[1] | 1 | /* glpluf.c (LU-factorization) */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpenv.h" |
---|
| 26 | #include "glpluf.h" |
---|
| 27 | #define xfault xerror |
---|
| 28 | |
---|
| 29 | /* CAUTION: DO NOT CHANGE THE LIMIT BELOW */ |
---|
| 30 | |
---|
| 31 | #define N_MAX 100000000 /* = 100*10^6 */ |
---|
| 32 | /* maximal order of the original matrix */ |
---|
| 33 | |
---|
| 34 | /*********************************************************************** |
---|
| 35 | * NAME |
---|
| 36 | * |
---|
| 37 | * luf_create_it - create LU-factorization |
---|
| 38 | * |
---|
| 39 | * SYNOPSIS |
---|
| 40 | * |
---|
| 41 | * #include "glpluf.h" |
---|
| 42 | * LUF *luf_create_it(void); |
---|
| 43 | * |
---|
| 44 | * DESCRIPTION |
---|
| 45 | * |
---|
| 46 | * The routine luf_create_it creates a program object, which represents |
---|
| 47 | * LU-factorization of a square matrix. |
---|
| 48 | * |
---|
| 49 | * RETURNS |
---|
| 50 | * |
---|
| 51 | * The routine luf_create_it returns a pointer to the object created. */ |
---|
| 52 | |
---|
| 53 | LUF *luf_create_it(void) |
---|
| 54 | { LUF *luf; |
---|
| 55 | luf = xmalloc(sizeof(LUF)); |
---|
| 56 | luf->n_max = luf->n = 0; |
---|
| 57 | luf->valid = 0; |
---|
| 58 | luf->fr_ptr = luf->fr_len = NULL; |
---|
| 59 | luf->fc_ptr = luf->fc_len = NULL; |
---|
| 60 | luf->vr_ptr = luf->vr_len = luf->vr_cap = NULL; |
---|
| 61 | luf->vr_piv = NULL; |
---|
| 62 | luf->vc_ptr = luf->vc_len = luf->vc_cap = NULL; |
---|
| 63 | luf->pp_row = luf->pp_col = NULL; |
---|
| 64 | luf->qq_row = luf->qq_col = NULL; |
---|
| 65 | luf->sv_size = 0; |
---|
| 66 | luf->sv_beg = luf->sv_end = 0; |
---|
| 67 | luf->sv_ind = NULL; |
---|
| 68 | luf->sv_val = NULL; |
---|
| 69 | luf->sv_head = luf->sv_tail = 0; |
---|
| 70 | luf->sv_prev = luf->sv_next = NULL; |
---|
| 71 | luf->vr_max = NULL; |
---|
| 72 | luf->rs_head = luf->rs_prev = luf->rs_next = NULL; |
---|
| 73 | luf->cs_head = luf->cs_prev = luf->cs_next = NULL; |
---|
| 74 | luf->flag = NULL; |
---|
| 75 | luf->work = NULL; |
---|
| 76 | luf->new_sva = 0; |
---|
| 77 | luf->piv_tol = 0.10; |
---|
| 78 | luf->piv_lim = 4; |
---|
| 79 | luf->suhl = 1; |
---|
| 80 | luf->eps_tol = 1e-15; |
---|
| 81 | luf->max_gro = 1e+10; |
---|
| 82 | luf->nnz_a = luf->nnz_f = luf->nnz_v = 0; |
---|
| 83 | luf->max_a = luf->big_v = 0.0; |
---|
| 84 | luf->rank = 0; |
---|
| 85 | return luf; |
---|
| 86 | } |
---|
| 87 | |
---|
| 88 | /*********************************************************************** |
---|
| 89 | * NAME |
---|
| 90 | * |
---|
| 91 | * luf_defrag_sva - defragment the sparse vector area |
---|
| 92 | * |
---|
| 93 | * SYNOPSIS |
---|
| 94 | * |
---|
| 95 | * #include "glpluf.h" |
---|
| 96 | * void luf_defrag_sva(LUF *luf); |
---|
| 97 | * |
---|
| 98 | * DESCRIPTION |
---|
| 99 | * |
---|
| 100 | * The routine luf_defrag_sva defragments the sparse vector area (SVA) |
---|
| 101 | * gathering all unused locations in one continuous extent. In order to |
---|
| 102 | * do that the routine moves all unused locations from the left part of |
---|
| 103 | * SVA (which contains rows and columns of the matrix V) to the middle |
---|
| 104 | * part (which contains free locations). This is attained by relocating |
---|
| 105 | * elements of rows and columns of the matrix V toward the beginning of |
---|
| 106 | * the left part. |
---|
| 107 | * |
---|
| 108 | * NOTE that this "garbage collection" involves changing row and column |
---|
| 109 | * pointers of the matrix V. */ |
---|
| 110 | |
---|
| 111 | void luf_defrag_sva(LUF *luf) |
---|
| 112 | { int n = luf->n; |
---|
| 113 | int *vr_ptr = luf->vr_ptr; |
---|
| 114 | int *vr_len = luf->vr_len; |
---|
| 115 | int *vr_cap = luf->vr_cap; |
---|
| 116 | int *vc_ptr = luf->vc_ptr; |
---|
| 117 | int *vc_len = luf->vc_len; |
---|
| 118 | int *vc_cap = luf->vc_cap; |
---|
| 119 | int *sv_ind = luf->sv_ind; |
---|
| 120 | double *sv_val = luf->sv_val; |
---|
| 121 | int *sv_next = luf->sv_next; |
---|
| 122 | int sv_beg = 1; |
---|
| 123 | int i, j, k; |
---|
| 124 | /* skip rows and columns, which do not need to be relocated */ |
---|
| 125 | for (k = luf->sv_head; k != 0; k = sv_next[k]) |
---|
| 126 | { if (k <= n) |
---|
| 127 | { /* i-th row of the matrix V */ |
---|
| 128 | i = k; |
---|
| 129 | if (vr_ptr[i] != sv_beg) break; |
---|
| 130 | vr_cap[i] = vr_len[i]; |
---|
| 131 | sv_beg += vr_cap[i]; |
---|
| 132 | } |
---|
| 133 | else |
---|
| 134 | { /* j-th column of the matrix V */ |
---|
| 135 | j = k - n; |
---|
| 136 | if (vc_ptr[j] != sv_beg) break; |
---|
| 137 | vc_cap[j] = vc_len[j]; |
---|
| 138 | sv_beg += vc_cap[j]; |
---|
| 139 | } |
---|
| 140 | } |
---|
| 141 | /* relocate other rows and columns in order to gather all unused |
---|
| 142 | locations in one continuous extent */ |
---|
| 143 | for (k = k; k != 0; k = sv_next[k]) |
---|
| 144 | { if (k <= n) |
---|
| 145 | { /* i-th row of the matrix V */ |
---|
| 146 | i = k; |
---|
| 147 | memmove(&sv_ind[sv_beg], &sv_ind[vr_ptr[i]], |
---|
| 148 | vr_len[i] * sizeof(int)); |
---|
| 149 | memmove(&sv_val[sv_beg], &sv_val[vr_ptr[i]], |
---|
| 150 | vr_len[i] * sizeof(double)); |
---|
| 151 | vr_ptr[i] = sv_beg; |
---|
| 152 | vr_cap[i] = vr_len[i]; |
---|
| 153 | sv_beg += vr_cap[i]; |
---|
| 154 | } |
---|
| 155 | else |
---|
| 156 | { /* j-th column of the matrix V */ |
---|
| 157 | j = k - n; |
---|
| 158 | memmove(&sv_ind[sv_beg], &sv_ind[vc_ptr[j]], |
---|
| 159 | vc_len[j] * sizeof(int)); |
---|
| 160 | memmove(&sv_val[sv_beg], &sv_val[vc_ptr[j]], |
---|
| 161 | vc_len[j] * sizeof(double)); |
---|
| 162 | vc_ptr[j] = sv_beg; |
---|
| 163 | vc_cap[j] = vc_len[j]; |
---|
| 164 | sv_beg += vc_cap[j]; |
---|
| 165 | } |
---|
| 166 | } |
---|
| 167 | /* set new pointer to the beginning of the free part */ |
---|
| 168 | luf->sv_beg = sv_beg; |
---|
| 169 | return; |
---|
| 170 | } |
---|
| 171 | |
---|
| 172 | /*********************************************************************** |
---|
| 173 | * NAME |
---|
| 174 | * |
---|
| 175 | * luf_enlarge_row - enlarge row capacity |
---|
| 176 | * |
---|
| 177 | * SYNOPSIS |
---|
| 178 | * |
---|
| 179 | * #include "glpluf.h" |
---|
| 180 | * int luf_enlarge_row(LUF *luf, int i, int cap); |
---|
| 181 | * |
---|
| 182 | * DESCRIPTION |
---|
| 183 | * |
---|
| 184 | * The routine luf_enlarge_row enlarges capacity of the i-th row of the |
---|
| 185 | * matrix V to cap locations (assuming that its current capacity is less |
---|
| 186 | * than cap). In order to do that the routine relocates elements of the |
---|
| 187 | * i-th row to the end of the left part of SVA (which contains rows and |
---|
| 188 | * columns of the matrix V) and then expands the left part by allocating |
---|
| 189 | * cap free locations from the free part. If there are less than cap |
---|
| 190 | * free locations, the routine defragments the sparse vector area. |
---|
| 191 | * |
---|
| 192 | * Due to "garbage collection" this operation may change row and column |
---|
| 193 | * pointers of the matrix V. |
---|
| 194 | * |
---|
| 195 | * RETURNS |
---|
| 196 | * |
---|
| 197 | * If no error occured, the routine returns zero. Otherwise, in case of |
---|
| 198 | * overflow of the sparse vector area, the routine returns non-zero. */ |
---|
| 199 | |
---|
| 200 | int luf_enlarge_row(LUF *luf, int i, int cap) |
---|
| 201 | { int n = luf->n; |
---|
| 202 | int *vr_ptr = luf->vr_ptr; |
---|
| 203 | int *vr_len = luf->vr_len; |
---|
| 204 | int *vr_cap = luf->vr_cap; |
---|
| 205 | int *vc_cap = luf->vc_cap; |
---|
| 206 | int *sv_ind = luf->sv_ind; |
---|
| 207 | double *sv_val = luf->sv_val; |
---|
| 208 | int *sv_prev = luf->sv_prev; |
---|
| 209 | int *sv_next = luf->sv_next; |
---|
| 210 | int ret = 0; |
---|
| 211 | int cur, k, kk; |
---|
| 212 | xassert(1 <= i && i <= n); |
---|
| 213 | xassert(vr_cap[i] < cap); |
---|
| 214 | /* if there are less than cap free locations, defragment SVA */ |
---|
| 215 | if (luf->sv_end - luf->sv_beg < cap) |
---|
| 216 | { luf_defrag_sva(luf); |
---|
| 217 | if (luf->sv_end - luf->sv_beg < cap) |
---|
| 218 | { ret = 1; |
---|
| 219 | goto done; |
---|
| 220 | } |
---|
| 221 | } |
---|
| 222 | /* save current capacity of the i-th row */ |
---|
| 223 | cur = vr_cap[i]; |
---|
| 224 | /* copy existing elements to the beginning of the free part */ |
---|
| 225 | memmove(&sv_ind[luf->sv_beg], &sv_ind[vr_ptr[i]], |
---|
| 226 | vr_len[i] * sizeof(int)); |
---|
| 227 | memmove(&sv_val[luf->sv_beg], &sv_val[vr_ptr[i]], |
---|
| 228 | vr_len[i] * sizeof(double)); |
---|
| 229 | /* set new pointer and new capacity of the i-th row */ |
---|
| 230 | vr_ptr[i] = luf->sv_beg; |
---|
| 231 | vr_cap[i] = cap; |
---|
| 232 | /* set new pointer to the beginning of the free part */ |
---|
| 233 | luf->sv_beg += cap; |
---|
| 234 | /* now the i-th row starts in the rightmost location among other |
---|
| 235 | rows and columns of the matrix V, so its node should be moved |
---|
| 236 | to the end of the row/column linked list */ |
---|
| 237 | k = i; |
---|
| 238 | /* remove the i-th row node from the linked list */ |
---|
| 239 | if (sv_prev[k] == 0) |
---|
| 240 | luf->sv_head = sv_next[k]; |
---|
| 241 | else |
---|
| 242 | { /* capacity of the previous row/column can be increased at the |
---|
| 243 | expense of old locations of the i-th row */ |
---|
| 244 | kk = sv_prev[k]; |
---|
| 245 | if (kk <= n) vr_cap[kk] += cur; else vc_cap[kk-n] += cur; |
---|
| 246 | sv_next[sv_prev[k]] = sv_next[k]; |
---|
| 247 | } |
---|
| 248 | if (sv_next[k] == 0) |
---|
| 249 | luf->sv_tail = sv_prev[k]; |
---|
| 250 | else |
---|
| 251 | sv_prev[sv_next[k]] = sv_prev[k]; |
---|
| 252 | /* insert the i-th row node to the end of the linked list */ |
---|
| 253 | sv_prev[k] = luf->sv_tail; |
---|
| 254 | sv_next[k] = 0; |
---|
| 255 | if (sv_prev[k] == 0) |
---|
| 256 | luf->sv_head = k; |
---|
| 257 | else |
---|
| 258 | sv_next[sv_prev[k]] = k; |
---|
| 259 | luf->sv_tail = k; |
---|
| 260 | done: return ret; |
---|
| 261 | } |
---|
| 262 | |
---|
| 263 | /*********************************************************************** |
---|
| 264 | * NAME |
---|
| 265 | * |
---|
| 266 | * luf_enlarge_col - enlarge column capacity |
---|
| 267 | * |
