[1] | 1 | /* glplib03.c (miscellaneous library routines) */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpenv.h" |
---|
| 26 | #include "glplib.h" |
---|
| 27 | |
---|
| 28 | /*********************************************************************** |
---|
| 29 | * NAME |
---|
| 30 | * |
---|
| 31 | * str2int - convert character string to value of int type |
---|
| 32 | * |
---|
| 33 | * SYNOPSIS |
---|
| 34 | * |
---|
| 35 | * #include "glplib.h" |
---|
| 36 | * int str2int(const char *str, int *val); |
---|
| 37 | * |
---|
| 38 | * DESCRIPTION |
---|
| 39 | * |
---|
| 40 | * The routine str2int converts the character string str to a value of |
---|
| 41 | * integer type and stores the value into location, which the parameter |
---|
| 42 | * val points to (in the case of error content of this location is not |
---|
| 43 | * changed). |
---|
| 44 | * |
---|
| 45 | * RETURNS |
---|
| 46 | * |
---|
| 47 | * The routine returns one of the following error codes: |
---|
| 48 | * |
---|
| 49 | * 0 - no error; |
---|
| 50 | * 1 - value out of range; |
---|
| 51 | * 2 - character string is syntactically incorrect. */ |
---|
| 52 | |
---|
| 53 | int str2int(const char *str, int *_val) |
---|
| 54 | { int d, k, s, val = 0; |
---|
| 55 | /* scan optional sign */ |
---|
| 56 | if (str[0] == '+') |
---|
| 57 | s = +1, k = 1; |
---|
| 58 | else if (str[0] == '-') |
---|
| 59 | s = -1, k = 1; |
---|
| 60 | else |
---|
| 61 | s = +1, k = 0; |
---|
| 62 | /* check for the first digit */ |
---|
| 63 | if (!isdigit((unsigned char)str[k])) return 2; |
---|
| 64 | /* scan digits */ |
---|
| 65 | while (isdigit((unsigned char)str[k])) |
---|
| 66 | { d = str[k++] - '0'; |
---|
| 67 | if (s > 0) |
---|
| 68 | { if (val > INT_MAX / 10) return 1; |
---|
| 69 | val *= 10; |
---|
| 70 | if (val > INT_MAX - d) return 1; |
---|
| 71 | val += d; |
---|
| 72 | } |
---|
| 73 | else |
---|
| 74 | { if (val < INT_MIN / 10) return 1; |
---|
| 75 | val *= 10; |
---|
| 76 | if (val < INT_MIN + d) return 1; |
---|
| 77 | val -= d; |
---|
| 78 | } |
---|
| 79 | } |
---|
| 80 | /* check for terminator */ |
---|
| 81 | if (str[k] != '\0') return 2; |
---|
| 82 | /* conversion has been done */ |
---|
| 83 | *_val = val; |
---|
| 84 | return 0; |
---|
| 85 | } |
---|
| 86 | |
---|
| 87 | /*********************************************************************** |
---|
| 88 | * NAME |
---|
| 89 | * |
---|
| 90 | * str2num - convert character string to value of double type |
---|
| 91 | * |
---|
| 92 | * SYNOPSIS |
---|
| 93 | * |
---|
| 94 | * #include "glplib.h" |
---|
| 95 | * int str2num(const char *str, double *val); |
---|
| 96 | * |
---|
| 97 | * DESCRIPTION |
---|
| 98 | * |
---|
| 99 | * The routine str2num converts the character string str to a value of |
---|
| 100 | * double type and stores the value into location, which the parameter |
---|
| 101 | * val points to (in the case of error content of this location is not |
---|
| 102 | * changed). |
---|
| 103 | * |
---|
| 104 | * RETURNS |
---|
| 105 | * |
---|
| 106 | * The routine returns one of the following error codes: |
