1 | /* glplpx02.c */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | * E-mail: <mao@gnu.org>. |
---|
10 | * |
---|
11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation, either version 3 of the License, or |
---|
14 | * (at your option) any later version. |
---|
15 | * |
---|
16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | * License for more details. |
---|
20 | * |
---|
21 | * You should have received a copy of the GNU General Public License |
---|
22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | ***********************************************************************/ |
---|
24 | |
---|
25 | #include "glpapi.h" |
---|
26 | |
---|
27 | /*********************************************************************** |
---|
28 | * NAME |
---|
29 | * |
---|
30 | * lpx_put_solution - store basic solution components |
---|
31 | * |
---|
32 | * SYNOPSIS |
---|
33 | * |
---|
34 | * void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat, |
---|
35 | * const int *d_stat, const double *obj_val, const int r_stat[], |
---|
36 | * const double r_prim[], const double r_dual[], const int c_stat[], |
---|
37 | * const double c_prim[], const double c_dual[]) |
---|
38 | * |
---|
39 | * DESCRIPTION |
---|
40 | * |
---|
41 | * The routine lpx_put_solution stores basic solution components to the |
---|
42 | * specified problem object. |
---|
43 | * |
---|
44 | * The parameter inval is the basis factorization invalidity flag. |
---|
45 | * If this flag is clear, the current status of the basis factorization |
---|
46 | * remains unchanged. If this flag is set, the routine invalidates the |
---|
47 | * basis factorization. |
---|
48 | * |
---|
49 | * The parameter p_stat is a pointer to the status of primal basic |
---|
50 | * solution, which should be specified as follows: |
---|
51 | * |
---|
52 | * GLP_UNDEF - primal solution is undefined; |
---|
53 | * GLP_FEAS - primal solution is feasible; |
---|
54 | * GLP_INFEAS - primal solution is infeasible; |
---|
55 | * GLP_NOFEAS - no primal feasible solution exists. |
---|
56 | * |
---|
57 | * If the parameter p_stat is NULL, the current status of primal basic |
---|
58 | * solution remains unchanged. |
---|
59 | * |
---|
60 | * The parameter d_stat is a pointer to the status of dual basic |
---|
61 | * solution, which should be specified as follows: |
---|
62 | * |
---|
63 | * GLP_UNDEF - dual solution is undefined; |
---|
64 | * GLP_FEAS - dual solution is feasible; |
---|
65 | * GLP_INFEAS - dual solution is infeasible; |
---|
66 | * GLP_NOFEAS - no dual feasible solution exists. |
---|
67 | * |
---|
68 | * If the parameter d_stat is NULL, the current status of dual basic |
---|
69 | * solution remains unchanged. |
---|
70 | * |
---|
71 | * The parameter obj_val is a pointer to the objective function value. |
---|
72 | * If it is NULL, the current value of the objective function remains |
---|
73 | * unchanged. |
---|
74 | * |
---|
75 | * The array element r_stat[i], 1 <= i <= m (where m is the number of |
---|
76 | * rows in the problem object), specifies the status of i-th auxiliary |
---|
77 | * variable, which should be specified as follows: |
---|
78 | * |
---|
79 | * GLP_BS - basic variable; |
---|
80 | * GLP_NL - non-basic variable on lower bound; |
---|
81 | * GLP_NU - non-basic variable on upper bound; |
---|
82 | * GLP_NF - non-basic free variable; |
---|
83 | * GLP_NS - non-basic fixed variable. |
---|
84 | * |
---|
85 | * If the parameter r_stat is NULL, the current statuses of auxiliary |
---|
86 | * variables remain unchanged. |
---|
87 | * |
---|
88 | * The array element r_prim[i], 1 <= i <= m (where m is the number of |
---|
89 | * rows in the problem object), specifies a primal value of i-th |
---|
90 | * auxiliary variable. If the parameter r_prim is NULL, the current |
---|
91 | * primal values of auxiliary variables remain unchanged. |