---|
| 268 | * SYNOPSIS |
---|
| 269 | * |
---|
| 270 | * #include "glpluf.h" |
---|
| 271 | * int luf_enlarge_col(LUF *luf, int j, int cap); |
---|
| 272 | * |
---|
| 273 | * DESCRIPTION |
---|
| 274 | * |
---|
| 275 | * The routine luf_enlarge_col enlarges capacity of the j-th column of |
---|
| 276 | * the matrix V to cap locations (assuming that its current capacity is |
---|
| 277 | * less than cap). In order to do that the routine relocates elements |
---|
| 278 | * of the j-th column to the end of the left part of SVA (which contains |
---|
| 279 | * rows and columns of the matrix V) and then expands the left part by |
---|
| 280 | * allocating cap free locations from the free part. If there are less |
---|
| 281 | * than cap free locations, the routine defragments the sparse vector |
---|
| 282 | * area. |
---|
| 283 | * |
---|
| 284 | * Due to "garbage collection" this operation may change row and column |
---|
| 285 | * pointers of the matrix V. |
---|
| 286 | * |
---|
| 287 | * RETURNS |
---|
| 288 | * |
---|
| 289 | * If no error occured, the routine returns zero. Otherwise, in case of |
---|
| 290 | * overflow of the sparse vector area, the routine returns non-zero. */ |
---|
| 291 | |
---|
| 292 | int luf_enlarge_col(LUF *luf, int j, int cap) |
---|
| 293 | { int n = luf->n; |
---|
| 294 | int *vr_cap = luf->vr_cap; |
---|
| 295 | int *vc_ptr = luf->vc_ptr; |
---|
| 296 | int *vc_len = luf->vc_len; |
---|
| 297 | int *vc_cap = luf->vc_cap; |
---|
| 298 | int *sv_ind = luf->sv_ind; |
---|
| 299 | double *sv_val = luf->sv_val; |
---|
| 300 | int *sv_prev = luf->sv_prev; |
---|
| 301 | int *sv_next = luf->sv_next; |
---|
| 302 | int ret = 0; |
---|
| 303 | int cur, k, kk; |
---|
| 304 | xassert(1 <= j && j <= n); |
---|
| 305 | xassert(vc_cap[j] < cap); |
---|
| 306 | /* if there are less than cap free locations, defragment SVA */ |
---|
| 307 | if (luf->sv_end - luf->sv_beg < cap) |
---|
| 308 | { luf_defrag_sva(luf); |
---|
| 309 | if (luf->sv_end - luf->sv_beg < cap) |
---|
| 310 | { ret = 1; |
---|
| 311 | goto done; |
---|
| 312 | } |
---|
| 313 | } |
---|
| 314 | /* save current capacity of the j-th column */ |
---|
| 315 | cur = vc_cap[j]; |
---|
| 316 | /* copy existing elements to the beginning of the free part */ |
---|
| 317 | memmove(&sv_ind[luf->sv_beg], &sv_ind[vc_ptr[j]], |
---|
| 318 | vc_len[j] * sizeof(int)); |
---|
| 319 | memmove(&sv_val[luf->sv_beg], &sv_val[vc_ptr[j]], |
---|
| 320 | vc_len[j] * sizeof(double)); |
---|
| 321 | /* set new pointer and new capacity of the j-th column */ |
---|
| 322 | vc_ptr[j] = luf->sv_beg; |
---|
| 323 | vc_cap[j] = cap; |
---|
| 324 | /* set new pointer to the beginning of the free part */ |
---|
| 325 | luf->sv_beg += cap; |
---|
| 326 | /* now the j-th column starts in the rightmost location among |
---|
| 327 | other rows and columns of the matrix V, so its node should be |
---|
| 328 | moved to the end of the row/column linked list */ |
---|
| 329 | k = n + j; |
---|
| 330 | /* remove the j-th column node from the linked list */ |
---|
| 331 | if (sv_prev[k] == 0) |
---|
| 332 | luf->sv_head = sv_next[k]; |
---|
| 333 | else |
---|
| 334 | { /* capacity of the previous row/column can be increased at the |
---|
| 335 | expense of old locations of the j-th column */ |
---|
| 336 | kk = sv_prev[k]; |
---|
| 337 | if (kk <= n) vr_cap[kk] += cur; else vc_cap[kk-n] += cur; |
---|
| 338 | sv_next[sv_prev[k]] = sv_next[k]; |
---|
| 339 | } |
---|
| 340 | if (sv_next[k] == 0) |
---|
| 341 | luf->sv_tail = sv_prev[k]; |
---|
| 342 | else |
---|
| 343 | sv_prev[sv_next[k]] = sv_prev[k]; |
---|
| 344 | /* insert the j-th column node to the end of the linked list */ |
---|
| 345 | sv_prev[k] = luf->sv_tail; |
---|
| 346 | sv_next[k] = 0; |
---|
| 347 | if (sv_prev[k] == 0) |
---|
| 348 | luf->sv_head = k; |
---|
| 349 | else |
---|
| 350 | sv_next[sv_prev[k]] = k; |
---|
| 351 | luf->sv_tail = k; |
---|
| 352 | done: return ret; |
---|
| 353 | } |
---|
| 354 | |
---|
| 355 | /*********************************************************************** |
---|
| 356 | * reallocate - reallocate LU-factorization arrays |
---|
| 357 | * |
---|
| 358 | * This routine reallocates arrays, whose size depends of n, the order |
---|
| 359 | * of the matrix A to be factorized. */ |
---|
| 360 | |
---|
| 361 | static void reallocate(LUF *luf, int n) |
---|
| 362 | { int n_max = luf->n_max; |
---|
| 363 | luf->n = n; |
---|
| 364 | if (n <= n_max) goto done; |
---|
| 365 | if (luf->fr_ptr != NULL) xfree(luf->fr_ptr); |
---|
| 366 | if (luf->fr_len != NULL) xfree(luf->fr_len); |
---|
| 367 | if (luf->fc_ptr != NULL) xfree(luf->fc_ptr); |
---|
| 368 | if (luf->fc_len != NULL) xfree(luf->fc_len); |
---|
| 369 | if (luf->vr_ptr != NULL) xfree(luf->vr_ptr); |
---|
| 370 | if (luf->vr_len != NULL) xfree(luf->vr_len); |
---|
| 371 | if (luf->vr_cap != NULL) xfree(luf->vr_cap); |
---|
| 372 | if (luf->vr_piv != NULL) xfree(luf->vr_piv); |
---|
| 373 | if (luf->vc_ptr != NULL) xfree(luf->vc_ptr); |
---|
| 374 | if (luf->vc_len != NULL) xfree(luf->vc_len); |
---|
| 375 | if (luf->vc_cap != NULL) xfree(luf->vc_cap); |
---|
| 376 | if (luf->pp_row != NULL) xfree(luf->pp_row); |
---|
| 377 | if (luf->pp_col != NULL) xfree(luf->pp_col); |
---|
| 378 | if (luf->qq_row != NULL) xfree(luf->qq_row); |
---|
| 379 | if (luf->qq_col != NULL) xfree(luf->qq_col); |
---|
| 380 | if (luf->sv_prev != NULL) xfree(luf->sv_prev); |
---|
| 381 | if (luf->sv_next != NULL) xfree(luf->sv_next); |
---|
| 382 | if (luf->vr_max != NULL) xfree(luf->vr_max); |
---|
| 383 | if (luf->rs_head != NULL) xfree(luf->rs_head); |
---|
| 384 | if (luf->rs_prev != NULL) xfree(luf->rs_prev); |
---|
| 385 | if (luf->rs_next != NULL) xfree(luf->rs_next); |
---|
| 386 | if (luf->cs_head != NULL) xfree(luf->cs_head); |
---|
| 387 | if (luf->cs_prev != NULL) xfree(luf->cs_prev); |
---|
| 388 | if (luf->cs_next != NULL) xfree(luf->cs_next); |
---|
| 389 | if (luf->flag != NULL) xfree(luf->flag); |
---|
| 390 | if (luf->work != NULL) xfree(luf->work); |
---|
| 391 | luf->n_max = n_max = n + 100; |
---|
| 392 | luf->fr_ptr = xcalloc(1+n_max, sizeof(int)); |
---|
| 393 | luf->fr_len = xcalloc(1+n_max, sizeof(int)); |
---|
| 394 | luf->fc_ptr = xcalloc(1+n_max, sizeof(int)); |
---|
| 395 | luf->fc_len = xcalloc(1+n_max, sizeof(int)); |
---|
| 396 | luf->vr_ptr = xcalloc(1+n_max, sizeof(int)); |
---|
| 397 | luf->vr_len = xcalloc(1+n_max, sizeof(int)); |
---|
| 398 | luf->vr_cap = xcalloc(1+n_max, sizeof(int)); |
---|
| 399 | luf->vr_piv = xcalloc(1+n_max, sizeof(double)); |
---|
| 400 | luf->vc_ptr = xcalloc(1+n_max, sizeof(int)); |
---|
| 401 | luf->vc_len = xcalloc(1+n_max, sizeof(int)); |
---|
| 402 | luf->vc_cap = xcalloc(1+n_max, sizeof(int)); |
---|
| 403 | luf->pp_row = xcalloc(1+n_max, sizeof(int)); |
---|
| 404 | luf->pp_col = xcalloc(1+n_max, sizeof(int)); |
---|
| 405 | luf->qq_row = xcalloc(1+n_max, sizeof(int)); |
---|
| 406 | luf->qq_col = xcalloc(1+n_max, sizeof(int)); |
---|
| 407 | luf->sv_prev = xcalloc(1+n_max+n_max, sizeof(int)); |
---|
| 408 | luf->sv_next = xcalloc(1+n_max+n_max, sizeof(int)); |
---|
| 409 | luf->vr_max = xcalloc(1+n_max, sizeof(double)); |
---|
| 410 | luf->rs_head = xcalloc(1+n_max, sizeof(int)); |
---|
| 411 | luf->rs_prev = xcalloc(1+n_max, sizeof(int)); |
---|
| 412 | luf->rs_next = xcalloc(1+n_max, sizeof(int)); |
---|
| 413 | luf->cs_head = xcalloc(1+n_max, sizeof(int)); |
---|
| 414 | luf->cs_prev = xcalloc(1+n_max, sizeof(int)); |
---|
| 415 | luf->cs_next = xcalloc(1+n_max, sizeof(int)); |
---|
| 416 | luf->flag = xcalloc(1+n_max, sizeof(int)); |
---|
| 417 | luf->work = xcalloc(1+n_max, sizeof(double)); |
---|
| 418 | done: return; |
---|
| 419 | } |
---|
| 420 | |
---|
| 421 | /*********************************************************************** |
---|
| 422 | * initialize - initialize LU-factorization data structures |
---|
| 423 | * |
---|
| 424 | * This routine initializes data structures for subsequent computing |
---|
| 425 | * the LU-factorization of a given matrix A, which is specified by the |
---|
| 426 | * formal routine col. On exit V = A and F = P = Q = I, where I is the |
---|
| 427 | * unity matrix. (Row-wise representation of the matrix F is not used |
---|
| 428 | * at the factorization stage and therefore is not initialized.) |
---|
| 429 | * |
---|
| 430 | * If no error occured, the routine returns zero. Otherwise, in case of |
---|
| 431 | * overflow of the sparse vector area, the routine returns non-zero. */ |
---|
| 432 | |
---|
| 433 | static int initialize(LUF *luf, int (*col)(void *info, int j, int rn[], |
---|
| 434 | double aj[]), void *info) |
---|
| 435 | { int n = luf->n; |
---|
| 436 | int *fc_ptr = luf->fc_ptr; |
---|
| 437 | int *fc_len = luf->fc_len; |
---|
| 438 | int *vr_ptr = luf->vr_ptr; |
---|
| 439 | int *vr_len = luf->vr_len; |
---|
| 440 | int *vr_cap = luf->vr_cap; |
---|
| 441 | int *vc_ptr = luf->vc_ptr; |
---|
| 442 | int *vc_len = luf->vc_len; |
---|
| 443 | int *vc_cap = luf->vc_cap; |
---|
| 444 | int *pp_row = luf->pp_row; |
---|
| 445 | int *pp_col = luf->pp_col; |
---|
| 446 | int *qq_row = luf->qq_row; |
---|
| 447 | int *qq_col = luf->qq_col; |
---|
| 448 | int *sv_ind = luf->sv_ind; |
---|
| 449 | double *sv_val = luf->sv_val; |
---|
| 450 | int *sv_prev = luf->sv_prev; |
---|
| 451 | int *sv_next = luf->sv_next; |
---|
| 452 | double *vr_max = luf->vr_max; |
---|
| 453 | int *rs_head = luf->rs_head; |
---|
| 454 | int *rs_prev = luf->rs_prev; |
---|
| 455 | int *rs_next = luf->rs_next; |
---|
| 456 | int *cs_head = luf->cs_head; |
---|
| 457 | int *cs_prev = luf->cs_prev; |
---|
| 458 | int *cs_next = luf->cs_next; |
---|
| 459 | int *flag = luf->flag; |
---|
| 460 | double *work = luf->work; |
---|
| 461 | int ret = 0; |
---|
| 462 | int i, i_ptr, j, j_beg, j_end, k, len, nnz, sv_beg, sv_end, ptr; |
---|
| 463 | double big, val; |
---|
| 464 | /* free all locations of the sparse vector area */ |
---|
| 465 | sv_beg = 1; |
---|
| 466 | sv_end = luf->sv_size + 1; |
---|
| 467 | /* (row-wise representation of the matrix F is not initialized, |
---|
| 468 | because it is not used at the factorization stage) */ |
---|
| 469 | /* build the matrix F in column-wise format (initially F = I) */ |