---|
| 107 | * |
---|
| 108 | * 0 - no error; |
---|
| 109 | * 1 - value out of range; |
---|
| 110 | * 2 - character string is syntactically incorrect. */ |
---|
| 111 | |
---|
| 112 | int str2num(const char *str, double *_val) |
---|
| 113 | { int k; |
---|
| 114 | double val; |
---|
| 115 | /* scan optional sign */ |
---|
| 116 | k = (str[0] == '+' || str[0] == '-' ? 1 : 0); |
---|
| 117 | /* check for decimal point */ |
---|
| 118 | if (str[k] == '.') |
---|
| 119 | { k++; |
---|
| 120 | /* a digit should follow it */ |
---|
| 121 | if (!isdigit((unsigned char)str[k])) return 2; |
---|
| 122 | k++; |
---|
| 123 | goto frac; |
---|
| 124 | } |
---|
| 125 | /* integer part should start with a digit */ |
---|
| 126 | if (!isdigit((unsigned char)str[k])) return 2; |
---|
| 127 | /* scan integer part */ |
---|
| 128 | while (isdigit((unsigned char)str[k])) k++; |
---|
| 129 | /* check for decimal point */ |
---|
| 130 | if (str[k] == '.') k++; |
---|
| 131 | frac: /* scan optional fraction part */ |
---|
| 132 | while (isdigit((unsigned char)str[k])) k++; |
---|
| 133 | /* check for decimal exponent */ |
---|
| 134 | if (str[k] == 'E' || str[k] == 'e') |
---|
| 135 | { k++; |
---|
| 136 | /* scan optional sign */ |
---|
| 137 | if (str[k] == '+' || str[k] == '-') k++; |
---|
| 138 | /* a digit should follow E, E+ or E- */ |
---|
| 139 | if (!isdigit((unsigned char)str[k])) return 2; |
---|
| 140 | } |
---|
| 141 | /* scan optional exponent part */ |
---|
| 142 | while (isdigit((unsigned char)str[k])) k++; |
---|
| 143 | /* check for terminator */ |
---|
| 144 | if (str[k] != '\0') return 2; |
---|
| 145 | /* perform conversion */ |
---|
| 146 | { char *endptr; |
---|
| 147 | val = strtod(str, &endptr); |
---|
| 148 | if (*endptr != '\0') return 2; |
---|
| 149 | } |
---|
| 150 | /* check for overflow */ |
---|
| 151 | if (!(-DBL_MAX <= val && val <= +DBL_MAX)) return 1; |
---|
| 152 | /* check for underflow */ |
---|
| 153 | if (-DBL_MIN < val && val < +DBL_MIN) val = 0.0; |
---|
| 154 | /* conversion has been done */ |
---|
| 155 | *_val = val; |
---|
| 156 | return 0; |
---|
| 157 | } |
---|
| 158 | |
---|
| 159 | /*********************************************************************** |
---|
| 160 | * NAME |
---|
| 161 | * |
---|
| 162 | * strspx - remove all spaces from character string |
---|
| 163 | * |
---|
| 164 | * SYNOPSIS |
---|
| 165 | * |
---|
| 166 | * #include "glplib.h" |
---|
| 167 | * char *strspx(char *str); |
---|
| 168 | * |
---|
| 169 | * DESCRIPTION |
---|
| 170 | * |
---|
| 171 | * The routine strspx removes all spaces from the character string str. |
---|
| 172 | * |
---|
| 173 | * RETURNS |
---|
| 174 | * |
---|
| 175 | * The routine returns a pointer to the character string. |
---|
| 176 | * |
---|
| 177 | * EXAMPLES |
---|
| 178 | * |
---|
| 179 | * strspx(" Errare humanum est ") => "Errarehumanumest" |
---|
| 180 | * |
---|
| 181 | * strspx(" ") => "" */ |
---|
| 182 | |
---|
| 183 | char *strspx(char *str) |
---|
| 184 | { char *s, *t; |
---|
| 185 | for (s = t = str; *s; s++) if (*s != ' ') *t++ = *s; |
