 | int j, jj, k, kk; |
---|
525 | /* initially modified constraint is aggregated constraint */ |
---|
526 | ios_copy_vec(mir->mod_vec, mir->agg_vec); |
---|
527 | mir->mod_rhs = mir->agg_rhs; |
---|
528 | #if _MIR_DEBUG |
---|
529 | ios_check_vec(mir->mod_vec); |
---|
530 | #endif |
---|
531 | /* substitute bounds for continuous variables; note that due to |
---|
532 | substitution of variable bounds additional terms may appear in |
---|
533 | modified constraint */ |
---|
534 | for (j = mir->mod_vec->nnz; j >= 1; j--) |
---|
535 | { k = mir->mod_vec->ind[j]; |
---|
536 | xassert(1 <= k && k <= m+n); |
---|
537 | if (mir->isint[k]) continue; /* skip integer variable */ |
---|
538 | if (mir->subst[k] == 'L') |
---|
539 | { /* x[k] = (lower bound) + x'[k] */ |
---|
540 | xassert(mir->lb[k] != -DBL_MAX); |
---|
541 | kk = mir->vlb[k]; |
---|
542 | if (kk == 0) |
---|
543 | { /* x[k] = lb[k] + x'[k] */ |
---|
544 | mir->mod_rhs -= mir->mod_vec->val[j] * mir->lb[k]; |
---|
545 | } |
---|
546 | else |
---|
547 | { /* x[k] = lb[k] * x[kk] + x'[k] */ |
---|
548 | xassert(mir->isint[kk]); |
---|
549 | jj = mir->mod_vec->pos[kk]; |
---|
550 | if (jj == 0) |
---|
551 | { ios_set_vj(mir->mod_vec, kk, 1.0); |
---|
552 | jj = mir->mod_vec->pos[kk]; |
---|
553 | mir->mod_vec->val[jj] = 0.0; |
---|
554 | } |
---|
555 | mir->mod_vec->val[jj] += |
---|
556 | mir->mod_vec->val[j] * mir->lb[k]; |
---|
557 | } |
---|
558 | } |
---|
559 | else if (mir->subst[k] == 'U') |
---|
560 | { /* x[k] = (upper bound) - x'[k] */ |
---|
561 | xassert(mir->ub[k] != +DBL_MAX); |
---|
562 | kk = mir->vub[k]; |
---|
563 | if (kk == 0) |
---|
564 | { /* x[k] = ub[k] - x'[k] */ |
---|
565 | mir->mod_rhs -= mir->mod_vec->val[j] * mir->ub[k]; |
---|
566 | } |
---|
567 | else |
---|
568 | { /* x[k] = ub[k] * x[kk] - x'[k] */ |
---|
569 | xassert(mir->isint[kk]); |
---|
570 | jj = mir->mod_vec->pos[kk]; |
---|
571 | if (jj == 0) |
---|
572 | { ios_set_vj(mir->mod_vec, kk, 1.0); |
---|
573 | jj = mir->mod_vec->pos[kk]; |
---|
574 | mir->mod_vec->val[jj] = 0.0; |
---|
575 | } |
---|
576 | mir->mod_vec->val[jj] += |
---|
577 | mir->mod_vec->val[j] * mir->ub[k]; |
---|
578 | } |
---|
579 | mir->mod_vec->val[j] = - mir->mod_vec->val[j]; |
---|
580 | } |
---|
581 | else |
---|
582 | xassert(k != k); |
---|
583 | } |
---|
584 | #if _MIR_DEBUG |
---|
585 | ios_check_vec(mir->mod_vec); |
---|
586 | #endif |
---|
587 | /* substitute bounds for integer variables */ |
---|
588 | for (j = 1; j <= mir->mod_vec->nnz; j++) |
---|
589 | { k = mir->mod_vec->ind[j]; |
---|
590 | xassert(1 <= k && k <= m+n); |
---|
591 | if (!mir->isint[k]) continue; /* skip continuous variable */ |
---|
592 | xassert(mir->subst[k] == '?'); |
---|
593 | xassert(mir->vlb[k] == 0 && mir->vub[k] == 0); |
---|
594 | xassert(mir->lb[k] != -DBL_MAX && mir->ub[k] != +DBL_MAX); |
---|
595 | if (fabs(mir->lb[k]) <= fabs(mir->ub[k])) |
---|
596 | { /* x[k] = lb[k] + x'[k] */ |
---|
597 | mir->subst[k] = 'L'; |
---|
598 | mir->mod_rhs -= mir->mod_vec->val[j] * mir->lb[k]; |
---|
599 | } |
---|
600 | else |
---|
601 | { /* x[k] = ub[k] - x'[k] */ |
---|
602 | mir->subst[k] = 'U'; |
---|
603 | mir->mod_rhs -= mir->mod_vec->val[j] * mir->ub[k]; |
---|
604 | mir->mod_vec->val[j] = - mir->mod_vec->val[j]; |
---|
605 | } |
---|
606 | } |
---|
607 | #if _MIR_DEBUG |
---|
608 | ios_check_vec(mir->mod_vec); |
---|
609 | #endif |
---|
610 | return; |
---|
611 | } |
---|
612 | |
---|
613 | #if _MIR_DEBUG |
---|
614 | static void check_mod_row(struct MIR *mir) |
---|
615 | { /* check modified constraint */ |
---|
616 | int m = mir->m; |
---|
617 | int n = mir->n; |
---|
618 | int j, k, kk; |
---|
619 | double r, big, x; |
---|
620 | /* compute the residual r = sum a'[k] * x'[k] - b' and determine |
---|
621 | big = max(1, |a[k]|, |b|) */ |
---|
622 | r = 0.0, big = 1.0; |
---|
623 | for (j = 1; j <= mir->mod_vec->nnz; j++) |
---|
624 | { k = mir->mod_vec->ind[j]; |
---|
625 | xassert(1 <= k && k <= m+n); |
---|
626 | if (mir->subst[k] == 'L') |
---|
627 | { /* x'[k] = x[k] - (lower bound) */ |
---|
628 | xassert(mir->lb[k] != -DBL_MAX); |
---|
629 | kk = mir->vlb[k]; |
---|
630 | if (kk == 0) |
---|
631 | x = mir->x[k] - mir->lb[k]; |
---|
632 | else |
---|
633 | x = mir->x[k] - mir->lb[k] * mir->x[kk]; |
---|
634 | } |
---|
635 | else if (mir->subst[k] == 'U') |
---|
636 | { /* x'[k] = (upper bound) - x[k] */ |
---|
637 | xassert(mir->ub[k] != +DBL_MAX); |
---|
638 | kk = mir->vub[k]; |
---|
639 | if (kk == 0) |
---|
640 | x = mir->ub[k] - mir->x[k]; |