---|
| 470 | for (j = 1; j <= n; j++) |
---|
| 471 | { fc_ptr[j] = sv_end; |
---|
| 472 | fc_len[j] = 0; |
---|
| 473 | } |
---|
| 474 | /* clear rows of the matrix V; clear the flag array */ |
---|
| 475 | for (i = 1; i <= n; i++) |
---|
| 476 | vr_len[i] = vr_cap[i] = 0, flag[i] = 0; |
---|
| 477 | /* build the matrix V in column-wise format (initially V = A); |
---|
| 478 | count non-zeros in rows of this matrix; count total number of |
---|
| 479 | non-zeros; compute largest of absolute values of elements */ |
---|
| 480 | nnz = 0; |
---|
| 481 | big = 0.0; |
---|
| 482 | for (j = 1; j <= n; j++) |
---|
| 483 | { int *rn = pp_row; |
---|
| 484 | double *aj = work; |
---|
| 485 | /* obtain j-th column of the matrix A */ |
---|
| 486 | len = col(info, j, rn, aj); |
---|
| 487 | if (!(0 <= len && len <= n)) |
---|
| 488 | xfault("luf_factorize: j = %d; len = %d; invalid column len" |
---|
| 489 | "gth\n", j, len); |
---|
| 490 | /* check for free locations */ |
---|
| 491 | if (sv_end - sv_beg < len) |
---|
| 492 | { /* overflow of the sparse vector area */ |
---|
| 493 | ret = 1; |
---|
| 494 | goto done; |
---|
| 495 | } |
---|
| 496 | /* set pointer to the j-th column */ |
---|
| 497 | vc_ptr[j] = sv_beg; |
---|
| 498 | /* set length of the j-th column */ |
---|
| 499 | vc_len[j] = vc_cap[j] = len; |
---|
| 500 | /* count total number of non-zeros */ |
---|
| 501 | nnz += len; |
---|
| 502 | /* walk through elements of the j-th column */ |
---|
| 503 | for (ptr = 1; ptr <= len; ptr++) |
---|
| 504 | { /* get row index and numerical value of a[i,j] */ |
---|
| 505 | i = rn[ptr]; |
---|
| 506 | val = aj[ptr]; |
---|
| 507 | if (!(1 <= i && i <= n)) |
---|
| 508 | xfault("luf_factorize: i = %d; j = %d; invalid row index" |
---|
| 509 | "\n", i, j); |
---|
| 510 | if (flag[i]) |
---|
| 511 | xfault("luf_factorize: i = %d; j = %d; duplicate element" |
---|
| 512 | " not allowed\n", i, j); |
---|
| 513 | if (val == 0.0) |
---|
| 514 | xfault("luf_factorize: i = %d; j = %d; zero element not " |
---|
| 515 | "allowed\n", i, j); |
---|
| 516 | /* add new element v[i,j] = a[i,j] to j-th column */ |
---|
| 517 | sv_ind[sv_beg] = i; |
---|
| 518 | sv_val[sv_beg] = val; |
---|
| 519 | sv_beg++; |
---|
| 520 | /* big := max(big, |a[i,j]|) */ |
---|
| 521 | if (val < 0.0) val = - val; |
---|
| 522 | if (big < val) big = val; |
---|
| 523 | /* mark non-zero in the i-th position of the j-th column */ |
---|
| 524 | flag[i] = 1; |
---|
| 525 | /* increase length of the i-th row */ |
---|
| 526 | vr_cap[i]++; |
---|
| 527 | } |
---|
| 528 | /* reset all non-zero marks */ |
---|
| 529 | for (ptr = 1; ptr <= len; ptr++) flag[rn[ptr]] = 0; |
---|
| 530 | } |
---|
| 531 | /* allocate rows of the matrix V */ |
---|
| 532 | for (i = 1; i <= n; i++) |
---|
| 533 | { /* get length of the i-th row */ |
---|
| 534 | len = vr_cap[i]; |
---|
| 535 | /* check for free locations */ |
---|
| 536 | if (sv_end - sv_beg < len) |
---|
| 537 | { /* overflow of the sparse vector area */ |
---|
| 538 | ret = 1; |
---|
| 539 | goto done; |
---|
| 540 | } |
---|
| 541 | /* set pointer to the i-th row */ |
---|
| 542 | vr_ptr[i] = sv_beg; |
---|
| 543 | /* reserve locations for the i-th row */ |
---|
| 544 | sv_beg += len; |
---|
| 545 | } |
---|
| 546 | /* build the matrix V in row-wise format using representation of |
---|
| 547 | this matrix in column-wise format */ |
---|
| 548 | for (j = 1; j <= n; j++) |
---|
| 549 | { /* walk through elements of the j-th column */ |
---|
| 550 | j_beg = vc_ptr[j]; |
---|
| 551 | j_end = j_beg + vc_len[j] - 1; |
---|
| 552 | for (k = j_beg; k <= j_end; k++) |
---|
| 553 | { /* get row index and numerical value of v[i,j] */ |
---|
| 554 | i = sv_ind[k]; |
---|
| 555 | val = sv_val[k]; |
---|
| 556 | /* store element in the i-th row */ |
---|
| 557 | i_ptr = vr_ptr[i] + vr_len[i]; |
---|
| 558 | sv_ind[i_ptr] = j; |
---|
| 559 | sv_val[i_ptr] = val; |
---|
| 560 | /* increase count of the i-th row */ |
---|
| 561 | vr_len[i]++; |
---|
| 562 | } |
---|
| 563 | } |
---|
| 564 | /* initialize the matrices P and Q (initially P = Q = I) */ |
---|
| 565 | for (k = 1; k <= n; k++) |
---|
| 566 | pp_row[k] = pp_col[k] = qq_row[k] = qq_col[k] = k; |
---|
| 567 | /* set sva partitioning pointers */ |
---|
| 568 | luf->sv_beg = sv_beg; |
---|
| 569 | luf->sv_end = sv_end; |
---|
| 570 | /* the initial physical order of rows and columns of the matrix V |
---|
| 571 | is n+1, ..., n+n, 1, ..., n (firstly columns, then rows) */ |
---|
| 572 | luf->sv_head = n+1; |
---|
| 573 | luf->sv_tail = n; |
---|
| 574 | for (i = 1; i <= n; i++) |
---|
| 575 | { sv_prev[i] = i-1; |
---|
| 576 | sv_next[i] = i+1; |
---|
| 577 | } |
---|
| 578 | sv_prev[1] = n+n; |
---|
| 579 | sv_next[n] = 0; |
---|
| 580 | for (j = 1; j <= n; j++) |
---|
| 581 | { sv_prev[n+j] = n+j-1; |
---|
| 582 | sv_next[n+j] = n+j+1; |
---|
| 583 | } |
---|
| 584 | sv_prev[n+1] = 0; |
---|
| 585 | sv_next[n+n] = 1; |
---|
| 586 | /* clear working arrays */ |
---|
| 587 | for (k = 1; k <= n; k++) |
---|
| 588 | { flag[k] = 0; |
---|
| 589 | work[k] = 0.0; |
---|
| 590 | } |
---|
| 591 | /* initialize some statistics */ |
---|
| 592 | luf->nnz_a = nnz; |
---|
| 593 | luf->nnz_f = 0; |
---|
| 594 | luf->nnz_v = nnz; |
---|
| 595 | luf->max_a = big; |
---|
| 596 | luf->big_v = big; |
---|
| 597 | luf->rank = -1; |
---|
| 598 | /* initially the active submatrix is the entire matrix V */ |
---|
| 599 | /* largest of absolute values of elements in each active row is |
---|
| 600 | unknown yet */ |
---|
| 601 | for (i = 1; i <= n; i++) vr_max[i] = -1.0; |
---|
| 602 | /* build linked lists of active rows */ |
---|
| 603 | for (len = 0; len <= n; len++) rs_head[len] = 0; |
---|
| 604 | for (i = 1; i <= n; i++) |
---|
| 605 | { len = vr_len[i]; |
---|
| 606 | rs_prev[i] = 0; |
---|
| 607 | rs_next[i] = rs_head[len]; |
---|
| 608 | if (rs_next[i] != 0) rs_prev[rs_next[i]] = i; |
---|
| 609 | rs_head[len] = i; |
---|
| 610 | } |
---|
| 611 | /* build linked lists of active columns */ |
---|
| 612 | for (len = 0; len <= n; len++) cs_head[len] = 0; |
---|
| 613 | for (j = 1; j <= n; j++) |
---|
| 614 | { len = vc_len[j]; |
---|
| 615 | cs_prev[j] = 0; |
---|
| 616 | cs_next[j] = cs_head[len]; |
---|
| 617 | if (cs_next[j] != 0) cs_prev[cs_next[j]] = j; |
---|
| 618 | cs_head[len] = j; |
---|
| 619 | } |
---|
| 620 | done: /* return to the factorizing routine */ |
---|
| 621 | return ret; |
---|
| 622 | } |
---|
| 623 | |
---|
| 624 | /*********************************************************************** |
---|
| 625 | * find_pivot - choose a pivot element |
---|
| 626 | * |
---|
| 627 | * This routine chooses a pivot element in the active submatrix of the |
---|
| 628 | * matrix U = P*V*Q. |
---|
| 629 | * |
---|
| 630 | * It is assumed that on entry the matrix U has the following partially |
---|
| 631 | * triangularized form: |
---|
| 632 | * |
---|
| 633 | * 1 k n |
---|
| 634 | * 1 x x x x x x x x x x |
---|
| 635 | * . x x x x x x x x x |
---|
| 636 | * . . x x x x x x x x |
---|
| 637 | * . . . x x x x x x x |
---|
| 638 | * k . . . . * * * * * * |
---|
| 639 | * . . . . * * * * * * |
---|
| 640 | * . . . . * * * * * * |
---|
| 641 | * . . . . * * * * * * |
---|
| 642 | * . . . . * * * * * * |
---|
| 643 | * n . . . . * * * * * * |
---|
| 644 | * |
---|
| 645 | * where rows and columns k, k+1, ..., n belong to the active submatrix |
---|
| 646 | * (elements of the active submatrix are marked by '*'). |
---|
| 647 | * |
---|
| 648 | * Since the matrix U = P*V*Q is not stored, the routine works with the |
---|
| 649 | * matrix V. It is assumed that the row-wise representation corresponds |
---|
| 650 | * to the matrix V, but the column-wise representation corresponds to |
---|
| 651 | * the active submatrix of the matrix V, i.e. elements of the matrix V, |
---|
| 652 | * which doesn't belong to the active submatrix, are missing from the |
---|
| 653 | * column linked lists. It is also assumed that each active row of the |
---|
| 654 | * matrix V is in the set R[len], where len is number of non-zeros in |
---|
| 655 | * the row, and each active column of the matrix V is in the set C[len], |
---|
| 656 | * where len is number of non-zeros in the column (in the latter case |
---|
| 657 | * only elements of the active submatrix are counted; such elements are |
---|
| 658 | * marked by '*' on the figure above). |
---|
| 659 | * |
---|
| 660 | * For the reason of numerical stability the routine applies so called |
---|
| 661 | * threshold pivoting proposed by J.Reid. It is assumed that an element |
---|
| 662 | * v[i,j] can be selected as a pivot candidate if it is not very small |
---|
| 663 | * (in absolute value) among other elements in the same row, i.e. if it |
---|
| 664 | * satisfies to the stability condition |v[i,j]| >= tol * max|v[i,*]|, |
---|
| 665 | * where 0 < tol < 1 is a given tolerance. |
---|
| 666 | * |
---|
| 667 | * In order to keep sparsity of the matrix V the routine uses Markowitz |
---|
| 668 | * strategy, trying to choose such element v[p,q], which satisfies to |
---|
| 669 | * the stability condition (see above) and has smallest Markowitz cost |
---|
| 670 | * (nr[p]-1) * (nc[q]-1), where nr[p] and nc[q] are numbers of non-zero |
---|
| 671 | * elements, respectively, in the p-th row and in the q-th column of the |
---|
| 672 | * active submatrix. |
---|
| 673 | * |
---|
| 674 | * In order to reduce the search, i.e. not to walk through all elements |
---|
| 675 | * of the active submatrix, the routine exploits a technique proposed by |
---|
| 676 | * I.Duff. This technique is based on using the sets R[len] and C[len] |
---|
| 677 | * of active rows and columns. |
---|
| 678 | * |
---|
| 679 | * If the pivot element v[p,q] has been chosen, the routine stores its |
---|
| 680 | * indices to the locations *p and *q and returns zero. Otherwise, if |
---|
| 681 | * the active submatrix is empty and therefore the pivot element can't |
---|
| 682 | * be chosen, the routine returns non-zero. */ |
---|
| 683 | |
---|
| 684 | static int find_pivot(LUF *luf, int *_p, int *_q) |
---|
| 685 | { int n = luf->n; |
---|
| 686 | int *vr_ptr = luf->vr_ptr; |
---|
| 687 | int *vr_len = luf->vr_len; |
---|