---|
| 186 | *t = '\0'; |
---|
| 187 | return str; |
---|
| 188 | } |
---|
| 189 | |
---|
| 190 | /*********************************************************************** |
---|
| 191 | * NAME |
---|
| 192 | * |
---|
| 193 | * strtrim - remove trailing spaces from character string |
---|
| 194 | * |
---|
| 195 | * SYNOPSIS |
---|
| 196 | * |
---|
| 197 | * #include "glplib.h" |
---|
| 198 | * char *strtrim(char *str); |
---|
| 199 | * |
---|
| 200 | * DESCRIPTION |
---|
| 201 | * |
---|
| 202 | * The routine strtrim removes trailing spaces from the character |
---|
| 203 | * string str. |
---|
| 204 | * |
---|
| 205 | * RETURNS |
---|
| 206 | * |
---|
| 207 | * The routine returns a pointer to the character string. |
---|
| 208 | * |
---|
| 209 | * EXAMPLES |
---|
| 210 | * |
---|
| 211 | * strtrim("Errare humanum est ") => "Errare humanum est" |
---|
| 212 | * |
---|
| 213 | * strtrim(" ") => "" */ |
---|
| 214 | |
---|
| 215 | char *strtrim(char *str) |
---|
| 216 | { char *t; |
---|
| 217 | for (t = strrchr(str, '\0') - 1; t >= str; t--) |
---|
| 218 | { if (*t != ' ') break; |
---|
| 219 | *t = '\0'; |
---|
| 220 | } |
---|
| 221 | return str; |
---|
| 222 | } |
---|
| 223 | |
---|
| 224 | /*********************************************************************** |
---|
| 225 | * NAME |
---|
| 226 | * |
---|
| 227 | * strrev - reverse character string |
---|
| 228 | * |
---|
| 229 | * SYNOPSIS |
---|
| 230 | * |
---|
| 231 | * #include "glplib.h" |
---|
| 232 | * char *strrev(char *s); |
---|
| 233 | * |
---|
| 234 | * DESCRIPTION |
---|
| 235 | * |
---|
| 236 | * The routine strrev changes characters in a character string s to the |
---|
| 237 | * reverse order, except the terminating null character. |
---|
| 238 | * |
---|
| 239 | * RETURNS |
---|
| 240 | * |
---|
| 241 | * The routine returns the pointer s. |
---|
| 242 | * |
---|
| 243 | * EXAMPLES |
---|
| 244 | * |
---|
| 245 | * strrev("") => "" |
---|
| 246 | * |
---|
| 247 | * strrev("Today is Monday") => "yadnoM si yadoT" */ |
---|
| 248 | |
---|
| 249 | char *strrev(char *s) |
---|
| 250 | { int i, j; |
---|
| 251 | char t; |
---|
| 252 | for (i = 0, j = strlen(s)-1; i < j; i++, j--) |
---|
| 253 | t = s[i], s[i] = s[j], s[j] = t; |
---|
| 254 | return s; |
---|
| 255 | } |
---|
| 256 | |
---|
| 257 | /*********************************************************************** |
---|
| 258 | * NAME |
---|
| 259 | * |
---|
| 260 | * gcd - find greatest common divisor of two integers |
---|
| 261 | * |
---|
| 262 | * SYNOPSIS |
---|
| 263 | * |
---|
| 264 | * #include "glplib.h" |
---|
| 265 | * int gcd(int x, int y); |
---|
| 266 | * |
---|
| 267 | * RETURNS |
---|
| 268 | * |
---|
| 269 | * The routine gcd returns gcd(x, y), the greatest common divisor of |
---|
| 270 | * the two positive integers given. |
---|
| 271 | * |
---|
| 272 | * ALGORITHM |
---|
| 273 | * |
---|
| 274 | * The routine gcd is based on Euclid's algorithm. |
---|
| 275 | * |
---|
| 276 | * REFERENCES |
---|
| 277 | * |
---|
| 278 | * Don Knuth, The Art of Computer Programming, Vol.2: Seminumerical |