---|
641 | else |
---|
642 | x = mir->ub[k] * mir->x[kk] - mir->x[k]; |
---|
643 | } |
---|
644 | else |
---|
645 | xassert(k != k); |
---|
646 | r += mir->mod_vec->val[j] * x; |
---|
647 | if (big < fabs(mir->mod_vec->val[j])) |
---|
648 | big = fabs(mir->mod_vec->val[j]); |
---|
649 | } |
---|
650 | r -= mir->mod_rhs; |
---|
651 | if (big < fabs(mir->mod_rhs)) |
---|
652 | big = fabs(mir->mod_rhs); |
---|
653 | /* the residual must be close to zero */ |
---|
654 | xassert(fabs(r) <= 1e-6 * big); |
---|
655 | return; |
---|
656 | } |
---|
657 | #endif |
---|
658 | |
---|
659 | /*********************************************************************** |
---|
660 | * mir_ineq - construct MIR inequality |
---|
661 | * |
---|
662 | * Given the single constraint mixed integer set |
---|
663 | * |
---|
664 | * |N| |
---|
665 | * X = {(x,s) in Z x R : sum a[j] * x[j] <= b + s}, |
---|
666 | * + + j in N |
---|
667 | * |
---|
668 | * this routine constructs the mixed integer rounding (MIR) inequality |
---|
669 | * |
---|
670 | * sum alpha[j] * x[j] <= beta + gamma * s, |
---|
671 | * j in N |
---|
672 | * |
---|
673 | * which is valid for X. |
---|
674 | * |
---|
675 | * If the MIR inequality has been successfully constructed, the routine |
---|
676 | * returns zero. Otherwise, if b is close to nearest integer, there may |
---|
677 | * be numeric difficulties due to big coefficients; so in this case the |
---|
678 | * routine returns non-zero. */ |
---|
679 | |
---|
680 | static int mir_ineq(const int n, const double a[], const double b, |
---|
681 | double alpha[], double *beta, double *gamma) |
---|
682 | { int j; |
---|
683 | double f, t; |
---|
684 | if (fabs(b - floor(b + .5)) < 0.01) |
---|
685 | return 1; |
---|
686 | f = b - floor(b); |
---|
687 | for (j = 1; j <= n; j++) |
---|
688 | { t = (a[j] - floor(a[j])) - f; |
---|
689 | if (t <= 0.0) |
---|
690 | alpha[j] = floor(a[j]); |
---|
691 | else |
---|
692 | alpha[j] = floor(a[j]) + t / (1.0 - f); |
---|
693 | } |
---|
694 | *beta = floor(b); |
---|
695 | *gamma = 1.0 / (1.0 - f); |
---|
696 | return 0; |
---|
697 | } |
---|
698 | |
---|
699 | /*********************************************************************** |
---|
700 | * cmir_ineq - construct c-MIR inequality |
---|
701 | * |
---|
702 | * Given the mixed knapsack set |
---|
703 | * |
---|
704 | * MK |N| |
---|
705 | * X = {(x,s) in Z x R : sum a[j] * x[j] <= b + s, |
---|
706 | * + + j in N |
---|
707 | * |
---|
708 | * x[j] <= u[j]}, |
---|
709 | * |
---|
710 | * a subset C of variables to be complemented, and a divisor delta > 0, |
---|
711 | * this routine constructs the complemented MIR (c-MIR) inequality |
---|
712 | * |
---|
713 | * sum alpha[j] * x[j] <= beta + gamma * s, |
---|
714 | * j in N |
---|
715 | * MK |
---|
716 | * which is valid for X . |
---|
717 | * |
---|
718 | * If the c-MIR inequality has been successfully constructed, the |
---|
719 | * routine returns zero. Otherwise, if there is a risk of numerical |
---|
720 | * difficulties due to big coefficients (see comments to the routine |
---|
721 | * mir_ineq), the routine cmir_ineq returns non-zero. */ |
---|
722 | |
---|
723 | static int cmir_ineq(const int n, const double a[], const double b, |
---|
724 | const double u[], const char cset[], const double delta, |
---|
725 | double alpha[], double *beta, double *gamma) |
---|
726 | { int j; |
---|
727 | double *aa, bb; |
---|
728 | aa = alpha, bb = b; |
---|
729 | for (j = 1; j <= n; j++) |
---|
730 | { aa[j] = a[j] / delta; |
---|
731 | if (cset[j]) |
---|
732 | aa[j] = - aa[j], bb -= a[j] * u[j]; |
---|
733 | } |
---|
734 | bb /= delta; |
---|
735 | if (mir_ineq(n, aa, bb, alpha, beta, gamma)) return 1; |
---|
736 | for (j = 1; j <= n; j++) |
---|
737 | { if (cset[j]) |
---|
738 | alpha[j] = - alpha[j], *beta += alpha[j] * u[j]; |
---|
739 | } |
---|
740 | *gamma /= delta; |
---|
741 | return 0; |
---|
742 | } |
---|
743 | |
---|
744 | /*********************************************************************** |
---|
745 | * cmir_sep - c-MIR separation heuristic |
---|
746 | * |
---|
747 | * Given the mixed knapsack set |
---|
748 | * |
---|
749 | * MK |N| |
---|
750 | * X = {(x,s) in Z x R : sum a[j] * x[j] <= b + s, |
---|
751 | * + + j in N |
---|
752 | * |
---|
753 | * x[j] <= u[j]} |
---|
754 | * |
---|
755 | * * * |
---|
756 | * and a fractional point (x , s ), this routine tries to construct |
---|
757 | * c-MIR inequality |
---|
758 | * |
---|
759 | * sum alpha[j] * x[j] <= beta + gamma * s, |
---|
760 | * j in N |