| 688 | int *vc_ptr = luf->vc_ptr; |
---|
| 689 | int *vc_len = luf->vc_len; |
---|
| 690 | int *sv_ind = luf->sv_ind; |
---|
| 691 | double *sv_val = luf->sv_val; |
---|
| 692 | double *vr_max = luf->vr_max; |
---|
| 693 | int *rs_head = luf->rs_head; |
---|
| 694 | int *rs_next = luf->rs_next; |
---|
| 695 | int *cs_head = luf->cs_head; |
---|
| 696 | int *cs_prev = luf->cs_prev; |
---|
| 697 | int *cs_next = luf->cs_next; |
---|
| 698 | double piv_tol = luf->piv_tol; |
---|
| 699 | int piv_lim = luf->piv_lim; |
---|
| 700 | int suhl = luf->suhl; |
---|
| 701 | int p, q, len, i, i_beg, i_end, i_ptr, j, j_beg, j_end, j_ptr, |
---|
| 702 | ncand, next_j, min_p, min_q, min_len; |
---|
| 703 | double best, cost, big, temp; |
---|
| 704 | /* initially no pivot candidates have been found so far */ |
---|
| 705 | p = q = 0, best = DBL_MAX, ncand = 0; |
---|
| 706 | /* if in the active submatrix there is a column that has the only |
---|
| 707 | non-zero (column singleton), choose it as pivot */ |
---|
| 708 | j = cs_head[1]; |
---|
| 709 | if (j != 0) |
---|
| 710 | { xassert(vc_len[j] == 1); |
---|
| 711 | p = sv_ind[vc_ptr[j]], q = j; |
---|
| 712 | goto done; |
---|
| 713 | } |
---|
| 714 | /* if in the active submatrix there is a row that has the only |
---|
| 715 | non-zero (row singleton), choose it as pivot */ |
---|
| 716 | i = rs_head[1]; |
---|
| 717 | if (i != 0) |
---|
| 718 | { xassert(vr_len[i] == 1); |
---|
| 719 | p = i, q = sv_ind[vr_ptr[i]]; |
---|
| 720 | goto done; |
---|
| 721 | } |
---|
| 722 | /* there are no singletons in the active submatrix; walk through |
---|
| 723 | other non-empty rows and columns */ |
---|
| 724 | for (len = 2; len <= n; len++) |
---|
| 725 | { /* consider active columns that have len non-zeros */ |
---|
| 726 | for (j = cs_head[len]; j != 0; j = next_j) |
---|
| 727 | { /* the j-th column has len non-zeros */ |
---|
| 728 | j_beg = vc_ptr[j]; |
---|
| 729 | j_end = j_beg + vc_len[j] - 1; |
---|
| 730 | /* save pointer to the next column with the same length */ |
---|
| 731 | next_j = cs_next[j]; |
---|
| 732 | /* find an element in the j-th column, which is placed in a |
---|
| 733 | row with minimal number of non-zeros and satisfies to the |
---|
| 734 | stability condition (such element may not exist) */ |
---|
| 735 | min_p = min_q = 0, min_len = INT_MAX; |
---|
| 736 | for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) |
---|
| 737 | { /* get row index of v[i,j] */ |
---|
| 738 | i = sv_ind[j_ptr]; |
---|
| 739 | i_beg = vr_ptr[i]; |
---|
| 740 | i_end = i_beg + vr_len[i] - 1; |
---|
| 741 | /* if the i-th row is not shorter than that one, where |
---|
| 742 | minimal element is currently placed, skip v[i,j] */ |
---|
| 743 | if (vr_len[i] >= min_len) continue; |
---|
| 744 | /* determine the largest of absolute values of elements |
---|
| 745 | in the i-th row */ |
---|
| 746 | big = vr_max[i]; |
---|
| 747 | if (big < 0.0) |
---|
| 748 | { /* the largest value is unknown yet; compute it */ |
---|
| 749 | for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
---|
| 750 | { temp = sv_val[i_ptr]; |
---|
| 751 | if (temp < 0.0) temp = - temp; |
---|
| 752 | if (big < temp) big = temp; |
---|
| 753 | } |
---|
| 754 | vr_max[i] = big; |
---|
| 755 | } |
---|
| 756 | /* find v[i,j] in the i-th row */ |
---|
| 757 | for (i_ptr = vr_ptr[i]; sv_ind[i_ptr] != j; i_ptr++); |
---|
| 758 | xassert(i_ptr <= i_end); |
---|
| 759 | /* if v[i,j] doesn't satisfy to the stability condition, |
---|
| 760 | skip it */ |
---|
| 761 | temp = sv_val[i_ptr]; |
---|
| 762 | if (temp < 0.0) temp = - temp; |
---|
| 763 | if (temp < piv_tol * big) continue; |
---|
| 764 | /* v[i,j] is better than the current minimal element */ |
---|
| 765 | min_p = i, min_q = j, min_len = vr_len[i]; |
---|
| 766 | /* if Markowitz cost of the current minimal element is |
---|
| 767 | not greater than (len-1)**2, it can be chosen right |
---|
| 768 | now; this heuristic reduces the search and works well |
---|
| 769 | in many cases */ |
---|
| 770 | if (min_len <= len) |
---|
| 771 | { p = min_p, q = min_q; |
---|
| 772 | goto done; |
---|
| 773 | } |
---|
| 774 | } |
---|
| 775 | /* the j-th column has been scanned */ |
---|
| 776 | if (min_p != 0) |
---|
| 777 | { /* the minimal element is a next pivot candidate */ |
---|
| 778 | ncand++; |
---|
| 779 | /* compute its Markowitz cost */ |
---|
| 780 | cost = (double)(min_len - 1) * (double)(len - 1); |
---|
| 781 | /* choose between the minimal element and the current |
---|
| 782 | candidate */ |
---|
| 783 | if (cost < best) p = min_p, q = min_q, best = cost; |
---|
| 784 | /* if piv_lim candidates have been considered, there are |
---|
| 785 | doubts that a much better candidate exists; therefore |
---|
| 786 | it's time to terminate the search */ |
---|
| 787 | if (ncand == piv_lim) goto done; |
---|
| 788 | } |
---|
| 789 | else |
---|
| 790 | { /* the j-th column has no elements, which satisfy to the |
---|
| 791 | stability condition; Uwe Suhl suggests to exclude such |
---|
| 792 | column from the further consideration until it becomes |
---|
| 793 | a column singleton; in hard cases this significantly |
---|
| 794 | reduces a time needed for pivot searching */ |
---|
| 795 | if (suhl) |
---|
| 796 | { /* remove the j-th column from the active set */ |
---|
| 797 | if (cs_prev[j] == 0) |
---|
| 798 | cs_head[len] = cs_next[j]; |
---|
| 799 | else |
---|
| 800 | cs_next[cs_prev[j]] = cs_next[j]; |
---|
| 801 | if (cs_next[j] == 0) |
---|
| 802 | /* nop */; |
---|
| 803 | else |
---|
| 804 | cs_prev[cs_next[j]] = cs_prev[j]; |
---|
| 805 | /* the following assignment is used to avoid an error |
---|
| 806 | when the routine eliminate (see below) will try to |
---|
| 807 | remove the j-th column from the active set */ |
---|
| 808 | cs_prev[j] = cs_next[j] = j; |
---|
| 809 | } |
---|
| 810 | } |
---|
| 811 | } |
---|
| 812 | /* consider active rows that have len non-zeros */ |
---|
| 813 | for (i = rs_head[len]; i != 0; i = rs_next[i]) |
---|
| 814 | { /* the i-th row has len non-zeros */ |
---|
| 815 | i_beg = vr_ptr[i]; |
---|
| 816 | i_end = i_beg + vr_len[i] - 1; |
---|
| 817 | /* determine the largest of absolute values of elements in |
---|
| 818 | the i-th row */ |
---|
| 819 | big = vr_max[i]; |
---|
| 820 | if (big < 0.0) |
---|
| 821 | { /* the largest value is unknown yet; compute it */ |
---|
| 822 | for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
---|
| 823 | { temp = sv_val[i_ptr]; |
---|
| 824 | if (temp < 0.0) temp = - temp; |
---|
| 825 | if (big < temp) big = temp; |
---|
| 826 | } |
---|
| 827 | vr_max[i] = big; |
---|
| 828 | } |
---|
| 829 | /* find an element in the i-th row, which is placed in a |
---|
| 830 | column with minimal number of non-zeros and satisfies to |
---|
| 831 | the stability condition (such element always exists) */ |
---|
| 832 | min_p = min_q = 0, min_len = INT_MAX; |
---|
| 833 | for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
---|
| 834 | { /* get column index of v[i,j] */ |
---|
| 835 | j = sv_ind[i_ptr]; |
---|
| 836 | /* if the j-th column is not shorter than that one, where |
---|
| 837 | minimal element is currently placed, skip v[i,j] */ |
---|
| 838 | if (vc_len[j] >= min_len) continue; |
---|
| 839 | /* if v[i,j] doesn't satisfy to the stability condition, |
---|
| 840 | skip it */ |
---|
| 841 | temp = sv_val[i_ptr]; |
---|
| 842 | if (temp < 0.0) temp = - temp; |
---|
| 843 | if (temp < piv_tol * big) continue; |
---|
| 844 | /* v[i,j] is better than the current minimal element */ |
---|
| 845 | min_p = i, min_q = j, min_len = vc_len[j]; |
---|
| 846 | /* if Markowitz cost of the current minimal element is |
---|
| 847 | not greater than (len-1)**2, it can be chosen right |
---|
| 848 | now; this heuristic reduces the search and works well |
---|
| 849 | in many cases */ |
---|
| 850 | if (min_len <= len) |
---|
| 851 | { p = min_p, q = min_q; |
---|
| 852 | goto done; |
---|
| 853 | } |
---|
| 854 | } |
---|
| 855 | /* the i-th row has been scanned */ |
---|
| 856 | if (min_p != 0) |
---|
| 857 | { /* the minimal element is a next pivot candidate */ |
---|
| 858 | ncand++; |
---|
| 859 | /* compute its Markowitz cost */ |
---|
| 860 | cost = (double)(len - 1) * (double)(min_len - 1); |
---|
| 861 | /* choose between the minimal element and the current |
---|
| 862 | candidate */ |
---|
| 863 | if (cost < best) p = min_p, q = min_q, best = cost; |
---|
| 864 | /* if piv_lim candidates have been considered, there are |
---|
| 865 | doubts that a much better candidate exists; therefore |
---|
| 866 | it's time to terminate the search */ |
---|
| 867 | if (ncand == piv_lim) goto done; |
---|
| 868 | } |
---|
| 869 | else |
---|
| 870 | { /* this can't be because this can never be */ |
---|
| 871 | xassert(min_p != min_p); |
---|
| 872 | } |
---|
| 873 | } |
---|
| 874 | } |
---|
| 875 | done: /* bring the pivot to the factorizing routine */ |
---|
| 876 | *_p = p, *_q = q; |
---|
| 877 | return (p == 0); |
---|
| 878 | } |
---|
| 879 | |
---|
| 880 | /*********************************************************************** |
---|
| 881 | * eliminate - perform gaussian elimination. |
---|
| 882 | * |
---|
| 883 | * This routine performs elementary gaussian transformations in order |
---|
| 884 | * to eliminate subdiagonal elements in the k-th column of the matrix |
---|
| 885 | * U = P*V*Q using the pivot element u[k,k], where k is the number of |
---|
| 886 | * the current elimination step. |
---|
| 887 | * |
---|
| 888 | * The parameters p and q are, respectively, row and column indices of |
---|
| 889 | * the element v[p,q], which corresponds to the element u[k,k]. |
---|
| 890 | * |
---|
| 891 | * Each time when the routine applies the elementary transformation to |
---|
| 892 | * a non-pivot row of the matrix V, it stores the corresponding element |
---|
| 893 | * to the matrix F in order to keep the main equality A = F*V. |
---|
| 894 | * |
---|
| 895 | * The routine assumes that on entry the matrices L = P*F*inv(P) and |
---|
| 896 | * U = P*V*Q are the following: |
---|
| 897 | * |
---|
| 898 | * 1 k 1 k n |
---|
| 899 | * 1 1 . . . . . . . . . 1 x x x x x x x x x x |
---|
| 900 | * x 1 . . . . . . . . . x x x x x x x x x |
---|