---|
92 | * |
---|
93 | * The array element r_dual[i], 1 <= i <= m (where m is the number of |
---|
94 | * rows in the problem object), specifies a dual value (reduced cost) |
---|
95 | * of i-th auxiliary variable. If the parameter r_dual is NULL, the |
---|
96 | * current dual values of auxiliary variables remain unchanged. |
---|
97 | * |
---|
98 | * The array element c_stat[j], 1 <= j <= n (where n is the number of |
---|
99 | * columns in the problem object), specifies the status of j-th |
---|
100 | * structural variable, which should be specified as follows: |
---|
101 | * |
---|
102 | * GLP_BS - basic variable; |
---|
103 | * GLP_NL - non-basic variable on lower bound; |
---|
104 | * GLP_NU - non-basic variable on upper bound; |
---|
105 | * GLP_NF - non-basic free variable; |
---|
106 | * GLP_NS - non-basic fixed variable. |
---|
107 | * |
---|
108 | * If the parameter c_stat is NULL, the current statuses of structural |
---|
109 | * variables remain unchanged. |
---|
110 | * |
---|
111 | * The array element c_prim[j], 1 <= j <= n (where n is the number of |
---|
112 | * columns in the problem object), specifies a primal value of j-th |
---|
113 | * structural variable. If the parameter c_prim is NULL, the current |
---|
114 | * primal values of structural variables remain unchanged. |
---|
115 | * |
---|
116 | * The array element c_dual[j], 1 <= j <= n (where n is the number of |
---|
117 | * columns in the problem object), specifies a dual value (reduced cost) |
---|
118 | * of j-th structural variable. If the parameter c_dual is NULL, the |
---|
119 | * current dual values of structural variables remain unchanged. */ |
---|
120 | |
---|
121 | void lpx_put_solution(glp_prob *lp, int inval, const int *p_stat, |
---|
122 | const int *d_stat, const double *obj_val, const int r_stat[], |
---|
123 | const double r_prim[], const double r_dual[], const int c_stat[], |
---|
124 | const double c_prim[], const double c_dual[]) |
---|
125 | { GLPROW *row; |
---|
126 | GLPCOL *col; |
---|
127 | int i, j; |
---|
128 | /* invalidate the basis factorization, if required */ |
---|
129 | if (inval) lp->valid = 0; |
---|
130 | /* store primal status */ |
---|
131 | if (p_stat != NULL) |
---|
132 | { if (!(*p_stat == GLP_UNDEF || *p_stat == GLP_FEAS || |
---|
133 | *p_stat == GLP_INFEAS || *p_stat == GLP_NOFEAS)) |
---|
134 | xerror("lpx_put_solution: p_stat = %d; invalid primal statu" |
---|
135 | "s\n", *p_stat); |
---|
136 | lp->pbs_stat = *p_stat; |
---|
137 | } |
---|
138 | /* store dual status */ |
---|
139 | if (d_stat != NULL) |
---|
140 | { if (!(*d_stat == GLP_UNDEF || *d_stat == GLP_FEAS || |
---|
141 | *d_stat == GLP_INFEAS || *d_stat == GLP_NOFEAS)) |
---|
142 | xerror("lpx_put_solution: d_stat = %d; invalid dual status " |
---|
143 | "\n", *d_stat); |
---|
144 | lp->dbs_stat = *d_stat; |
---|
145 | } |
---|
146 | /* store objective function value */ |
---|
147 | if (obj_val != NULL) lp->obj_val = *obj_val; |
---|
148 | /* store row solution components */ |
---|
149 | for (i = 1; i <= lp->m; i++) |
---|
150 | { row = lp->row[i]; |
---|
151 | if (r_stat != NULL) |
---|
152 | { if (!(r_stat[i] == GLP_BS || |
---|
153 | row->type == GLP_FR && r_stat[i] == GLP_NF || |
---|
154 | row->type == GLP_LO && r_stat[i] == GLP_NL || |
---|
155 | row->type == GLP_UP && r_stat[i] == GLP_NU || |
---|
156 | row->type == GLP_DB && r_stat[i] == GLP_NL || |
---|
157 | row->type == GLP_DB && r_stat[i] == GLP_NU || |
---|
158 | row->type == GLP_FX && r_stat[i] == GLP_NS)) |
---|
159 | xerror("lpx_put_solution: r_stat[%d] = %d; invalid row s" |
---|
160 | "tatus\n", i, r_stat[i]); |
---|
161 | row->stat = r_stat[i]; |
---|
162 | } |
---|
163 | if (r_prim != NULL) row->prim = r_prim[i]; |
---|
164 | if (r_dual != NULL) row->dual = r_dual[i]; |
---|
165 | } |
---|
166 | /* store column solution components */ |