---|
761 | * MK |
---|
762 | * which is valid for X and has (desirably maximal) violation at the |
---|
763 | * fractional point given. This is attained by choosing an appropriate |
---|
764 | * set C of variables to be complemented and a divisor delta > 0, which |
---|
765 | * together define corresponding c-MIR inequality. |
---|
766 | * |
---|
767 | * If a violated c-MIR inequality has been successfully constructed, |
---|
768 | * the routine returns its violation: |
---|
769 | * |
---|
770 | * * * |
---|
771 | * sum alpha[j] * x [j] - beta - gamma * s , |
---|
772 | * j in N |
---|
773 | * |
---|
774 | * which is positive. In case of failure the routine returns zero. */ |
---|
775 | |
---|
776 | struct vset { int j; double v; }; |
---|
777 | |
---|
778 | static int cmir_cmp(const void *p1, const void *p2) |
---|
779 | { const struct vset *v1 = p1, *v2 = p2; |
---|
780 | if (v1->v < v2->v) return -1; |
---|
781 | if (v1->v > v2->v) return +1; |
---|
782 | return 0; |
---|
783 | } |
---|
784 | |
---|
785 | static double cmir_sep(const int n, const double a[], const double b, |
---|
786 | const double u[], const double x[], const double s, |
---|
787 | double alpha[], double *beta, double *gamma) |
---|
788 | { int fail, j, k, nv, v; |
---|
789 | double delta, eps, d_try[1+3], r, r_best; |
---|
790 | char *cset; |
---|
791 | struct vset *vset; |
---|
792 | /* allocate working arrays */ |
---|
793 | cset = xcalloc(1+n, sizeof(char)); |
---|
794 | vset = xcalloc(1+n, sizeof(struct vset)); |
---|
795 | /* choose initial C */ |
---|
796 | for (j = 1; j <= n; j++) |
---|
797 | cset[j] = (char)(x[j] >= 0.5 * u[j]); |
---|
798 | /* choose initial delta */ |
---|
799 | r_best = delta = 0.0; |
---|
800 | for (j = 1; j <= n; j++) |
---|
801 | { xassert(a[j] != 0.0); |
---|
802 | /* if x[j] is close to its bounds, skip it */ |
---|
803 | eps = 1e-9 * (1.0 + fabs(u[j])); |
---|
804 | if (x[j] < eps || x[j] > u[j] - eps) continue; |
---|
805 | /* try delta = |a[j]| to construct c-MIR inequality */ |
---|
806 | fail = cmir_ineq(n, a, b, u, cset, fabs(a[j]), alpha, beta, |
---|
807 | gamma); |
---|
808 | if (fail) continue; |
---|
809 | /* compute violation */ |
---|
810 | r = - (*beta) - (*gamma) * s; |
---|
811 | for (k = 1; k <= n; k++) r += alpha[k] * x[k]; |
---|
812 | if (r_best < r) r_best = r, delta = fabs(a[j]); |
---|
813 | } |
---|
814 | if (r_best < 0.001) r_best = 0.0; |
---|
815 | if (r_best == 0.0) goto done; |
---|
816 | xassert(delta > 0.0); |
---|
817 | /* try to increase violation by dividing delta by 2, 4, and 8, |
---|
818 | respectively */ |
---|
819 | d_try[1] = delta / 2.0; |
---|
820 | d_try[2] = delta / 4.0; |
---|
821 | d_try[3] = delta / 8.0; |
---|
822 | for (j = 1; j <= 3; j++) |
---|
823 | { /* construct c-MIR inequality */ |
---|
824 | fail = cmir_ineq(n, a, b, u, cset, d_try[j], alpha, beta, |
---|
825 | gamma); |
---|
826 | if (fail) continue; |
---|
827 | /* compute violation */ |
---|
828 | r = - (*beta) - (*gamma) * s; |
---|
829 | for (k = 1; k <= n; k++) r += alpha[k] * x[k]; |
---|
830 | if (r_best < r) r_best = r, delta = d_try[j]; |
---|
831 | } |
---|
832 | /* build subset of variables lying strictly between their bounds |
---|
833 | and order it by nondecreasing values of |x[j] - u[j]/2| */ |
---|
834 | nv = 0; |
---|
835 | for (j = 1; j <= n; j++) |
---|
836 | { /* if x[j] is close to its bounds, skip it */ |
---|
837 | eps = 1e-9 * (1.0 + fabs(u[j])); |
---|
838 | if (x[j] < eps || x[j] > u[j] - eps) continue; |
---|
839 | /* add x[j] to the subset */ |
---|
840 | nv++; |
---|
841 | vset[nv].j = j; |
---|
842 | vset[nv].v = fabs(x[j] - 0.5 * u[j]); |
---|
843 | } |
---|
844 | qsort(&vset[1], nv, sizeof(struct vset), cmir_cmp); |
---|
845 | /* try to increase violation by successively complementing each |
---|
846 | variable in the subset */ |
---|
847 | for (v = 1; v <= nv; v++) |
---|
848 | { j = vset[v].j; |
---|
849 | /* replace x[j] by its complement or vice versa */ |
---|
850 | cset[j] = (char)!cset[j]; |
---|
851 | /* construct c-MIR inequality */ |
---|
852 | fail = cmir_ineq(n, a, b, u, cset, delta, alpha, beta, gamma); |
---|
853 | /* restore the variable */ |
---|
854 | cset[j] = (char)!cset[j]; |
---|
855 | /* do not replace the variable in case of failure */ |
---|
856 | if (fail) continue; |
---|
857 | /* compute violation */ |
---|
858 | r = - (*beta) - (*gamma) * s; |
---|
859 | for (k = 1; k <= n; k++) r += alpha[k] * x[k]; |
---|
860 | if (r_best < r) r_best = r, cset[j] = (char)!cset[j]; |
---|