| 901 | * x x 1 . . . . . . . . . x x x x x x x x |
---|
| 902 | * x x x 1 . . . . . . . . . x x x x x x x |
---|
| 903 | * k x x x x 1 . . . . . k . . . . * * * * * * |
---|
| 904 | * x x x x _ 1 . . . . . . . . # * * * * * |
---|
| 905 | * x x x x _ . 1 . . . . . . . # * * * * * |
---|
| 906 | * x x x x _ . . 1 . . . . . . # * * * * * |
---|
| 907 | * x x x x _ . . . 1 . . . . . # * * * * * |
---|
| 908 | * n x x x x _ . . . . 1 n . . . . # * * * * * |
---|
| 909 | * |
---|
| 910 | * matrix L matrix U |
---|
| 911 | * |
---|
| 912 | * where rows and columns of the matrix U with numbers k, k+1, ..., n |
---|
| 913 | * form the active submatrix (eliminated elements are marked by '#' and |
---|
| 914 | * other elements of the active submatrix are marked by '*'). Note that |
---|
| 915 | * each eliminated non-zero element u[i,k] of the matrix U gives the |
---|
| 916 | * corresponding element l[i,k] of the matrix L (marked by '_'). |
---|
| 917 | * |
---|
| 918 | * Actually all operations are performed on the matrix V. Should note |
---|
| 919 | * that the row-wise representation corresponds to the matrix V, but the |
---|
| 920 | * column-wise representation corresponds to the active submatrix of the |
---|
| 921 | * matrix V, i.e. elements of the matrix V, which doesn't belong to the |
---|
| 922 | * active submatrix, are missing from the column linked lists. |
---|
| 923 | * |
---|
| 924 | * Let u[k,k] = v[p,q] be the pivot. In order to eliminate subdiagonal |
---|
| 925 | * elements u[i',k] = v[i,q], i' = k+1, k+2, ..., n, the routine applies |
---|
| 926 | * the following elementary gaussian transformations: |
---|
| 927 | * |
---|
| 928 | * (i-th row of V) := (i-th row of V) - f[i,p] * (p-th row of V), |
---|
| 929 | * |
---|
| 930 | * where f[i,p] = v[i,q] / v[p,q] is a gaussian multiplier. |
---|
| 931 | * |
---|
| 932 | * Additionally, in order to keep the main equality A = F*V, each time |
---|
| 933 | * when the routine applies the transformation to i-th row of the matrix |
---|
| 934 | * V, it also adds f[i,p] as a new element to the matrix F. |
---|
| 935 | * |
---|
| 936 | * IMPORTANT: On entry the working arrays flag and work should contain |
---|
| 937 | * zeros. This status is provided by the routine on exit. |
---|
| 938 | * |
---|
| 939 | * If no error occured, the routine returns zero. Otherwise, in case of |
---|
| 940 | * overflow of the sparse vector area, the routine returns non-zero. */ |
---|
| 941 | |
---|
| 942 | static int eliminate(LUF *luf, int p, int q) |
---|
| 943 | { int n = luf->n; |
---|
| 944 | int *fc_ptr = luf->fc_ptr; |
---|
| 945 | int *fc_len = luf->fc_len; |
---|
| 946 | int *vr_ptr = luf->vr_ptr; |
---|
| 947 | int *vr_len = luf->vr_len; |
---|
| 948 | int *vr_cap = luf->vr_cap; |
---|
| 949 | double *vr_piv = luf->vr_piv; |
---|
| 950 | int *vc_ptr = luf->vc_ptr; |
---|
| 951 | int *vc_len = luf->vc_len; |
---|
| 952 | int *vc_cap = luf->vc_cap; |
---|
| 953 | int *sv_ind = luf->sv_ind; |
---|
| 954 | double *sv_val = luf->sv_val; |
---|
| 955 | int *sv_prev = luf->sv_prev; |
---|
| 956 | int *sv_next = luf->sv_next; |
---|
| 957 | double *vr_max = luf->vr_max; |
---|
| 958 | int *rs_head = luf->rs_head; |
---|
| 959 | int *rs_prev = luf->rs_prev; |
---|
| 960 | int *rs_next = luf->rs_next; |
---|
| 961 | int *cs_head = luf->cs_head; |
---|
| 962 | int *cs_prev = luf->cs_prev; |
---|
| 963 | int *cs_next = luf->cs_next; |
---|
| 964 | int *flag = luf->flag; |
---|
| 965 | double *work = luf->work; |
---|
| 966 | double eps_tol = luf->eps_tol; |
---|
| 967 | /* at this stage the row-wise representation of the matrix F is |
---|
| 968 | not used, so fr_len can be used as a working array */ |
---|
| 969 | int *ndx = luf->fr_len; |
---|
| 970 | int ret = 0; |
---|
| 971 | int len, fill, i, i_beg, i_end, i_ptr, j, j_beg, j_end, j_ptr, k, |
---|
| 972 | p_beg, p_end, p_ptr, q_beg, q_end, q_ptr; |
---|
| 973 | double fip, val, vpq, temp; |
---|
| 974 | xassert(1 <= p && p <= n); |
---|
| 975 | xassert(1 <= q && q <= n); |
---|
| 976 | /* remove the p-th (pivot) row from the active set; this row will |
---|
| 977 | never return there */ |
---|
| 978 | if (rs_prev[p] == 0) |
---|
| 979 | rs_head[vr_len[p]] = rs_next[p]; |
---|
| 980 | else |
---|
| 981 | rs_next[rs_prev[p]] = rs_next[p]; |
---|
| 982 | if (rs_next[p] == 0) |
---|
| 983 | ; |
---|
| 984 | else |
---|
| 985 | rs_prev[rs_next[p]] = rs_prev[p]; |
---|
| 986 | /* remove the q-th (pivot) column from the active set; this column |
---|
| 987 | will never return there */ |
---|
| 988 | if (cs_prev[q] == 0) |
---|
| 989 | cs_head[vc_len[q]] = cs_next[q]; |
---|
| 990 | else |
---|
| 991 | cs_next[cs_prev[q]] = cs_next[q]; |
---|
| 992 | if (cs_next[q] == 0) |
---|
| 993 | ; |
---|
| 994 | else |
---|
| 995 | cs_prev[cs_next[q]] = cs_prev[q]; |
---|
| 996 | /* find the pivot v[p,q] = u[k,k] in the p-th row */ |
---|
| 997 | p_beg = vr_ptr[p]; |
---|
| 998 | p_end = p_beg + vr_len[p] - 1; |
---|
| 999 | for (p_ptr = p_beg; sv_ind[p_ptr] != q; p_ptr++) /* nop */; |
---|
| 1000 | xassert(p_ptr <= p_end); |
---|
| 1001 | /* store value of the pivot */ |
---|
| 1002 | vpq = (vr_piv[p] = sv_val[p_ptr]); |
---|
| 1003 | /* remove the pivot from the p-th row */ |
---|
| 1004 | sv_ind[p_ptr] = sv_ind[p_end]; |
---|
| 1005 | sv_val[p_ptr] = sv_val[p_end]; |
---|
| 1006 | vr_len[p]--; |
---|
| 1007 | p_end--; |
---|
| 1008 | /* find the pivot v[p,q] = u[k,k] in the q-th column */ |
---|
| 1009 | q_beg = vc_ptr[q]; |
---|
| 1010 | q_end = q_beg + vc_len[q] - 1; |
---|
| 1011 | for (q_ptr = q_beg; sv_ind[q_ptr] != p; q_ptr++) /* nop */; |
---|
| 1012 | xassert(q_ptr <= q_end); |
---|
| 1013 | /* remove the pivot from the q-th column */ |
---|
| 1014 | sv_ind[q_ptr] = sv_ind[q_end]; |
---|
| 1015 | vc_len[q]--; |
---|
| 1016 | q_end--; |
---|
| 1017 | /* walk through the p-th (pivot) row, which doesn't contain the |
---|
| 1018 | pivot v[p,q] already, and do the following... */ |
---|
| 1019 | for (p_ptr = p_beg; p_ptr <= p_end; p_ptr++) |
---|
| 1020 | { /* get column index of v[p,j] */ |
---|
| 1021 | j = sv_ind[p_ptr]; |
---|
| 1022 | /* store v[p,j] to the working array */ |
---|
| 1023 | flag[j] = 1; |
---|
| 1024 | work[j] = sv_val[p_ptr]; |
---|
| 1025 | /* remove the j-th column from the active set; this column will |
---|
| 1026 | return there later with new length */ |
---|
| 1027 | if (cs_prev[j] == 0) |
---|
| 1028 | cs_head[vc_len[j]] = cs_next[j]; |
---|
| 1029 | else |
---|
| 1030 | cs_next[cs_prev[j]] = cs_next[j]; |
---|
| 1031 | if (cs_next[j] == 0) |
---|
| 1032 | ; |
---|
| 1033 | else |
---|
| 1034 | cs_prev[cs_next[j]] = cs_prev[j]; |
---|
| 1035 | /* find v[p,j] in the j-th column */ |
---|
| 1036 | j_beg = vc_ptr[j]; |
---|
| 1037 | j_end = j_beg + vc_len[j] - 1; |
---|
| 1038 | for (j_ptr = j_beg; sv_ind[j_ptr] != p; j_ptr++) /* nop */; |
---|
| 1039 | xassert(j_ptr <= j_end); |
---|
| 1040 | /* since v[p,j] leaves the active submatrix, remove it from the |
---|
| 1041 | j-th column; however, v[p,j] is kept in the p-th row */ |
---|
| 1042 | sv_ind[j_ptr] = sv_ind[j_end]; |
---|
| 1043 | vc_len[j]--; |
---|
| 1044 | } |
---|
| 1045 | /* walk through the q-th (pivot) column, which doesn't contain the |
---|
| 1046 | pivot v[p,q] already, and perform gaussian elimination */ |
---|
| 1047 | while (q_beg <= q_end) |
---|
| 1048 | { /* element v[i,q] should be eliminated */ |
---|
| 1049 | /* get row index of v[i,q] */ |
---|
| 1050 | i = sv_ind[q_beg]; |
---|
| 1051 | /* remove the i-th row from the active set; later this row will |
---|
| 1052 | return there with new length */ |
---|
| 1053 | if (rs_prev[i] == 0) |
---|
| 1054 | rs_head[vr_len[i]] = rs_next[i]; |
---|
| 1055 | else |
---|
| 1056 | rs_next[rs_prev[i]] = rs_next[i]; |
---|
| 1057 | if (rs_next[i] == 0) |
---|
| 1058 | ; |
---|
| 1059 | else |
---|
| 1060 | rs_prev[rs_next[i]] = rs_prev[i]; |
---|
| 1061 | /* find v[i,q] in the i-th row */ |
---|
| 1062 | i_beg = vr_ptr[i]; |
---|
| 1063 | i_end = i_beg + vr_len[i] - 1; |
---|
| 1064 | for (i_ptr = i_beg; sv_ind[i_ptr] != q; i_ptr++) /* nop */; |
---|
| 1065 | xassert(i_ptr <= i_end); |
---|
| 1066 | /* compute gaussian multiplier f[i,p] = v[i,q] / v[p,q] */ |
---|
| 1067 | fip = sv_val[i_ptr] / vpq; |
---|
| 1068 | /* since v[i,q] should be eliminated, remove it from the i-th |
---|
| 1069 | row */ |
---|
| 1070 | sv_ind[i_ptr] = sv_ind[i_end]; |
---|
| 1071 | sv_val[i_ptr] = sv_val[i_end]; |
---|
| 1072 | vr_len[i]--; |
---|
| 1073 | i_end--; |
---|
| 1074 | /* and from the q-th column */ |
---|
| 1075 | sv_ind[q_beg] = sv_ind[q_end]; |
---|
| 1076 | vc_len[q]--; |
---|
| 1077 | q_end--; |
---|
| 1078 | /* perform gaussian transformation: |
---|
| 1079 | (i-th row) := (i-th row) - f[i,p] * (p-th row) |
---|
| 1080 | note that now the p-th row, which is in the working array, |
---|
| 1081 | doesn't contain the pivot v[p,q], and the i-th row doesn't |
---|
| 1082 | contain the eliminated element v[i,q] */ |
---|
| 1083 | /* walk through the i-th row and transform existing non-zero |
---|
| 1084 | elements */ |
---|
| 1085 | fill = vr_len[p]; |
---|
| 1086 | for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
---|
| 1087 | { /* get column index of v[i,j] */ |
---|
| 1088 | j = sv_ind[i_ptr]; |
---|
| 1089 | /* v[i,j] := v[i,j] - f[i,p] * v[p,j] */ |
---|
| 1090 | if (flag[j]) |
---|
| 1091 | { /* v[p,j] != 0 */ |
---|
| 1092 | temp = (sv_val[i_ptr] -= fip * work[j]); |
---|
| 1093 | if (temp < 0.0) temp = - temp; |
---|
| 1094 | flag[j] = 0; |
---|
| 1095 | fill--; /* since both v[i,j] and v[p,j] exist */ |
---|
| 1096 | if (temp == 0.0 || temp < eps_tol) |
---|
| 1097 | { /* new v[i,j] is closer to zero; replace it by exact |
---|
| 1098 | zero, i.e. remove it from the active submatrix */ |
---|
| 1099 | /* remove v[i,j] from the i-th row */ |
---|
| 1100 | sv_ind[i_ptr] = sv_ind[i_end]; |
---|
| 1101 | sv_val[i_ptr] = sv_val[i_end]; |
---|
| 1102 | vr_len[i]--; |
---|
| 1103 | i_ptr--; |
---|
| 1104 | i_end--; |
---|
| 1105 | /* find v[i,j] in the j-th column */ |
---|
| 1106 | j_beg = vc_ptr[j]; |
---|
| 1107 | j_end = j_beg + vc_len[j] - 1; |
---|
| 1108 | for (j_ptr = j_beg; sv_ind[j_ptr] != i; j_ptr++); |
---|
| 1109 | xassert(j_ptr <= j_end); |
---|