---|
| 279 | * Algorithms, 3rd Edition, Addison-Wesley, 1997. Section 4.5.2: The |
---|
| 280 | * Greatest Common Divisor, pp. 333-56. */ |
---|
| 281 | |
---|
| 282 | int gcd(int x, int y) |
---|
| 283 | { int r; |
---|
| 284 | xassert(x > 0 && y > 0); |
---|
| 285 | while (y > 0) |
---|
| 286 | r = x % y, x = y, y = r; |
---|
| 287 | return x; |
---|
| 288 | } |
---|
| 289 | |
---|
| 290 | /*********************************************************************** |
---|
| 291 | * NAME |
---|
| 292 | * |
---|
| 293 | * gcdn - find greatest common divisor of n integers |
---|
| 294 | * |
---|
| 295 | * SYNOPSIS |
---|
| 296 | * |
---|
| 297 | * #include "glplib.h" |
---|
| 298 | * int gcdn(int n, int x[]); |
---|
| 299 | * |
---|
| 300 | * RETURNS |
---|
| 301 | * |
---|
| 302 | * The routine gcdn returns gcd(x[1], x[2], ..., x[n]), the greatest |
---|
| 303 | * common divisor of n positive integers given, n > 0. |
---|
| 304 | * |
---|
| 305 | * BACKGROUND |
---|
| 306 | * |
---|
| 307 | * The routine gcdn is based on the following identity: |
---|
| 308 | * |
---|
| 309 | * gcd(x, y, z) = gcd(gcd(x, y), z). |
---|
| 310 | * |
---|
| 311 | * REFERENCES |
---|
| 312 | * |
---|
| 313 | * Don Knuth, The Art of Computer Programming, Vol.2: Seminumerical |
---|
| 314 | * Algorithms, 3rd Edition, Addison-Wesley, 1997. Section 4.5.2: The |
---|
| 315 | * Greatest Common Divisor, pp. 333-56. */ |
---|
| 316 | |
---|
| 317 | int gcdn(int n, int x[]) |
---|
| 318 | { int d, j; |
---|
| 319 | xassert(n > 0); |
---|
| 320 | for (j = 1; j <= n; j++) |
---|
| 321 | { xassert(x[j] > 0); |
---|
| 322 | if (j == 1) |
---|
| 323 | d = x[1]; |
---|
| 324 | else |
---|
| 325 | d = gcd(d, x[j]); |
---|
| 326 | if (d == 1) break; |
---|
| 327 | } |
---|
| 328 | return d; |
---|
| 329 | } |
---|
| 330 | |
---|
| 331 | /*********************************************************************** |
---|
| 332 | * NAME |
---|
| 333 | * |
---|
| 334 | * lcm - find least common multiple of two integers |
---|
| 335 | * |
---|
| 336 | * SYNOPSIS |
---|
| 337 | * |
---|
| 338 | * #include "glplib.h" |
---|
| 339 | * int lcm(int x, int y); |
---|
| 340 | * |
---|
| 341 | * RETURNS |
---|
| 342 | * |
---|
| 343 | * The routine lcm returns lcm(x, y), the least common multiple of the |
---|
| 344 | * two positive integers given. In case of integer overflow the routine |
---|
| 345 | * returns zero. |
---|
| 346 | * |
---|
| 347 | * BACKGROUND |
---|
| 348 | * |
---|
| 349 | * The routine lcm is based on the following identity: |
---|
| 350 | * |
---|
| 351 | * lcm(x, y) = (x * y) / gcd(x, y) = x * [y / gcd(x, y)], |
---|
| 352 | * |
---|
| 353 | * where gcd(x, y) is the greatest common divisor of x and y. */ |
---|
| 354 | |
---|
| 355 | int lcm(int x, int y) |
---|
| 356 | { xassert(x > 0); |
---|
| 357 | xassert(y > 0); |
---|
| 358 | y /= gcd(x, y); |
---|
| 359 | if (x > INT_MAX / y) return 0; |
---|
| 360 | return x * y; |
---|
| 361 | } |
---|
| 362 | |
---|
| 363 | /*********************************************************************** |
---|
| 364 | * NAME |