861 | } |
---|
862 | /* construct the best c-MIR inequality chosen */ |
---|
863 | fail = cmir_ineq(n, a, b, u, cset, delta, alpha, beta, gamma); |
---|
864 | xassert(!fail); |
---|
865 | done: /* free working arrays */ |
---|
866 | xfree(cset); |
---|
867 | xfree(vset); |
---|
868 | /* return to the calling routine */ |
---|
869 | return r_best; |
---|
870 | } |
---|
871 | |
---|
872 | static double generate(struct MIR *mir) |
---|
873 | { /* try to generate violated c-MIR cut for modified constraint */ |
---|
874 | int m = mir->m; |
---|
875 | int n = mir->n; |
---|
876 | int j, k, kk, nint; |
---|
877 | double s, *u, *x, *alpha, r_best = 0.0, b, beta, gamma; |
---|
878 | ios_copy_vec(mir->cut_vec, mir->mod_vec); |
---|
879 | mir->cut_rhs = mir->mod_rhs; |
---|
880 | /* remove small terms, which can appear due to substitution of |
---|
881 | variable bounds */ |
---|
882 | ios_clean_vec(mir->cut_vec, DBL_EPSILON); |
---|
883 | #if _MIR_DEBUG |
---|
884 | ios_check_vec(mir->cut_vec); |
---|
885 | #endif |
---|
886 | /* remove positive continuous terms to obtain MK relaxation */ |
---|
887 | for (j = 1; j <= mir->cut_vec->nnz; j++) |
---|
888 | { k = mir->cut_vec->ind[j]; |
---|
889 | xassert(1 <= k && k <= m+n); |
---|
890 | if (!mir->isint[k] && mir->cut_vec->val[j] > 0.0) |
---|
891 | mir->cut_vec->val[j] = 0.0; |
---|
892 | } |
---|
893 | ios_clean_vec(mir->cut_vec, 0.0); |
---|
894 | #if _MIR_DEBUG |
---|
895 | ios_check_vec(mir->cut_vec); |
---|
896 | #endif |
---|
897 | /* move integer terms to the beginning of the sparse vector and |
---|
898 | determine the number of integer variables */ |
---|
899 | nint = 0; |
---|
900 | for (j = 1; j <= mir->cut_vec->nnz; j++) |
---|
901 | { k = mir->cut_vec->ind[j]; |
---|
902 | xassert(1 <= k && k <= m+n); |
---|
903 | if (mir->isint[k]) |
---|
904 | { double temp; |
---|
905 | nint++; |
---|
906 | /* interchange elements [nint] and [j] */ |
---|
907 | kk = mir->cut_vec->ind[nint]; |
---|
908 | mir->cut_vec->pos[k] = nint; |
---|
909 | mir->cut_vec->pos[kk] = j; |
---|
910 | mir->cut_vec->ind[nint] = k; |
---|
911 | mir->cut_vec->ind[j] = kk; |
---|
912 | temp = mir->cut_vec->val[nint]; |
---|
913 | mir->cut_vec->val[nint] = mir->cut_vec->val[j]; |
---|
914 | mir->cut_vec->val[j] = temp; |
---|
915 | } |
---|
916 | } |
---|
917 | #if _MIR_DEBUG |
---|
918 | ios_check_vec(mir->cut_vec); |
---|
919 | #endif |
---|
920 | /* if there is no integer variable, nothing to generate */ |
---|
921 | if (nint == 0) goto done; |
---|
922 | /* allocate working arrays */ |
---|
923 | u = xcalloc(1+nint, sizeof(double)); |
---|
924 | x = xcalloc(1+nint, sizeof(double)); |
---|
925 | alpha = xcalloc(1+nint, sizeof(double)); |
---|
926 | /* determine u and x */ |
---|
927 | for (j = 1; j <= nint; j++) |
---|
928 | { k = mir->cut_vec->ind[j]; |
---|
929 | xassert(m+1 <= k && k <= m+n); |
---|
930 | xassert(mir->isint[k]); |
---|
931 | u[j] = mir->ub[k] - mir->lb[k]; |
---|
932 | xassert(u[j] >= 1.0); |
---|
933 | if (mir->subst[k] == 'L') |
---|
934 | x[j] = mir->x[k] - mir->lb[k]; |
---|
935 | else if (mir->subst[k] == 'U') |
---|
936 | x[j] = mir->ub[k] - mir->x[k]; |
---|
937 | else |
---|
938 | xassert(k != k); |
---|
939 | xassert(x[j] >= -0.001); |
---|
940 | if (x[j] < 0.0) x[j] = 0.0; |
---|
941 | } |
---|
942 | /* compute s = - sum of continuous terms */ |
---|
943 | s = 0.0; |
---|
944 | for (j = nint+1; j <= mir->cut_vec->nnz; j++) |
---|
945 | { double x; |
---|
946 | k = mir->cut_vec->ind[j]; |
---|
947 | xassert(1 <= k && k <= m+n); |
---|
948 | /* must be continuous */ |
---|
949 | xassert(!mir->isint[k]); |
---|
950 | if (mir->subst[k] == 'L') |
---|
951 | { xassert(mir->lb[k] != -DBL_MAX); |
---|
952 | kk = mir->vlb[k]; |
---|
953 | if (kk == 0) |
---|
954 | x = mir->x[k] - mir->lb[k]; |
---|
955 | else |
---|
956 | x = mir->x[k] - mir->lb[k] * mir->x[kk]; |
---|
957 | } |
---|
958 | else if (mir->subst[k] == 'U') |
---|
959 | { xassert(mir->ub[k] != +DBL_MAX); |
---|
960 | kk = mir->vub[k]; |
---|
961 | if (kk == 0) |
---|
962 | x = mir->ub[k] - mir->x[k]; |
---|
963 | else |
---|
964 | x = mir->ub[k] * mir->x[kk] - mir->x[k]; |
---|
965 | } |
---|
966 | else |
---|
967 | xassert(k != k); |
---|
968 | xassert(x >= -0.001); |
---|
969 | if (x < 0.0) x = 0.0; |
---|
970 | s -= mir->cut_vec->val[j] * x; |
---|
971 | } |
---|
972 | xassert(s >= 0.0); |
---|
973 | /* apply heuristic to obtain most violated c-MIR inequality */ |
---|
974 | b = mir->cut_rhs; |
---|
975 | r_best = cmir_sep(nint, mir->cut_vec->val, b, u, x, s, alpha, |