| 1110 | /* remove v[i,j] from the j-th column */ |
---|
| 1111 | sv_ind[j_ptr] = sv_ind[j_end]; |
---|
| 1112 | vc_len[j]--; |
---|
| 1113 | } |
---|
| 1114 | else |
---|
| 1115 | { /* v_big := max(v_big, |v[i,j]|) */ |
---|
| 1116 | if (luf->big_v < temp) luf->big_v = temp; |
---|
| 1117 | } |
---|
| 1118 | } |
---|
| 1119 | } |
---|
| 1120 | /* now flag is the pattern of the set v[p,*] \ v[i,*], and fill |
---|
| 1121 | is number of non-zeros in this set; therefore up to fill new |
---|
| 1122 | non-zeros may appear in the i-th row */ |
---|
| 1123 | if (vr_len[i] + fill > vr_cap[i]) |
---|
| 1124 | { /* enlarge the i-th row */ |
---|
| 1125 | if (luf_enlarge_row(luf, i, vr_len[i] + fill)) |
---|
| 1126 | { /* overflow of the sparse vector area */ |
---|
| 1127 | ret = 1; |
---|
| 1128 | goto done; |
---|
| 1129 | } |
---|
| 1130 | /* defragmentation may change row and column pointers of the |
---|
| 1131 | matrix V */ |
---|
| 1132 | p_beg = vr_ptr[p]; |
---|
| 1133 | p_end = p_beg + vr_len[p] - 1; |
---|
| 1134 | q_beg = vc_ptr[q]; |
---|
| 1135 | q_end = q_beg + vc_len[q] - 1; |
---|
| 1136 | } |
---|
| 1137 | /* walk through the p-th (pivot) row and create new elements |
---|
| 1138 | of the i-th row that appear due to fill-in; column indices |
---|
| 1139 | of these new elements are accumulated in the array ndx */ |
---|
| 1140 | len = 0; |
---|
| 1141 | for (p_ptr = p_beg; p_ptr <= p_end; p_ptr++) |
---|
| 1142 | { /* get column index of v[p,j], which may cause fill-in */ |
---|
| 1143 | j = sv_ind[p_ptr]; |
---|
| 1144 | if (flag[j]) |
---|
| 1145 | { /* compute new non-zero v[i,j] = 0 - f[i,p] * v[p,j] */ |
---|
| 1146 | temp = (val = - fip * work[j]); |
---|
| 1147 | if (temp < 0.0) temp = - temp; |
---|
| 1148 | if (temp == 0.0 || temp < eps_tol) |
---|
| 1149 | /* if v[i,j] is closer to zero; just ignore it */; |
---|
| 1150 | else |
---|
| 1151 | { /* add v[i,j] to the i-th row */ |
---|
| 1152 | i_ptr = vr_ptr[i] + vr_len[i]; |
---|
| 1153 | sv_ind[i_ptr] = j; |
---|
| 1154 | sv_val[i_ptr] = val; |
---|
| 1155 | vr_len[i]++; |
---|
| 1156 | /* remember column index of v[i,j] */ |
---|
| 1157 | ndx[++len] = j; |
---|
| 1158 | /* big_v := max(big_v, |v[i,j]|) */ |
---|
| 1159 | if (luf->big_v < temp) luf->big_v = temp; |
---|
| 1160 | } |
---|
| 1161 | } |
---|
| 1162 | else |
---|
| 1163 | { /* there is no fill-in, because v[i,j] already exists in |
---|
| 1164 | the i-th row; restore the flag of the element v[p,j], |
---|
| 1165 | which was reset before */ |
---|
| 1166 | flag[j] = 1; |
---|
| 1167 | } |
---|
| 1168 | } |
---|
| 1169 | /* add new non-zeros v[i,j] to the corresponding columns */ |
---|
| 1170 | for (k = 1; k <= len; k++) |
---|
| 1171 | { /* get column index of new non-zero v[i,j] */ |
---|
| 1172 | j = ndx[k]; |
---|
| 1173 | /* one free location is needed in the j-th column */ |
---|
| 1174 | if (vc_len[j] + 1 > vc_cap[j]) |
---|
| 1175 | { /* enlarge the j-th column */ |
---|
| 1176 | if (luf_enlarge_col(luf, j, vc_len[j] + 10)) |
---|
| 1177 | { /* overflow of the sparse vector area */ |
---|
| 1178 | ret = 1; |
---|
| 1179 | goto done; |
---|
| 1180 | } |
---|
| 1181 | /* defragmentation may change row and column pointers of |
---|
| 1182 | the matrix V */ |
---|
| 1183 | p_beg = vr_ptr[p]; |
---|
| 1184 | p_end = p_beg + vr_len[p] - 1; |
---|
| 1185 | q_beg = vc_ptr[q]; |
---|
| 1186 | q_end = q_beg + vc_len[q] - 1; |
---|
| 1187 | } |
---|
| 1188 | /* add new non-zero v[i,j] to the j-th column */ |
---|
| 1189 | j_ptr = vc_ptr[j] + vc_len[j]; |
---|
| 1190 | sv_ind[j_ptr] = i; |
---|
| 1191 | vc_len[j]++; |
---|
| 1192 | } |
---|
| 1193 | /* now the i-th row has been completely transformed, therefore |
---|
| 1194 | it can return to the active set with new length */ |
---|
| 1195 | rs_prev[i] = 0; |
---|
| 1196 | rs_next[i] = rs_head[vr_len[i]]; |
---|
| 1197 | if (rs_next[i] != 0) rs_prev[rs_next[i]] = i; |
---|
| 1198 | rs_head[vr_len[i]] = i; |
---|
| 1199 | /* the largest of absolute values of elements in the i-th row |
---|
| 1200 | is currently unknown */ |
---|
| 1201 | vr_max[i] = -1.0; |
---|
| 1202 | /* at least one free location is needed to store the gaussian |
---|
| 1203 | multiplier */ |
---|
| 1204 | if (luf->sv_end - luf->sv_beg < 1) |
---|
| 1205 | { /* there are no free locations at all; defragment SVA */ |
---|
| 1206 | luf_defrag_sva(luf); |
---|
| 1207 | if (luf->sv_end - luf->sv_beg < 1) |
---|
| 1208 | { /* overflow of the sparse vector area */ |
---|
| 1209 | ret = 1; |
---|
| 1210 | goto done; |
---|
| 1211 | } |
---|
| 1212 | /* defragmentation may change row and column pointers of the |
---|
| 1213 | matrix V */ |
---|
| 1214 | p_beg = vr_ptr[p]; |
---|
| 1215 | p_end = p_beg + vr_len[p] - 1; |
---|
| 1216 | q_beg = vc_ptr[q]; |
---|
| 1217 | q_end = q_beg + vc_len[q] - 1; |
---|
| 1218 | } |
---|
| 1219 | /* add the element f[i,p], which is the gaussian multiplier, |
---|
| 1220 | to the matrix F */ |
---|
| 1221 | luf->sv_end--; |
---|
| 1222 | sv_ind[luf->sv_end] = i; |
---|
| 1223 | sv_val[luf->sv_end] = fip; |
---|
| 1224 | fc_len[p]++; |
---|
| 1225 | /* end of elimination loop */ |
---|
| 1226 | } |
---|
| 1227 | /* at this point the q-th (pivot) column should be empty */ |
---|
| 1228 | xassert(vc_len[q] == 0); |
---|
| 1229 | /* reset capacity of the q-th column */ |
---|
| 1230 | vc_cap[q] = 0; |
---|
| 1231 | /* remove node of the q-th column from the addressing list */ |
---|
| 1232 | k = n + q; |
---|
| 1233 | if (sv_prev[k] == 0) |
---|
| 1234 | luf->sv_head = sv_next[k]; |
---|
| 1235 | else |
---|
| 1236 | sv_next[sv_prev[k]] = sv_next[k]; |
---|
| 1237 | if (sv_next[k] == 0) |
---|
| 1238 | luf->sv_tail = sv_prev[k]; |
---|
| 1239 | else |
---|
| 1240 | sv_prev[sv_next[k]] = sv_prev[k]; |
---|
| 1241 | /* the p-th column of the matrix F has been completely built; set |
---|
| 1242 | its pointer */ |
---|
| 1243 | fc_ptr[p] = luf->sv_end; |
---|
| 1244 | /* walk through the p-th (pivot) row and do the following... */ |
---|
| 1245 | for (p_ptr = p_beg; p_ptr <= p_end; p_ptr++) |
---|
| 1246 | { /* get column index of v[p,j] */ |
---|
| 1247 | j = sv_ind[p_ptr]; |
---|
| 1248 | /* erase v[p,j] from the working array */ |
---|
| 1249 | flag[j] = 0; |
---|
| 1250 | work[j] = 0.0; |
---|
| 1251 | /* the j-th column has been completely transformed, therefore |
---|
| 1252 | it can return to the active set with new length; however |
---|
| 1253 | the special case c_prev[j] = c_next[j] = j means that the |
---|
| 1254 | routine find_pivot excluded the j-th column from the active |
---|
| 1255 | set due to Uwe Suhl's rule, and therefore in this case the |
---|
| 1256 | column can return to the active set only if it is a column |
---|
| 1257 | singleton */ |
---|
| 1258 | if (!(vc_len[j] != 1 && cs_prev[j] == j && cs_next[j] == j)) |
---|
| 1259 | { cs_prev[j] = 0; |
---|
| 1260 | cs_next[j] = cs_head[vc_len[j]]; |
---|
| 1261 | if (cs_next[j] != 0) cs_prev[cs_next[j]] = j; |
---|
| 1262 | cs_head[vc_len[j]] = j; |
---|
| 1263 | } |
---|
| 1264 | } |
---|
| 1265 | done: /* return to the factorizing routine */ |
---|
| 1266 | return ret; |
---|
| 1267 | } |
---|
| 1268 | |
---|
| 1269 | /*********************************************************************** |
---|
| 1270 | * build_v_cols - build the matrix V in column-wise format |
---|
| 1271 | * |
---|
| 1272 | * This routine builds the column-wise representation of the matrix V |
---|
| 1273 | * using its row-wise representation. |
---|
| 1274 | * |
---|
| 1275 | * If no error occured, the routine returns zero. Otherwise, in case of |
---|
| 1276 | * overflow of the sparse vector area, the routine returns non-zero. */ |
---|
| 1277 | |
---|
| 1278 | static int build_v_cols(LUF *luf) |
---|
| 1279 | { int n = luf->n; |
---|
| 1280 | int *vr_ptr = luf->vr_ptr; |
---|
| 1281 | int *vr_len = luf->vr_len; |
---|
| 1282 | int *vc_ptr = luf->vc_ptr; |
---|
| 1283 | int *vc_len = luf->vc_len; |
---|
| 1284 | int *vc_cap = luf->vc_cap; |
---|
| 1285 | int *sv_ind = luf->sv_ind; |
---|
| 1286 | double *sv_val = luf->sv_val; |
---|
| 1287 | int *sv_prev = luf->sv_prev; |
---|
| 1288 | int *sv_next = luf->sv_next; |
---|
| 1289 | int ret = 0; |
---|
| 1290 | int i, i_beg, i_end, i_ptr, j, j_ptr, k, nnz; |
---|
| 1291 | /* it is assumed that on entry all columns of the matrix V are |
---|
| 1292 | empty, i.e. vc_len[j] = vc_cap[j] = 0 for all j = 1, ..., n, |
---|
| 1293 | and have been removed from the addressing list */ |
---|
| 1294 | /* count non-zeros in columns of the matrix V; count total number |
---|
| 1295 | of non-zeros in this matrix */ |
---|
| 1296 | nnz = 0; |
---|
| 1297 | for (i = 1; i <= n; i++) |
---|
| 1298 | { /* walk through elements of the i-th row and count non-zeros |
---|
| 1299 | in the corresponding columns */ |
---|
| 1300 | i_beg = vr_ptr[i]; |
---|
| 1301 | i_end = i_beg + vr_len[i] - 1; |
---|
| 1302 | for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
---|
| 1303 | vc_cap[sv_ind[i_ptr]]++; |
---|
| 1304 | /* count total number of non-zeros */ |
---|
| 1305 | nnz += vr_len[i]; |
---|
| 1306 | } |
---|
| 1307 | /* store total number of non-zeros */ |
---|
| 1308 | luf->nnz_v = nnz; |
---|
| 1309 | /* check for free locations */ |
---|
| 1310 | if (luf->sv_end - luf->sv_beg < nnz) |
---|
| 1311 | { /* overflow of the sparse vector area */ |
---|
| 1312 | ret = 1; |
---|
| 1313 | goto done; |
---|
| 1314 | } |
---|
| 1315 | /* allocate columns of the matrix V */ |
---|
| 1316 | for (j = 1; j <= n; j++) |
---|
| 1317 | { /* set pointer to the j-th column */ |
---|
| 1318 | vc_ptr[j] = luf->sv_beg; |
---|
| 1319 | /* reserve locations for the j-th column */ |
---|
| 1320 | luf->sv_beg += vc_cap[j]; |
---|
| 1321 | } |
---|
| 1322 | /* build the matrix V in column-wise format using this matrix in |
---|
| 1323 | row-wise format */ |
---|
| 1324 | for (i = 1; i <= n; i++) |
---|
| 1325 | { /* walk through elements of the i-th row */ |
---|
| 1326 | i_beg = vr_ptr[i]; |
---|
| 1327 | i_end = i_beg + vr_len[i] - 1; |
---|
| 1328 | for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
---|
| 1329 | { /* get column index */ |
---|
| 1330 | j = sv_ind[i_ptr]; |
---|
| 1331 | /* store element in the j-th column */ |
---|