---|
| 365 | * |
---|
| 366 | * lcmn - find least common multiple of n integers |
---|
| 367 | * |
---|
| 368 | * SYNOPSIS |
---|
| 369 | * |
---|
| 370 | * #include "glplib.h" |
---|
| 371 | * int lcmn(int n, int x[]); |
---|
| 372 | * |
---|
| 373 | * RETURNS |
---|
| 374 | * |
---|
| 375 | * The routine lcmn returns lcm(x[1], x[2], ..., x[n]), the least |
---|
| 376 | * common multiple of n positive integers given, n > 0. In case of |
---|
| 377 | * integer overflow the routine returns zero. |
---|
| 378 | * |
---|
| 379 | * BACKGROUND |
---|
| 380 | * |
---|
| 381 | * The routine lcmn is based on the following identity: |
---|
| 382 | * |
---|
| 383 | * lcmn(x, y, z) = lcm(lcm(x, y), z), |
---|
| 384 | * |
---|
| 385 | * where lcm(x, y) is the least common multiple of x and y. */ |
---|
| 386 | |
---|
| 387 | int lcmn(int n, int x[]) |
---|
| 388 | { int m, j; |
---|
| 389 | xassert(n > 0); |
---|
| 390 | for (j = 1; j <= n; j++) |
---|
| 391 | { xassert(x[j] > 0); |
---|
| 392 | if (j == 1) |
---|
| 393 | m = x[1]; |
---|
| 394 | else |
---|
| 395 | m = lcm(m, x[j]); |
---|
| 396 | if (m == 0) break; |
---|
| 397 | } |
---|
| 398 | return m; |
---|
| 399 | } |
---|
| 400 | |
---|
| 401 | /*********************************************************************** |
---|
| 402 | * NAME |
---|
| 403 | * |
---|
| 404 | * round2n - round floating-point number to nearest power of two |
---|
| 405 | * |
---|
| 406 | * SYNOPSIS |
---|
| 407 | * |
---|
| 408 | * #include "glplib.h" |
---|
| 409 | * double round2n(double x); |
---|
| 410 | * |
---|
| 411 | * RETURNS |
---|
| 412 | * |
---|
| 413 | * Given a positive floating-point value x the routine round2n returns |
---|
| 414 | * 2^n such that |x - 2^n| is minimal. |
---|
| 415 | * |
---|
| 416 | * EXAMPLES |
---|
| 417 | * |
---|
| 418 | * round2n(10.1) = 2^3 = 8 |
---|
| 419 | * round2n(15.3) = 2^4 = 16 |
---|
| 420 | * round2n(0.01) = 2^(-7) = 0.0078125 |
---|
| 421 | * |
---|
| 422 | * BACKGROUND |
---|
| 423 | * |
---|
| 424 | * Let x = f * 2^e, where 0.5 <= f < 1 is a normalized fractional part, |
---|
| 425 | * e is an integer exponent. Then, obviously, 0.5 * 2^e <= x < 2^e, so |
---|
| 426 | * if x - 0.5 * 2^e <= 2^e - x, we choose 0.5 * 2^e = 2^(e-1), and 2^e |
---|
| 427 | * otherwise. The latter condition can be written as 2 * x <= 1.5 * 2^e |
---|
| 428 | * or 2 * f * 2^e <= 1.5 * 2^e or, finally, f <= 0.75. */ |
---|
| 429 | |
---|
| 430 | double round2n(double x) |
---|
| 431 | { int e; |
---|
| 432 | double f; |
---|
| 433 | xassert(x > 0.0); |
---|
| 434 | f = frexp(x, &e); |
---|
| 435 | return ldexp(1.0, f <= 0.75 ? e-1 : e); |
---|
| 436 | } |
---|
| 437 | |
---|
| 438 | /*********************************************************************** |
---|
| 439 | * NAME |
---|
| 440 | * |
---|
| 441 | * fp2rat - convert floating-point number to rational number |
---|
| 442 | * |
---|
| 443 | * SYNOPSIS |
---|
| 444 | * |
---|
| 445 | * #include "glplib.h" |
---|
| 446 | * int fp2rat(double x, double eps, double *p, double *q); |
---|
| 447 | * |
---|
| 448 | * DESCRIPTION |