---|
976 | &beta, &gamma); |
---|
977 | if (r_best == 0.0) goto skip; |
---|
978 | xassert(r_best > 0.0); |
---|
979 | /* convert to raw cut */ |
---|
980 | /* sum alpha[j] * x[j] <= beta + gamma * s */ |
---|
981 | for (j = 1; j <= nint; j++) |
---|
982 | mir->cut_vec->val[j] = alpha[j]; |
---|
983 | for (j = nint+1; j <= mir->cut_vec->nnz; j++) |
---|
984 | { k = mir->cut_vec->ind[j]; |
---|
985 | if (k <= m+n) mir->cut_vec->val[j] *= gamma; |
---|
986 | } |
---|
987 | mir->cut_rhs = beta; |
---|
988 | #if _MIR_DEBUG |
---|
989 | ios_check_vec(mir->cut_vec); |
---|
990 | #endif |
---|
991 | skip: /* free working arrays */ |
---|
992 | xfree(u); |
---|
993 | xfree(x); |
---|
994 | xfree(alpha); |
---|
995 | done: return r_best; |
---|
996 | } |
---|
997 | |
---|
998 | #if _MIR_DEBUG |
---|
999 | static void check_raw_cut(struct MIR *mir, double r_best) |
---|
1000 | { /* check raw cut before back bound substitution */ |
---|
1001 | int m = mir->m; |
---|
1002 | int n = mir->n; |
---|
1003 | int j, k, kk; |
---|
1004 | double r, big, x; |
---|
1005 | /* compute the residual r = sum a[k] * x[k] - b and determine |
---|
1006 | big = max(1, |a[k]|, |b|) */ |
---|
1007 | r = 0.0, big = 1.0; |
---|
1008 | for (j = 1; j <= mir->cut_vec->nnz; j++) |
---|
1009 | { k = mir->cut_vec->ind[j]; |
---|
1010 | xassert(1 <= k && k <= m+n); |
---|
1011 | if (mir->subst[k] == 'L') |
---|
1012 | { xassert(mir->lb[k] != -DBL_MAX); |
---|
1013 | kk = mir->vlb[k]; |
---|
1014 | if (kk == 0) |
---|
1015 | x = mir->x[k] - mir->lb[k]; |
---|
1016 | else |
---|
1017 | x = mir->x[k] - mir->lb[k] * mir->x[kk]; |
---|
1018 | } |
---|
1019 | else if (mir->subst[k] == 'U') |
---|
1020 | { xassert(mir->ub[k] != +DBL_MAX); |
---|
1021 | kk = mir->vub[k]; |
---|
1022 | if (kk == 0) |
---|
1023 | x = mir->ub[k] - mir->x[k]; |
---|
1024 | else |
---|
1025 | x = mir->ub[k] * mir->x[kk] - mir->x[k]; |
---|
1026 | } |
---|
1027 | else |
---|
1028 | xassert(k != k); |
---|
1029 | r += mir->cut_vec->val[j] * x; |
---|
1030 | if (big < fabs(mir->cut_vec->val[j])) |
---|
1031 | big = fabs(mir->cut_vec->val[j]); |
---|
1032 | } |
---|
1033 | r -= mir->cut_rhs; |
---|
1034 | if (big < fabs(mir->cut_rhs)) |
---|
1035 | big = fabs(mir->cut_rhs); |
---|
1036 | /* the residual must be close to r_best */ |
---|
1037 | xassert(fabs(r - r_best) <= 1e-6 * big); |
---|
1038 | return; |
---|
1039 | } |
---|
1040 | #endif |
---|
1041 | |
---|
1042 | static void back_subst(struct MIR *mir) |
---|
1043 | { /* back substitution of original bounds */ |
---|
1044 | int m = mir->m; |
---|
1045 | int n = mir->n; |
---|
1046 | int j, jj, k, kk; |
---|
1047 | /* at first, restore bounds of integer variables (because on |
---|
1048 | restoring variable bounds of continuous variables we need |
---|
1049 | original, not shifted, bounds of integer variables) */ |
---|
1050 | for (j = 1; j <= mir->cut_vec->nnz; j++) |
---|
1051 | { k = mir->cut_vec->ind[j]; |
---|
1052 | xassert(1 <= k && k <= m+n); |
---|
1053 | if (!mir->isint[k]) continue; /* skip continuous */ |
---|
1054 | if (mir->subst[k] == 'L') |
---|
1055 | { /* x'[k] = x[k] - lb[k] */ |
---|
1056 | xassert(mir->lb[k] != -DBL_MAX); |
---|
1057 | xassert(mir->vlb[k] == 0); |
---|
1058 | mir->cut_rhs += mir->cut_vec->val[j] * mir->lb[k]; |
---|
1059 | } |
---|
1060 | else if (mir->subst[k] == 'U') |
---|
1061 | { /* x'[k] = ub[k] - x[k] */ |
---|
1062 | xassert(mir->ub[k] != +DBL_MAX); |
---|
1063 | xassert(mir->vub[k] == 0); |
---|
1064 | mir->cut_rhs -= mir->cut_vec->val[j] * mir->ub[k]; |
---|
1065 | mir->cut_vec->val[j] = - mir->cut_vec->val[j]; |
---|
1066 | } |
---|
1067 | else |
---|
1068 | xassert(k != k); |
---|
1069 | } |
---|
1070 | /* now restore bounds of continuous variables */ |
---|
1071 | for (j = 1; j <= mir->cut_vec->nnz; j++) |
---|
1072 | { k = mir->cut_vec->ind[j]; |
---|
1073 | xassert(1 <= k && k <= m+n); |
---|
1074 | if (mir->isint[k]) continue; /* skip integer */ |
---|
1075 | if (mir->subst[k] == 'L') |
---|
1076 | { /* x'[k] = x[k] - (lower bound) */ |
---|
1077 | xassert(mir->lb[k] != -DBL_MAX); |
---|
1078 | kk = mir->vlb[k]; |
---|
1079 | if (kk == 0) |
---|
1080 | { /* x'[k] = x[k] - lb[k] */ |
---|
1081 | mir->cut_rhs += mir->cut_vec->val[j] * mir->lb[k]; |
---|
1082 | } |
---|
1083 | else |
---|
1084 | { /* x'[k] = x[k] - lb[k] * x[kk] */ |
---|
1085 | jj = mir->cut_vec->pos[kk]; |
---|
1086 | #if 0 |
---|
1087 | xassert(jj != 0); |
---|
1088 | #else |
---|
1089 | if (jj == 0) |
---|