| 1332 | j_ptr = vc_ptr[j] + vc_len[j]; |
---|
| 1333 | sv_ind[j_ptr] = i; |
---|
| 1334 | sv_val[j_ptr] = sv_val[i_ptr]; |
---|
| 1335 | /* increase length of the j-th column */ |
---|
| 1336 | vc_len[j]++; |
---|
| 1337 | } |
---|
| 1338 | } |
---|
| 1339 | /* now columns are placed in the sparse vector area behind rows |
---|
| 1340 | in the order n+1, n+2, ..., n+n; so insert column nodes in the |
---|
| 1341 | addressing list using this order */ |
---|
| 1342 | for (k = n+1; k <= n+n; k++) |
---|
| 1343 | { sv_prev[k] = k-1; |
---|
| 1344 | sv_next[k] = k+1; |
---|
| 1345 | } |
---|
| 1346 | sv_prev[n+1] = luf->sv_tail; |
---|
| 1347 | sv_next[luf->sv_tail] = n+1; |
---|
| 1348 | sv_next[n+n] = 0; |
---|
| 1349 | luf->sv_tail = n+n; |
---|
| 1350 | done: /* return to the factorizing routine */ |
---|
| 1351 | return ret; |
---|
| 1352 | } |
---|
| 1353 | |
---|
| 1354 | /*********************************************************************** |
---|
| 1355 | * build_f_rows - build the matrix F in row-wise format |
---|
| 1356 | * |
---|
| 1357 | * This routine builds the row-wise representation of the matrix F using |
---|
| 1358 | * its column-wise representation. |
---|
| 1359 | * |
---|
| 1360 | * If no error occured, the routine returns zero. Otherwise, in case of |
---|
| 1361 | * overflow of the sparse vector area, the routine returns non-zero. */ |
---|
| 1362 | |
---|
| 1363 | static int build_f_rows(LUF *luf) |
---|
| 1364 | { int n = luf->n; |
---|
| 1365 | int *fr_ptr = luf->fr_ptr; |
---|
| 1366 | int *fr_len = luf->fr_len; |
---|
| 1367 | int *fc_ptr = luf->fc_ptr; |
---|
| 1368 | int *fc_len = luf->fc_len; |
---|
| 1369 | int *sv_ind = luf->sv_ind; |
---|
| 1370 | double *sv_val = luf->sv_val; |
---|
| 1371 | int ret = 0; |
---|
| 1372 | int i, j, j_beg, j_end, j_ptr, ptr, nnz; |
---|
| 1373 | /* clear rows of the matrix F */ |
---|
| 1374 | for (i = 1; i <= n; i++) fr_len[i] = 0; |
---|
| 1375 | /* count non-zeros in rows of the matrix F; count total number of |
---|
| 1376 | non-zeros in this matrix */ |
---|
| 1377 | nnz = 0; |
---|
| 1378 | for (j = 1; j <= n; j++) |
---|
| 1379 | { /* walk through elements of the j-th column and count non-zeros |
---|
| 1380 | in the corresponding rows */ |
---|
| 1381 | j_beg = fc_ptr[j]; |
---|
| 1382 | j_end = j_beg + fc_len[j] - 1; |
---|
| 1383 | for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) |
---|
| 1384 | fr_len[sv_ind[j_ptr]]++; |
---|
| 1385 | /* increase total number of non-zeros */ |
---|
| 1386 | nnz += fc_len[j]; |
---|
| 1387 | } |
---|
| 1388 | /* store total number of non-zeros */ |
---|
| 1389 | luf->nnz_f = nnz; |
---|
| 1390 | /* check for free locations */ |
---|
| 1391 | if (luf->sv_end - luf->sv_beg < nnz) |
---|
| 1392 | { /* overflow of the sparse vector area */ |
---|
| 1393 | ret = 1; |
---|
| 1394 | goto done; |
---|
| 1395 | } |
---|
| 1396 | /* allocate rows of the matrix F */ |
---|
| 1397 | for (i = 1; i <= n; i++) |
---|
| 1398 | { /* set pointer to the end of the i-th row; later this pointer |
---|
| 1399 | will be set to the beginning of the i-th row */ |
---|
| 1400 | fr_ptr[i] = luf->sv_end; |
---|
| 1401 | /* reserve locations for the i-th row */ |
---|
| 1402 | luf->sv_end -= fr_len[i]; |
---|
| 1403 | } |
---|
| 1404 | /* build the matrix F in row-wise format using this matrix in |
---|
| 1405 | column-wise format */ |
---|
| 1406 | for (j = 1; j <= n; j++) |
---|
| 1407 | { /* walk through elements of the j-th column */ |
---|
| 1408 | j_beg = fc_ptr[j]; |
---|
| 1409 | j_end = j_beg + fc_len[j] - 1; |
---|
| 1410 | for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) |
---|
| 1411 | { /* get row index */ |
---|
| 1412 | i = sv_ind[j_ptr]; |
---|
| 1413 | /* store element in the i-th row */ |
---|
| 1414 | ptr = --fr_ptr[i]; |
---|
| 1415 | sv_ind[ptr] = j; |
---|
| 1416 | sv_val[ptr] = sv_val[j_ptr]; |
---|
| 1417 | } |
---|
| 1418 | } |
---|
| 1419 | done: /* return to the factorizing routine */ |
---|
| 1420 | return ret; |
---|
| 1421 | } |
---|
| 1422 | |
---|
| 1423 | /*********************************************************************** |
---|
| 1424 | * NAME |
---|
| 1425 | * |
---|
| 1426 | * luf_factorize - compute LU-factorization |
---|
| 1427 | * |
---|
| 1428 | * SYNOPSIS |
---|
| 1429 | * |
---|
| 1430 | * #include "glpluf.h" |
---|
| 1431 | * int luf_factorize(LUF *luf, int n, int (*col)(void *info, int j, |
---|
| 1432 | * int ind[], double val[]), void *info); |
---|
| 1433 | * |
---|
| 1434 | * DESCRIPTION |
---|
| 1435 | * |
---|
| 1436 | * The routine luf_factorize computes LU-factorization of a specified |
---|
| 1437 | * square matrix A. |
---|
| 1438 | * |
---|
| 1439 | * The parameter luf specifies LU-factorization program object created |
---|
| 1440 | * by the routine luf_create_it. |
---|
| 1441 | * |
---|
| 1442 | * The parameter n specifies the order of A, n > 0. |
---|
| 1443 | * |
---|
| 1444 | * The formal routine col specifies the matrix A to be factorized. To |
---|
| 1445 | * obtain j-th column of A the routine luf_factorize calls the routine |
---|
| 1446 | * col with the parameter j (1 <= j <= n). In response the routine col |
---|
| 1447 | * should store row indices and numerical values of non-zero elements |
---|
| 1448 | * of j-th column of A to locations ind[1,...,len] and val[1,...,len], |
---|
| 1449 | * respectively, where len is the number of non-zeros in j-th column |
---|
| 1450 | * returned on exit. Neither zero nor duplicate elements are allowed. |
---|
| 1451 | * |
---|
| 1452 | * The parameter info is a transit pointer passed to the routine col. |
---|
| 1453 | * |
---|
| 1454 | * RETURNS |
---|
| 1455 | * |
---|
| 1456 | * 0 LU-factorization has been successfully computed. |
---|
| 1457 | * |
---|
| 1458 | * LUF_ESING |
---|
| 1459 | * The specified matrix is singular within the working precision. |
---|
| 1460 | * (On some elimination step the active submatrix is exactly zero, |
---|
| 1461 | * so no pivot can be chosen.) |
---|
| 1462 | * |
---|
| 1463 | * LUF_ECOND |
---|
| 1464 | * The specified matrix is ill-conditioned. |
---|
| 1465 | * (On some elimination step too intensive growth of elements of the |
---|
| 1466 | * active submatix has been detected.) |
---|
| 1467 | * |
---|
| 1468 | * If matrix A is well scaled, the return code LUF_ECOND may also mean |
---|
| 1469 | * that the threshold pivoting tolerance piv_tol should be increased. |
---|
| 1470 | * |
---|
| 1471 | * In case of non-zero return code the factorization becomes invalid. |
---|
| 1472 | * It should not be used in other operations until the cause of failure |
---|
| 1473 | * has been eliminated and the factorization has been recomputed again |
---|
| 1474 | * with the routine luf_factorize. |
---|
| 1475 | * |
---|
| 1476 | * REPAIRING SINGULAR MATRIX |
---|
| 1477 | * |
---|
| 1478 | * If the routine luf_factorize returns non-zero code, it provides all |
---|
| 1479 | * necessary information that can be used for "repairing" the matrix A, |
---|
| 1480 | * where "repairing" means replacing linearly dependent columns of the |
---|
| 1481 | * matrix A by appropriate columns of the unity matrix. This feature is |
---|
| 1482 | * needed when this routine is used for factorizing the basis matrix |
---|
| 1483 | * within the simplex method procedure. |
---|
| 1484 | * |
---|
| 1485 | * On exit linearly dependent columns of the (partially transformed) |
---|
| 1486 | * matrix U have numbers rank+1, rank+2, ..., n, where rank is estimated |
---|
| 1487 | * rank of the matrix A stored by the routine to the member luf->rank. |
---|
| 1488 | * The correspondence between columns of A and U is the same as between |
---|
| 1489 | * columns of V and U. Thus, linearly dependent columns of the matrix A |
---|
| 1490 | * have numbers qq_col[rank+1], qq_col[rank+2], ..., qq_col[n], where |
---|
| 1491 | * qq_col is the column-like representation of the permutation matrix Q. |
---|
| 1492 | * It is understood that each j-th linearly dependent column of the |
---|
| 1493 | * matrix U should be replaced by the unity vector, where all elements |
---|
| 1494 | * are zero except the unity diagonal element u[j,j]. On the other hand |
---|
| 1495 | * j-th row of the matrix U corresponds to the row of the matrix V (and |
---|
| 1496 | * therefore of the matrix A) with the number pp_row[j], where pp_row is |
---|
| 1497 | * the row-like representation of the permutation matrix P. Thus, each |
---|
| 1498 | * j-th linearly dependent column of the matrix U should be replaced by |
---|
| 1499 | * column of the unity matrix with the number pp_row[j]. |
---|
| 1500 | * |
---|
| 1501 | * The code that repairs the matrix A may look like follows: |
---|
| 1502 | * |
---|
| 1503 | * for (j = rank+1; j <= n; j++) |
---|
| 1504 | * { replace the column qq_col[j] of the matrix A by the column |
---|
| 1505 | * pp_row[j] of the unity matrix; |
---|
| 1506 | * } |
---|
| 1507 | * |
---|
| 1508 | * where rank, pp_row, and qq_col are members of the structure LUF. */ |
---|
| 1509 | |
---|
| 1510 | int luf_factorize(LUF *luf, int n, int (*col)(void *info, int j, |
---|
| 1511 | int ind[], double val[]), void *info) |
---|
| 1512 | { int *pp_row, *pp_col, *qq_row, *qq_col; |
---|
| 1513 | double max_gro = luf->max_gro; |
---|
| 1514 | int i, j, k, p, q, t, ret; |
---|
| 1515 | if (n < 1) |
---|
| 1516 | xfault("luf_factorize: n = %d; invalid parameter\n", n); |
---|
| 1517 | if (n > N_MAX) |
---|
| 1518 | xfault("luf_factorize: n = %d; matrix too big\n", n); |
---|
| 1519 | /* invalidate the factorization */ |
---|
| 1520 | luf->valid = 0; |
---|
| 1521 | /* reallocate arrays, if necessary */ |
---|
| 1522 | reallocate(luf, n); |
---|
| 1523 | pp_row = luf->pp_row; |
---|
| 1524 | pp_col = luf->pp_col; |
---|
| 1525 | qq_row = luf->qq_row; |
---|
| 1526 | qq_col = luf->qq_col; |
---|
| 1527 | /* estimate initial size of the SVA, if not specified */ |
---|
| 1528 | if (luf->sv_size == 0 && luf->new_sva == 0) |
---|
| 1529 | luf->new_sva = 5 * (n + 10); |
---|
| 1530 | more: /* reallocate the sparse vector area, if required */ |
---|
| 1531 | if (luf->new_sva > 0) |
---|
| 1532 | { if (luf->sv_ind != NULL) xfree(luf->sv_ind); |
---|
| 1533 | if (luf->sv_val != NULL) xfree(luf->sv_val); |