---|
| 449 | * |
---|
| 450 | * Given a floating-point number 0 <= x < 1 the routine fp2rat finds |
---|
| 451 | * its "best" rational approximation p / q, where p >= 0 and q > 0 are |
---|
| 452 | * integer numbers, such that |x - p / q| <= eps. |
---|
| 453 | * |
---|
| 454 | * RETURNS |
---|
| 455 | * |
---|
| 456 | * The routine fp2rat returns the number of iterations used to achieve |
---|
| 457 | * the specified precision eps. |
---|
| 458 | * |
---|
| 459 | * EXAMPLES |
---|
| 460 | * |
---|
| 461 | * For x = sqrt(2) - 1 = 0.414213562373095 and eps = 1e-6 the routine |
---|
| 462 | * gives p = 408 and q = 985, where 408 / 985 = 0.414213197969543. |
---|
| 463 | * |
---|
| 464 | * BACKGROUND |
---|
| 465 | * |
---|
| 466 | * It is well known that every positive real number x can be expressed |
---|
| 467 | * as the following continued fraction: |
---|
| 468 | * |
---|
| 469 | * x = b[0] + a[1] |
---|
| 470 | * ------------------------ |
---|
| 471 | * b[1] + a[2] |
---|
| 472 | * ----------------- |
---|
| 473 | * b[2] + a[3] |
---|
| 474 | * ---------- |
---|
| 475 | * b[3] + ... |
---|
| 476 | * |
---|
| 477 | * where: |
---|
| 478 | * |
---|
| 479 | * a[k] = 1, k = 0, 1, 2, ... |
---|
| 480 | * |
---|
| 481 | * b[k] = floor(x[k]), k = 0, 1, 2, ... |
---|
| 482 | * |
---|
| 483 | * x[0] = x, |
---|
| 484 | * |
---|
| 485 | * x[k] = 1 / frac(x[k-1]), k = 1, 2, 3, ... |
---|
| 486 | * |
---|
| 487 | * To find the "best" rational approximation of x the routine computes |
---|
| 488 | * partial fractions f[k] by dropping after k terms as follows: |
---|
| 489 | * |
---|
| 490 | * f[k] = A[k] / B[k], |
---|
| 491 | * |
---|
| 492 | * where: |
---|
| 493 | * |
---|
| 494 | * A[-1] = 1, A[0] = b[0], B[-1] = 0, B[0] = 1, |
---|
| 495 | * |
---|
| 496 | * A[k] = b[k] * A[k-1] + a[k] * A[k-2], |
---|
| 497 | * |
---|
| 498 | * B[k] = b[k] * B[k-1] + a[k] * B[k-2]. |
---|
| 499 | * |
---|
| 500 | * Once the condition |
---|
| 501 | * |
---|
| 502 | * |x - f[k]| <= eps |
---|
| 503 | * |
---|
| 504 | * has been satisfied, the routine reports p = A[k] and q = B[k] as the |
---|
| 505 | * final answer. |
---|
| 506 | * |
---|
| 507 | * In the table below here is some statistics obtained for one million |
---|
| 508 | * random numbers uniformly distributed in the range [0, 1). |
---|
| 509 | * |
---|
| 510 | * eps max p mean p max q mean q max k mean k |
---|
| 511 | * ------------------------------------------------------------- |
---|
| 512 | * 1e-1 8 1.6 9 3.2 3 1.4 |
---|
| 513 | * 1e-2 98 6.2 99 12.4 5 2.4 |
---|
| 514 | * 1e-3 997 20.7 998 41.5 8 3.4 |
---|
| 515 | * 1e-4 9959 66.6 9960 133.5 10 4.4 |
---|
| 516 | * 1e-5 97403 211.7 97404 424.2 13 5.3 |
---|
| 517 | * 1e-6 479669 669.9 479670 1342.9 15 6.3 |
---|
| 518 | * 1e-7 1579030 2127.3 3962146 4257.8 16 7.3 |
---|
| 519 | * 1e-8 26188823 6749.4 26188824 13503.4 19 8.2 |
---|
| 520 | * |
---|
| 521 | * REFERENCES |
---|
| 522 | * |
---|
| 523 | * W. B. Jones and W. J. Thron, "Continued Fractions: Analytic Theory |
---|
| 524 | * and Applications," Encyclopedia on Mathematics and Its Applications, |