1090 | { ios_set_vj(mir->cut_vec, kk, 1.0); |
---|
1091 | jj = mir->cut_vec->pos[kk]; |
---|
1092 | xassert(jj != 0); |
---|
1093 | mir->cut_vec->val[jj] = 0.0; |
---|
1094 | } |
---|
1095 | #endif |
---|
1096 | mir->cut_vec->val[jj] -= mir->cut_vec->val[j] * |
---|
1097 | mir->lb[k]; |
---|
1098 | } |
---|
1099 | } |
---|
1100 | else if (mir->subst[k] == 'U') |
---|
1101 | { /* x'[k] = (upper bound) - x[k] */ |
---|
1102 | xassert(mir->ub[k] != +DBL_MAX); |
---|
1103 | kk = mir->vub[k]; |
---|
1104 | if (kk == 0) |
---|
1105 | { /* x'[k] = ub[k] - x[k] */ |
---|
1106 | mir->cut_rhs -= mir->cut_vec->val[j] * mir->ub[k]; |
---|
1107 | } |
---|
1108 | else |
---|
1109 | { /* x'[k] = ub[k] * x[kk] - x[k] */ |
---|
1110 | jj = mir->cut_vec->pos[kk]; |
---|
1111 | if (jj == 0) |
---|
1112 | { ios_set_vj(mir->cut_vec, kk, 1.0); |
---|
1113 | jj = mir->cut_vec->pos[kk]; |
---|
1114 | xassert(jj != 0); |
---|
1115 | mir->cut_vec->val[jj] = 0.0; |
---|
1116 | } |
---|
1117 | mir->cut_vec->val[jj] += mir->cut_vec->val[j] * |
---|
1118 | mir->ub[k]; |
---|
1119 | } |
---|
1120 | mir->cut_vec->val[j] = - mir->cut_vec->val[j]; |
---|
1121 | } |
---|
1122 | else |
---|
1123 | xassert(k != k); |
---|
1124 | } |
---|
1125 | #if _MIR_DEBUG |
---|
1126 | ios_check_vec(mir->cut_vec); |
---|
1127 | #endif |
---|
1128 | return; |
---|
1129 | } |
---|
1130 | |
---|
1131 | #if _MIR_DEBUG |
---|
1132 | static void check_cut_row(struct MIR *mir, double r_best) |
---|
1133 | { /* check the cut after back bound substitution or elimination of |
---|
1134 | auxiliary variables */ |
---|
1135 | int m = mir->m; |
---|
1136 | int n = mir->n; |
---|
1137 | int j, k; |
---|
1138 | double r, big; |
---|
1139 | /* compute the residual r = sum a[k] * x[k] - b and determine |
---|
1140 | big = max(1, |a[k]|, |b|) */ |
---|
1141 | r = 0.0, big = 1.0; |
---|
1142 | for (j = 1; j <= mir->cut_vec->nnz; j++) |
---|
1143 | { k = mir->cut_vec->ind[j]; |
---|
1144 | xassert(1 <= k && k <= m+n); |
---|
1145 | r += mir->cut_vec->val[j] * mir->x[k]; |
---|
1146 | if (big < fabs(mir->cut_vec->val[j])) |
---|
1147 | big = fabs(mir->cut_vec->val[j]); |
---|
1148 | } |
---|
1149 | r -= mir->cut_rhs; |
---|
1150 | if (big < fabs(mir->cut_rhs)) |
---|
1151 | big = fabs(mir->cut_rhs); |
---|
1152 | /* the residual must be close to r_best */ |
---|
1153 | xassert(fabs(r - r_best) <= 1e-6 * big); |
---|
1154 | return; |
---|
1155 | } |
---|
1156 | #endif |
---|
1157 | |
---|
1158 | static void subst_aux_vars(glp_tree *tree, struct MIR *mir) |
---|
1159 | { /* final substitution to eliminate auxiliary variables */ |
---|
1160 | glp_prob *mip = tree->mip; |
---|
1161 | int m = mir->m; |
---|
1162 | int n = mir->n; |
---|
1163 | GLPAIJ *aij; |
---|
1164 | int j, k, kk, jj; |
---|
1165 | for (j = mir->cut_vec->nnz; j >= 1; j--) |
---|
1166 | { k = mir->cut_vec->ind[j]; |
---|
1167 | xassert(1 <= k && k <= m+n); |
---|
1168 | if (k > m) continue; /* skip structurals */ |
---|
1169 | for (aij = mip->row[k]->ptr; aij != NULL; aij = aij->r_next) |
---|
1170 | { kk = m + aij->col->j; /* structural */ |
---|
1171 | jj = mir->cut_vec->pos[kk]; |
---|
1172 | if (jj == 0) |
---|
1173 | { ios_set_vj(mir->cut_vec, kk, 1.0); |
---|
1174 | jj = mir->cut_vec->pos[kk]; |
---|
1175 | mir->cut_vec->val[jj] = 0.0; |
---|
1176 | } |
---|
1177 | mir->cut_vec->val[jj] += mir->cut_vec->val[j] * aij->val; |
---|
1178 | } |
---|
1179 | mir->cut_vec->val[j] = 0.0; |
---|
1180 | } |
---|
1181 | ios_clean_vec(mir->cut_vec, 0.0); |
---|
1182 | return; |
---|
1183 | } |
---|
1184 | |
---|
1185 | static void add_cut(glp_tree *tree, struct MIR *mir) |
---|
1186 | { /* add constructed cut inequality to the cut pool */ |
---|
1187 | int m = mir->m; |
---|
1188 | int n = mir->n; |
---|
1189 | int j, k, len; |
---|
1190 | int *ind = xcalloc(1+n, sizeof(int)); |
---|
1191 | double *val = xcalloc(1+n, sizeof(double)); |
---|
1192 | len = 0; |
---|
1193 | for (j = mir->cut_vec->nnz; j >= 1; j--) |
---|
1194 | { k = mir->cut_vec->ind[j]; |
---|
1195 | xassert(m+1 <= k && k <= m+n); |
---|
1196 | len++, ind[len] = k - m, val[len] = mir->cut_vec->val[j]; |
---|
1197 | } |
---|
1198 | #if 0 |
---|
1199 | ios_add_cut_row(tree, pool, GLP_RF_MIR, len, ind, val, GLP_UP, |
---|
1200 | mir->cut_rhs); |
---|
1201 | #else |
---|
1202 | glp_ios_add_row(tree, NULL, GLP_RF_MIR, 0, len, ind, val, GLP_UP, |
---|
1203 | mir->cut_rhs); |
---|
1204 | #endif |
---|
1205 | xfree(ind); |
---|
1206 | xfree(val); |
---|
1207 | return; |
---|
1208 | } |
---|
1209 | |
---|