---|
167 | for (j = 1; j <= lp->n; j++) |
---|
168 | { col = lp->col[j]; |
---|
169 | if (c_stat != NULL) |
---|
170 | { if (!(c_stat[j] == GLP_BS || |
---|
171 | col->type == GLP_FR && c_stat[j] == GLP_NF || |
---|
172 | col->type == GLP_LO && c_stat[j] == GLP_NL || |
---|
173 | col->type == GLP_UP && c_stat[j] == GLP_NU || |
---|
174 | col->type == GLP_DB && c_stat[j] == GLP_NL || |
---|
175 | col->type == GLP_DB && c_stat[j] == GLP_NU || |
---|
176 | col->type == GLP_FX && c_stat[j] == GLP_NS)) |
---|
177 | xerror("lpx_put_solution: c_stat[%d] = %d; invalid colum" |
---|
178 | "n status\n", j, c_stat[j]); |
---|
179 | col->stat = c_stat[j]; |
---|
180 | } |
---|
181 | if (c_prim != NULL) col->prim = c_prim[j]; |
---|
182 | if (c_dual != NULL) col->dual = c_dual[j]; |
---|
183 | } |
---|
184 | return; |
---|
185 | } |
---|
186 | |
---|
187 | /*---------------------------------------------------------------------- |
---|
188 | -- lpx_put_mip_soln - store mixed integer solution components. |
---|
189 | -- |
---|
190 | -- *Synopsis* |
---|
191 | -- |
---|
192 | -- #include "glplpx.h" |
---|
193 | -- void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[], |
---|
194 | -- double col_mipx[]); |
---|
195 | -- |
---|
196 | -- *Description* |
---|
197 | -- |
---|
198 | -- The routine lpx_put_mip_soln stores solution components obtained by |
---|
199 | -- branch-and-bound solver into the specified problem object. |
---|
200 | -- |
---|
201 | -- NOTE: This routine is intended for internal use only. */ |
---|
202 | |
---|
203 | void lpx_put_mip_soln(glp_prob *lp, int i_stat, double row_mipx[], |
---|
204 | double col_mipx[]) |
---|
205 | { GLPROW *row; |
---|
206 | GLPCOL *col; |
---|
207 | int i, j; |
---|
208 | double sum; |
---|
209 | /* store mixed integer status */ |
---|
210 | #if 0 |
---|
211 | if (!(i_stat == LPX_I_UNDEF || i_stat == LPX_I_OPT || |
---|
212 | i_stat == LPX_I_FEAS || i_stat == LPX_I_NOFEAS)) |
---|
213 | fault("lpx_put_mip_soln: i_stat = %d; invalid mixed integer st" |
---|
214 | "atus", i_stat); |
---|
215 | lp->i_stat = i_stat; |
---|
216 | #else |
---|
217 | switch (i_stat) |
---|
218 | { case LPX_I_UNDEF: |
---|
219 | lp->mip_stat = GLP_UNDEF; break; |
---|
220 | case LPX_I_OPT: |
---|
221 | lp->mip_stat = GLP_OPT; break; |
---|
222 | case LPX_I_FEAS: |
---|
223 | lp->mip_stat = GLP_FEAS; break; |
---|
224 | case LPX_I_NOFEAS: |
---|
225 | lp->mip_stat = GLP_NOFEAS; break; |
---|
226 | default: |
---|
227 | xerror("lpx_put_mip_soln: i_stat = %d; invalid mixed intege" |
---|
228 | "r status\n", i_stat); |
---|
229 | } |
---|
230 | #endif |
---|
231 | /* store row solution components */ |
---|
232 | if (row_mipx != NULL) |
---|
233 | { for (i = 1; i <= lp->m; i++) |
---|
234 | { row = lp->row[i]; |
---|
235 | row->mipx = row_mipx[i]; |
---|
236 | } |
---|
237 | } |
---|
238 | /* store column solution components */ |
---|
239 | if (col_mipx != NULL) |
---|
240 | { for (j = 1; j <= lp->n; j++) |
---|
241 | { col = lp->col[j]; |
---|
242 | col->mipx = col_mipx[j]; |
---|
243 | } |
---|
244 | } |
---|
245 | /* if the solution is claimed to be integer feasible, check it */ |
---|
246 | if (lp->mip_stat == GLP_OPT || lp->mip_stat == GLP_FEAS) |
---|
247 | { for (j = 1; j <= lp->n; j++) |
---|
248 | { col = lp->col[j]; |
---|
249 | if (col->kind == GLP_IV && col->mipx != floor(col->mipx)) |
---|
250 | xerror("lpx_put_mip_soln: col_mipx[%d] = %.*g; must be i" |
---|
251 | "ntegral\n", j, DBL_DIG, col->mipx); |
---|
252 | } |
---|
253 | } |
---|
254 | /* compute the objective function value */ |
---|
255 | sum = lp->c0; |
---|
256 | for (j = 1; j <= lp->n; j++) |
---|
257 | { col = lp->col[j]; |
---|
258 | sum += col->coef * col->mipx; |
---|
259 | } |
---|
260 | lp->mip_obj = sum; |
---|
261 | return; |
---|
262 | } |
---|
263 | |
---|
264 | /* eof */ |
---|