---|
| 525 | * Addison-Wesley, 1980. */ |
---|
| 526 | |
---|
| 527 | int fp2rat(double x, double eps, double *p, double *q) |
---|
| 528 | { int k; |
---|
| 529 | double xk, Akm1, Ak, Bkm1, Bk, ak, bk, fk, temp; |
---|
| 530 | if (!(0.0 <= x && x < 1.0)) |
---|
| 531 | xerror("fp2rat: x = %g; number out of range\n", x); |
---|
| 532 | for (k = 0; ; k++) |
---|
| 533 | { xassert(k <= 100); |
---|
| 534 | if (k == 0) |
---|
| 535 | { /* x[0] = x */ |
---|
| 536 | xk = x; |
---|
| 537 | /* A[-1] = 1 */ |
---|
| 538 | Akm1 = 1.0; |
---|
| 539 | /* A[0] = b[0] = floor(x[0]) = 0 */ |
---|
| 540 | Ak = 0.0; |
---|
| 541 | /* B[-1] = 0 */ |
---|
| 542 | Bkm1 = 0.0; |
---|
| 543 | /* B[0] = 1 */ |
---|
| 544 | Bk = 1.0; |
---|
| 545 | } |
---|
| 546 | else |
---|
| 547 | { /* x[k] = 1 / frac(x[k-1]) */ |
---|
| 548 | temp = xk - floor(xk); |
---|
| 549 | xassert(temp != 0.0); |
---|
| 550 | xk = 1.0 / temp; |
---|
| 551 | /* a[k] = 1 */ |
---|
| 552 | ak = 1.0; |
---|
| 553 | /* b[k] = floor(x[k]) */ |
---|
| 554 | bk = floor(xk); |
---|
| 555 | /* A[k] = b[k] * A[k-1] + a[k] * A[k-2] */ |
---|
| 556 | temp = bk * Ak + ak * Akm1; |
---|
| 557 | Akm1 = Ak, Ak = temp; |
---|
| 558 | /* B[k] = b[k] * B[k-1] + a[k] * B[k-2] */ |
---|
| 559 | temp = bk * Bk + ak * Bkm1; |
---|
| 560 | Bkm1 = Bk, Bk = temp; |
---|
| 561 | } |
---|
| 562 | /* f[k] = A[k] / B[k] */ |
---|
| 563 | fk = Ak / Bk; |
---|
| 564 | #if 0 |
---|
| 565 | print("%.*g / %.*g = %.*g", DBL_DIG, Ak, DBL_DIG, Bk, DBL_DIG, |
---|
| 566 | fk); |
---|
| 567 | #endif |
---|
| 568 | if (fabs(x - fk) <= eps) break; |
---|
| 569 | } |
---|
| 570 | *p = Ak; |
---|
| 571 | *q = Bk; |
---|
| 572 | return k; |
---|
| 573 | } |
---|
| 574 | |
---|
| 575 | /*********************************************************************** |
---|
| 576 | * NAME |
---|
| 577 | * |
---|
| 578 | * jday - convert calendar date to Julian day number |
---|
| 579 | * |
---|
| 580 | * SYNOPSIS |
---|
| 581 | * |
---|
| 582 | * #include "glplib.h" |
---|
| 583 | * int jday(int d, int m, int y); |
---|
| 584 | * |
---|
| 585 | * DESCRIPTION |
---|
| 586 | * |
---|
| 587 | * The routine jday converts a calendar date, Gregorian calendar, to |
---|
| 588 | * corresponding Julian day number j. |
---|
| 589 | * |
---|
| 590 | * From the given day d, month m, and year y, the Julian day number j |
---|
| 591 | * is computed without using tables. |
---|
| 592 | * |
---|
| 593 | * The routine is valid for 1 <= y <= 4000. |
---|
| 594 | * |
---|
| 595 | * RETURNS |
---|
| 596 | * |
---|
| 597 | * The routine jday returns the Julian day number, or negative value if |
---|
| 598 | * the specified date is incorrect. |
---|
| 599 | * |
---|
| 600 | * REFERENCES |
---|
| 601 | * |
---|
| 602 | * R. G. Tantzen, Algorithm 199: conversions between calendar date and |
---|
| 603 | * Julian day number, Communications of the ACM, vol. 6, no. 8, p. 444, |
---|
| 604 | * Aug. 1963. */ |
---|
| 605 | |
---|
| 606 | int jday(int d, int m, int y) |
---|
| 607 | { int c, ya, j, dd; |
---|