1210 | static int aggregate_row(glp_tree *tree, struct MIR *mir) |
---|
1211 | { /* try to aggregate another row */ |
---|
1212 | glp_prob *mip = tree->mip; |
---|
1213 | int m = mir->m; |
---|
1214 | int n = mir->n; |
---|
1215 | GLPAIJ *aij; |
---|
1216 | IOSVEC *v; |
---|
1217 | int ii, j, jj, k, kk, kappa = 0, ret = 0; |
---|
1218 | double d1, d2, d, d_max = 0.0; |
---|
1219 | /* choose appropriate structural variable in the aggregated row |
---|
1220 | to be substituted */ |
---|
1221 | for (j = 1; j <= mir->agg_vec->nnz; j++) |
---|
1222 | { k = mir->agg_vec->ind[j]; |
---|
1223 | xassert(1 <= k && k <= m+n); |
---|
1224 | if (k <= m) continue; /* skip auxiliary var */ |
---|
1225 | if (mir->isint[k]) continue; /* skip integer var */ |
---|
1226 | if (fabs(mir->agg_vec->val[j]) < 0.001) continue; |
---|
1227 | /* compute distance from x[k] to its lower bound */ |
---|
1228 | kk = mir->vlb[k]; |
---|
1229 | if (kk == 0) |
---|
1230 | { if (mir->lb[k] == -DBL_MAX) |
---|
1231 | d1 = DBL_MAX; |
---|
1232 | else |
---|
1233 | d1 = mir->x[k] - mir->lb[k]; |
---|
1234 | } |
---|
1235 | else |
---|
1236 | { xassert(1 <= kk && kk <= m+n); |
---|
1237 | xassert(mir->isint[kk]); |
---|
1238 | xassert(mir->lb[k] != -DBL_MAX); |
---|
1239 | d1 = mir->x[k] - mir->lb[k] * mir->x[kk]; |
---|
1240 | } |
---|
1241 | /* compute distance from x[k] to its upper bound */ |
---|
1242 | kk = mir->vub[k]; |
---|
1243 | if (kk == 0) |
---|
1244 | { if (mir->vub[k] == +DBL_MAX) |
---|
1245 | d2 = DBL_MAX; |
---|
1246 | else |
---|
1247 | d2 = mir->ub[k] - mir->x[k]; |
---|
1248 | } |
---|
1249 | else |
---|
1250 | { xassert(1 <= kk && kk <= m+n); |
---|
1251 | xassert(mir->isint[kk]); |
---|
1252 | xassert(mir->ub[k] != +DBL_MAX); |
---|
1253 | d2 = mir->ub[k] * mir->x[kk] - mir->x[k]; |
---|
1254 | } |
---|
1255 | /* x[k] cannot be free */ |
---|
1256 | xassert(d1 != DBL_MAX || d2 != DBL_MAX); |
---|
1257 | /* d = min(d1, d2) */ |
---|
1258 | d = (d1 <= d2 ? d1 : d2); |
---|
1259 | xassert(d != DBL_MAX); |
---|
1260 | /* should not be close to corresponding bound */ |
---|
1261 | if (d < 0.001) continue; |
---|
1262 | if (d_max < d) d_max = d, kappa = k; |
---|
1263 | } |
---|
1264 | if (kappa == 0) |
---|
1265 | { /* nothing chosen */ |
---|
1266 | ret = 1; |
---|
1267 | goto done; |
---|
1268 | } |
---|
1269 | /* x[kappa] has been chosen */ |
---|
1270 | xassert(m+1 <= kappa && kappa <= m+n); |
---|
1271 | xassert(!mir->isint[kappa]); |
---|
1272 | /* find another row, which have not been used yet, to eliminate |
---|
1273 | x[kappa] from the aggregated row */ |
---|
1274 | for (ii = 1; ii <= m; ii++) |
---|
1275 | { if (mir->skip[ii]) continue; |
---|
1276 | for (aij = mip->row[ii]->ptr; aij != NULL; aij = aij->r_next) |
---|
1277 | if (aij->col->j == kappa - m) break; |
---|
1278 | if (aij != NULL && fabs(aij->val) >= 0.001) break; |
---|
1279 | } |
---|
1280 | if (ii > m) |
---|
1281 | { /* nothing found */ |
---|
1282 | ret = 2; |
---|
1283 | goto done; |
---|
1284 | } |
---|
1285 | /* row ii has been found; include it in the aggregated list */ |
---|
1286 | mir->agg_cnt++; |
---|
1287 | xassert(mir->agg_cnt <= MAXAGGR); |
---|
1288 | mir->agg_row[mir->agg_cnt] = ii; |
---|
1289 | mir->skip[ii] = 2; |
---|
1290 | /* v := new row */ |
---|
1291 | v = ios_create_vec(m+n); |
---|
1292 | ios_set_vj(v, ii, 1.0); |
---|
1293 | for (aij = mip->row[ii]->ptr; aij != NULL; aij = aij->r_next) |
---|
1294 | ios_set_vj(v, m + aij->col->j, - aij->val); |
---|
1295 | #if _MIR_DEBUG |
---|
1296 | ios_check_vec(v); |
---|
1297 | #endif |
---|
1298 | /* perform gaussian elimination to remove x[kappa] */ |
---|
1299 | j = mir->agg_vec->pos[kappa]; |
---|
1300 | xassert(j != 0); |
---|
1301 | jj = v->pos[kappa]; |
---|
1302 | xassert(jj != 0); |
---|
1303 | ios_linear_comb(mir->agg_vec, |
---|
1304 | - mir->agg_vec->val[j] / v->val[jj], v); |
---|
1305 | ios_delete_vec(v); |
---|
1306 | ios_set_vj(mir->agg_vec, kappa, 0.0); |
---|
1307 | #if _MIR_DEBUG |
---|
1308 | ios_check_vec(mir->agg_vec); |
---|
1309 | #endif |
---|
1310 | done: return ret; |
---|
1311 | } |
---|
1312 | |
---|
1313 | void ios_mir_gen(glp_tree *tree, void *gen) |
---|
1314 | { /* main routine to generate MIR cuts */ |
---|
1315 | glp_prob *mip = tree->mip; |
---|
1316 | struct MIR *mir = gen; |
---|
1317 | int m = mir->m; |
---|
1318 | int n = mir->n; |
---|
1319 | int i; |
---|
1320 | double r_best; |
---|
1321 | xassert(mip->m >= m); |
---|
1322 | xassert(mip->n == n); |
---|
1323 | /* obtain current point */ |
---|