| 608 | if (!(1 <= d && d <= 31 && 1 <= m && m <= 12 && 1 <= y && |
---|
| 609 | y <= 4000)) |
---|
| 610 | { j = -1; |
---|
| 611 | goto done; |
---|
| 612 | } |
---|
| 613 | if (m >= 3) m -= 3; else m += 9, y--; |
---|
| 614 | c = y / 100; |
---|
| 615 | ya = y - 100 * c; |
---|
| 616 | j = (146097 * c) / 4 + (1461 * ya) / 4 + (153 * m + 2) / 5 + d + |
---|
| 617 | 1721119; |
---|
| 618 | jdate(j, &dd, NULL, NULL); |
---|
| 619 | if (d != dd) j = -1; |
---|
| 620 | done: return j; |
---|
| 621 | } |
---|
| 622 | |
---|
| 623 | /*********************************************************************** |
---|
| 624 | * NAME |
---|
| 625 | * |
---|
| 626 | * jdate - convert Julian day number to calendar date |
---|
| 627 | * |
---|
| 628 | * SYNOPSIS |
---|
| 629 | * |
---|
| 630 | * #include "glplib.h" |
---|
| 631 | * void jdate(int j, int *d, int *m, int *y); |
---|
| 632 | * |
---|
| 633 | * DESCRIPTION |
---|
| 634 | * |
---|
| 635 | * The routine jdate converts a Julian day number j to corresponding |
---|
| 636 | * calendar date, Gregorian calendar. |
---|
| 637 | * |
---|
| 638 | * The day d, month m, and year y are computed without using tables and |
---|
| 639 | * stored in corresponding locations. |
---|
| 640 | * |
---|
| 641 | * The routine is valid for 1721426 <= j <= 3182395. |
---|
| 642 | * |
---|
| 643 | * RETURNS |
---|
| 644 | * |
---|
| 645 | * If the conversion is successful, the routine returns zero, otherwise |
---|
| 646 | * non-zero. |
---|
| 647 | * |
---|
| 648 | * REFERENCES |
---|
| 649 | * |
---|
| 650 | * R. G. Tantzen, Algorithm 199: conversions between calendar date and |
---|
| 651 | * Julian day number, Communications of the ACM, vol. 6, no. 8, p. 444, |
---|
| 652 | * Aug. 1963. */ |
---|
| 653 | |
---|
| 654 | int jdate(int j, int *_d, int *_m, int *_y) |
---|
| 655 | { int d, m, y, ret = 0; |
---|
| 656 | if (!(1721426 <= j && j <= 3182395)) |
---|
| 657 | { ret = 1; |
---|
| 658 | goto done; |
---|
| 659 | } |
---|
| 660 | j -= 1721119; |
---|
| 661 | y = (4 * j - 1) / 146097; |
---|
| 662 | j = (4 * j - 1) % 146097; |
---|
| 663 | d = j / 4; |
---|
| 664 | j = (4 * d + 3) / 1461; |
---|
| 665 | d = (4 * d + 3) % 1461; |
---|
| 666 | d = (d + 4) / 4; |
---|
| 667 | m = (5 * d - 3) / 153; |
---|
| 668 | d = (5 * d - 3) % 153; |
---|
| 669 | d = (d + 5) / 5; |
---|
| 670 | y = 100 * y + j; |
---|
| 671 | if (m <= 9) m += 3; else m -= 9, y++; |
---|
| 672 | if (_d != NULL) *_d = d; |
---|
| 673 | if (_m != NULL) *_m = m; |
---|
| 674 | if (_y != NULL) *_y = y; |
---|
| 675 | done: return ret; |
---|
| 676 | } |
---|
| 677 | |
---|
| 678 | #if 0 |
---|
| 679 | int main(void) |
---|
| 680 | { int jbeg, jend, j, d, m, y; |
---|
| 681 | jbeg = jday(1, 1, 1); |
---|
| 682 | jend = jday(31, 12, 4000); |
---|
| 683 | for (j = jbeg; j <= jend; j++) |
---|
| 684 | { xassert(jdate(j, &d, &m, &y) == 0); |
---|
| 685 | xassert(jday(d, m, y) == j); |
---|
| 686 | } |
---|
| 687 | xprintf("Routines jday and jdate work correctly.\n"); |
---|
| 688 | return 0; |
---|
| 689 | } |
---|
| 690 | #endif |
---|
| 691 | |
---|
| 692 | /* eof */ |
---|