1324 | get_current_point(tree, mir); |
---|
1325 | #if _MIR_DEBUG |
---|
1326 | /* check current point */ |
---|
1327 | check_current_point(mir); |
---|
1328 | #endif |
---|
1329 | /* reset bound substitution flags */ |
---|
1330 | memset(&mir->subst[1], '?', m+n); |
---|
1331 | /* try to generate a set of violated MIR cuts */ |
---|
1332 | for (i = 1; i <= m; i++) |
---|
1333 | { if (mir->skip[i]) continue; |
---|
1334 | /* use original i-th row as initial aggregated constraint */ |
---|
1335 | initial_agg_row(tree, mir, i); |
---|
1336 | loop: ; |
---|
1337 | #if _MIR_DEBUG |
---|
1338 | /* check aggregated row */ |
---|
1339 | check_agg_row(mir); |
---|
1340 | #endif |
---|
1341 | /* substitute fixed variables into aggregated constraint */ |
---|
1342 | subst_fixed_vars(mir); |
---|
1343 | #if _MIR_DEBUG |
---|
1344 | /* check aggregated row */ |
---|
1345 | check_agg_row(mir); |
---|
1346 | #endif |
---|
1347 | #if _MIR_DEBUG |
---|
1348 | /* check bound substitution flags */ |
---|
1349 | { int k; |
---|
1350 | for (k = 1; k <= m+n; k++) |
---|
1351 | xassert(mir->subst[k] == '?'); |
---|
1352 | } |
---|
1353 | #endif |
---|
1354 | /* apply bound substitution heuristic */ |
---|
1355 | bound_subst_heur(mir); |
---|
1356 | /* substitute bounds and build modified constraint */ |
---|
1357 | build_mod_row(mir); |
---|
1358 | #if _MIR_DEBUG |
---|
1359 | /* check modified row */ |
---|
1360 | check_mod_row(mir); |
---|
1361 | #endif |
---|
1362 | /* try to generate violated c-MIR cut for modified row */ |
---|
1363 | r_best = generate(mir); |
---|
1364 | if (r_best > 0.0) |
---|
1365 | { /* success */ |
---|
1366 | #if _MIR_DEBUG |
---|
1367 | /* check raw cut before back bound substitution */ |
---|
1368 | check_raw_cut(mir, r_best); |
---|
1369 | #endif |
---|
1370 | /* back substitution of original bounds */ |
---|
1371 | back_subst(mir); |
---|
1372 | #if _MIR_DEBUG |
---|
1373 | /* check the cut after back bound substitution */ |
---|
1374 | check_cut_row(mir, r_best); |
---|
1375 | #endif |
---|
1376 | /* final substitution to eliminate auxiliary variables */ |
---|
1377 | subst_aux_vars(tree, mir); |
---|
1378 | #if _MIR_DEBUG |
---|
1379 | /* check the cut after elimination of auxiliaries */ |
---|
1380 | check_cut_row(mir, r_best); |
---|
1381 | #endif |
---|
1382 | /* add constructed cut inequality to the cut pool */ |
---|
1383 | add_cut(tree, mir); |
---|
1384 | } |
---|
1385 | /* reset bound substitution flags */ |
---|
1386 | { int j, k; |
---|
1387 | for (j = 1; j <= mir->mod_vec->nnz; j++) |
---|
1388 | { k = mir->mod_vec->ind[j]; |
---|
1389 | xassert(1 <= k && k <= m+n); |
---|
1390 | xassert(mir->subst[k] != '?'); |
---|
1391 | mir->subst[k] = '?'; |
---|
1392 | } |
---|
1393 | } |
---|
1394 | if (r_best == 0.0) |
---|
1395 | { /* failure */ |
---|
1396 | if (mir->agg_cnt < MAXAGGR) |
---|
1397 | { /* try to aggregate another row */ |
---|
1398 | if (aggregate_row(tree, mir) == 0) goto loop; |
---|
1399 | } |
---|
1400 | } |
---|
1401 | /* unmark rows used in the aggregated constraint */ |
---|
1402 | { int k, ii; |
---|
1403 | for (k = 1; k <= mir->agg_cnt; k++) |
---|
1404 | { ii = mir->agg_row[k]; |
---|
1405 | xassert(1 <= ii && ii <= m); |
---|
1406 | xassert(mir->skip[ii] == 2); |
---|
1407 | mir->skip[ii] = 0; |
---|
1408 | } |
---|
1409 | } |
---|
1410 | } |
---|
1411 | return; |
---|
1412 | } |
---|
1413 | |
---|
1414 | /*********************************************************************** |
---|
1415 | * NAME |
---|
1416 | * |
---|
1417 | * ios_mir_term - terminate MIR cut generator |
---|
1418 | * |
---|
1419 | * SYNOPSIS |
---|
1420 | * |
---|
1421 | * #include "glpios.h" |
---|
1422 | * void ios_mir_term(void *gen); |
---|
1423 | * |
---|
1424 | * DESCRIPTION |
---|
1425 | * |
---|
1426 | * The routine ios_mir_term deletes the MIR cut generator working area |
---|
1427 | * freeing all the memory allocated to it. */ |
---|
1428 | |
---|
1429 | void ios_mir_term(void *gen) |
---|
1430 | { struct MIR *mir = gen; |
---|
1431 | xfree(mir->skip); |
---|
1432 | xfree(mir->isint); |
---|
1433 | xfree(mir->lb); |
---|
1434 | xfree(mir->vlb); |
---|
1435 | xfree(mir->ub); |
---|
1436 | xfree(mir->vub); |
---|
1437 | xfree(mir->x); |
---|
1438 | xfree(mir->agg_row); |
---|
1439 | ios_delete_vec(mir->agg_vec); |
---|
1440 | xfree(mir->subst); |
---|
1441 | ios_delete_vec(mir->mod_vec); |
---|
1442 | ios_delete_vec(mir->cut_vec); |
---|
1443 | xfree(mir); |
---|
1444 | return; |
---|
1445 | } |
---|
1446 | |
---|
1447 | /* eof */ |
---|