---|
| 1534 | luf->sv_size = luf->new_sva; |
---|
| 1535 | luf->sv_ind = xcalloc(1+luf->sv_size, sizeof(int)); |
---|
| 1536 | luf->sv_val = xcalloc(1+luf->sv_size, sizeof(double)); |
---|
| 1537 | luf->new_sva = 0; |
---|
| 1538 | } |
---|
| 1539 | /* initialize LU-factorization data structures */ |
---|
| 1540 | if (initialize(luf, col, info)) |
---|
| 1541 | { /* overflow of the sparse vector area */ |
---|
| 1542 | luf->new_sva = luf->sv_size + luf->sv_size; |
---|
| 1543 | xassert(luf->new_sva > luf->sv_size); |
---|
| 1544 | goto more; |
---|
| 1545 | } |
---|
| 1546 | /* main elimination loop */ |
---|
| 1547 | for (k = 1; k <= n; k++) |
---|
| 1548 | { /* choose a pivot element v[p,q] */ |
---|
| 1549 | if (find_pivot(luf, &p, &q)) |
---|
| 1550 | { /* no pivot can be chosen, because the active submatrix is |
---|
| 1551 | exactly zero */ |
---|
| 1552 | luf->rank = k - 1; |
---|
| 1553 | ret = LUF_ESING; |
---|
| 1554 | goto done; |
---|
| 1555 | } |
---|
| 1556 | /* let v[p,q] correspond to u[i',j']; permute k-th and i'-th |
---|
| 1557 | rows and k-th and j'-th columns of the matrix U = P*V*Q to |
---|
| 1558 | move the element u[i',j'] to the position u[k,k] */ |
---|
| 1559 | i = pp_col[p], j = qq_row[q]; |
---|
| 1560 | xassert(k <= i && i <= n && k <= j && j <= n); |
---|
| 1561 | /* permute k-th and i-th rows of the matrix U */ |
---|
| 1562 | t = pp_row[k]; |
---|
| 1563 | pp_row[i] = t, pp_col[t] = i; |
---|
| 1564 | pp_row[k] = p, pp_col[p] = k; |
---|
| 1565 | /* permute k-th and j-th columns of the matrix U */ |
---|
| 1566 | t = qq_col[k]; |
---|
| 1567 | qq_col[j] = t, qq_row[t] = j; |
---|
| 1568 | qq_col[k] = q, qq_row[q] = k; |
---|
| 1569 | /* eliminate subdiagonal elements of k-th column of the matrix |
---|
| 1570 | U = P*V*Q using the pivot element u[k,k] = v[p,q] */ |
---|
| 1571 | if (eliminate(luf, p, q)) |
---|
| 1572 | { /* overflow of the sparse vector area */ |
---|
| 1573 | luf->new_sva = luf->sv_size + luf->sv_size; |
---|
| 1574 | xassert(luf->new_sva > luf->sv_size); |
---|
| 1575 | goto more; |
---|
| 1576 | } |
---|
| 1577 | /* check relative growth of elements of the matrix V */ |
---|
| 1578 | if (luf->big_v > max_gro * luf->max_a) |
---|
| 1579 | { /* the growth is too intensive, therefore most probably the |
---|
| 1580 | matrix A is ill-conditioned */ |
---|
| 1581 | luf->rank = k - 1; |
---|
| 1582 | ret = LUF_ECOND; |
---|
| 1583 | goto done; |
---|
| 1584 | } |
---|
| 1585 | } |
---|
| 1586 | /* now the matrix U = P*V*Q is upper triangular, the matrix V has |
---|
| 1587 | been built in row-wise format, and the matrix F has been built |
---|
| 1588 | in column-wise format */ |
---|
| 1589 | /* defragment the sparse vector area in order to merge all free |
---|
| 1590 | locations in one continuous extent */ |
---|
| 1591 | luf_defrag_sva(luf); |
---|
| 1592 | /* build the matrix V in column-wise format */ |
---|
| 1593 | if (build_v_cols(luf)) |
---|
| 1594 | { /* overflow of the sparse vector area */ |
---|
| 1595 | luf->new_sva = luf->sv_size + luf->sv_size; |
---|
| 1596 | xassert(luf->new_sva > luf->sv_size); |
---|
| 1597 | goto more; |
---|
| 1598 | } |
---|
| 1599 | /* build the matrix F in row-wise format */ |
---|
| 1600 | if (build_f_rows(luf)) |
---|
| 1601 | { /* overflow of the sparse vector area */ |
---|
| 1602 | luf->new_sva = luf->sv_size + luf->sv_size; |
---|
| 1603 | xassert(luf->new_sva > luf->sv_size); |
---|
| 1604 | goto more; |
---|
| 1605 | } |
---|
| 1606 | /* the LU-factorization has been successfully computed */ |
---|
| 1607 | luf->valid = 1; |
---|
| 1608 | luf->rank = n; |
---|
| 1609 | ret = 0; |
---|
| 1610 | /* if there are few free locations in the sparse vector area, try |
---|
| 1611 | increasing its size in the future */ |
---|
| 1612 | t = 3 * (n + luf->nnz_v) + 2 * luf->nnz_f; |
---|
| 1613 | if (luf->sv_size < t) |
---|
| 1614 | { luf->new_sva = luf->sv_size; |
---|
| 1615 | while (luf->new_sva < t) |
---|
| 1616 | { k = luf->new_sva; |
---|
| 1617 | luf->new_sva = k + k; |
---|
| 1618 | xassert(luf->new_sva > k); |
---|
| 1619 | } |
---|
| 1620 | } |
---|
| 1621 | done: /* return to the calling program */ |
---|
| 1622 | return ret; |
---|
| 1623 | } |
---|
| 1624 | |
---|
| 1625 | /*********************************************************************** |
---|
| 1626 | * NAME |
---|
| 1627 | * |
---|
| 1628 | * luf_f_solve - solve system F*x = b or F'*x = b |
---|
| 1629 | * |
---|
| 1630 | * SYNOPSIS |
---|
| 1631 | * |
---|
| 1632 | * #include "glpluf.h" |
---|
| 1633 | * void luf_f_solve(LUF *luf, int tr, double x[]); |
---|
| 1634 | * |
---|
| 1635 | * DESCRIPTION |
---|
| 1636 | * |
---|
| 1637 | * The routine luf_f_solve solves either the system F*x = b (if the |
---|
| 1638 | * flag tr is zero) or the system F'*x = b (if the flag tr is non-zero), |
---|
| 1639 | * where the matrix F is a component of LU-factorization specified by |
---|
| 1640 | * the parameter luf, F' is a matrix transposed to F. |
---|
| 1641 | * |
---|
| 1642 | * On entry the array x should contain elements of the right-hand side |
---|
| 1643 | * vector b in locations x[1], ..., x[n], where n is the order of the |
---|
| 1644 | * matrix F. On exit this array will contain elements of the solution |
---|
| 1645 | * vector x in the same locations. */ |
---|
| 1646 | |
---|
| 1647 | void luf_f_solve(LUF *luf, int tr, double x[]) |
---|
| 1648 | { int n = luf->n; |
---|
| 1649 | int *fr_ptr = luf->fr_ptr; |
---|
| 1650 | int *fr_len = luf->fr_len; |
---|
| 1651 | int *fc_ptr = luf->fc_ptr; |
---|
| 1652 | int *fc_len = luf->fc_len; |
---|
| 1653 | int *pp_row = luf->pp_row; |
---|
| 1654 | int *sv_ind = luf->sv_ind; |
---|
| 1655 | double *sv_val = luf->sv_val; |
---|
| 1656 | int i, j, k, beg, end, ptr; |
---|
| 1657 | double xk; |
---|
| 1658 | if (!luf->valid) |
---|
| 1659 | xfault("luf_f_solve: LU-factorization is not valid\n"); |
---|
| 1660 | if (!tr) |
---|
| 1661 | { /* solve the system F*x = b */ |
---|
| 1662 | for (j = 1; j <= n; j++) |
---|
| 1663 | { k = pp_row[j]; |
---|
| 1664 | xk = x[k]; |
---|
| 1665 | if (xk != 0.0) |
---|
| 1666 | { beg = fc_ptr[k]; |
---|
| 1667 | end = beg + fc_len[k] - 1; |
---|
| 1668 | for (ptr = beg; ptr <= end; ptr++) |
---|
| 1669 | x[sv_ind[ptr]] -= sv_val[ptr] * xk; |
---|
| 1670 | } |
---|
| 1671 | } |
---|
| 1672 | } |
---|
| 1673 | else |
---|
| 1674 | { /* solve the system F'*x = b */ |
---|
| 1675 | for (i = n; i >= 1; i--) |
---|
| 1676 | { k = pp_row[i]; |
---|
| 1677 | xk = x[k]; |
---|
| 1678 | if (xk != 0.0) |
---|
| 1679 | { beg = fr_ptr[k]; |
---|
| 1680 | end = beg + fr_len[k] - 1; |
---|
| 1681 | for (ptr = beg; ptr <= end; ptr++) |
---|
| 1682 | x[sv_ind[ptr]] -= sv_val[ptr] * xk; |
---|
| 1683 | } |
---|
| 1684 | } |
---|
| 1685 | } |
---|
| 1686 | return; |
---|
| 1687 | } |
---|
| 1688 | |
---|
| 1689 | /*********************************************************************** |
---|
| 1690 | * NAME |
---|
| 1691 | * |
---|
| 1692 | * luf_v_solve - solve system V*x = b or V'*x = b |
---|
| 1693 | * |
---|
| 1694 | * SYNOPSIS |
---|
| 1695 | * |
---|
| 1696 | * #include "glpluf.h" |
---|
| 1697 | * void luf_v_solve(LUF *luf, int tr, double x[]); |
---|
| 1698 | * |
---|
| 1699 | * DESCRIPTION |
---|
| 1700 | * |
---|
| 1701 | * The routine luf_v_solve solves either the system V*x = b (if the |
---|
| 1702 | * flag tr is zero) or the system V'*x = b (if the flag tr is non-zero), |
---|
| 1703 | * where the matrix V is a component of LU-factorization specified by |
---|
| 1704 | * the parameter luf, V' is a matrix transposed to V. |
---|
| 1705 | * |
---|
| 1706 | * On entry the array x should contain elements of the right-hand side |
---|
| 1707 | * vector b in locations x[1], ..., x[n], where n is the order of the |
---|
| 1708 | * matrix V. On exit this array will contain elements of the solution |
---|
| 1709 | * vector x in the same locations. */ |
---|
| 1710 | |
---|
| 1711 | void luf_v_solve(LUF *luf, int tr, double x[]) |
---|
| 1712 | { int n = luf->n; |
---|
| 1713 | int *vr_ptr = luf->vr_ptr; |
---|
| 1714 | int *vr_len = luf->vr_len; |
---|
| 1715 | double *vr_piv = luf->vr_piv; |
---|
| 1716 | int *vc_ptr = luf->vc_ptr; |
---|
| 1717 | int *vc_len = luf->vc_len; |
---|
| 1718 | int *pp_row = luf->pp_row; |
---|
| 1719 | int *qq_col = luf->qq_col; |
---|
| 1720 | int *sv_ind = luf->sv_ind; |
---|
| 1721 | double *sv_val = luf->sv_val; |
---|
| 1722 | double *b = luf->work; |
---|
| 1723 | int i, j, k, beg, end, ptr; |
---|
| 1724 | double temp; |
---|
| 1725 | if (!luf->valid) |
---|
| 1726 | xfault("luf_v_solve: LU-factorization is not valid\n"); |
---|
| 1727 | for (k = 1; k <= n; k++) b[k] = x[k], x[k] = 0.0; |
---|
| 1728 | if (!tr) |
---|
| 1729 | { /* solve the system V*x = b */ |
---|
| 1730 | for (k = n; k >= 1; k--) |
---|
| 1731 | { i = pp_row[k], j = qq_col[k]; |
---|
| 1732 | temp = b[i]; |
---|
| 1733 | if (temp != 0.0) |
---|
| 1734 | { x[j] = (temp /= vr_piv[i]); |
---|
| 1735 | beg = vc_ptr[j]; |
---|
| 1736 | end = beg + vc_len[j] - 1; |
---|
| 1737 | for (ptr = beg; ptr <= end; ptr++) |
---|
| 1738 | b[sv_ind[ptr]] -= sv_val[ptr] * temp; |
---|
| 1739 | } |
---|
| 1740 | } |
---|
| 1741 | } |
---|
| 1742 | else |
---|
| 1743 | { /* solve the system V'*x = b */ |
---|
| 1744 | for (k = 1; k <= n; k++) |
---|
| 1745 | { i = pp_row[k], j = qq_col[k]; |
---|
| 1746 | temp = b[j]; |
---|
| 1747 | if (temp != 0.0) |
---|
| 1748 | { x[i] = (temp /= vr_piv[i]); |
---|
| 1749 | beg = vr_ptr[i]; |
---|
| 1750 | end = beg + vr_len[i] - 1; |
---|
| 1751 | for (ptr = beg; ptr <= end; ptr++) |
---|
| 1752 | b[sv_ind[ptr]] -= sv_val[ptr] * temp; |
---|
| 1753 | } |
---|
| 1754 | } |
---|
| 1755 | } |
---|
| 1756 | return; |
---|
| 1757 | } |
---|
| 1758 | |
---|
| 1759 | /*********************************************************************** |
---|
| 1760 | * NAME |
---|
| 1761 | * |
---|
| 1762 | * luf_a_solve - solve system A*x = b or A'*x = b |
---|
| 1763 | * |
---|
| 1764 | * SYNOPSIS |
---|
| 1765 | * |
---|
| 1766 | * #include "glpluf.h" |
---|
| 1767 | * void luf_a_solve(LUF *luf, int tr, double x[]); |
---|
| 1768 | * |
---|
| 1769 | * DESCRIPTION |
---|
| 1770 | * |
---|
| 1771 | * The routine luf_a_solve solves either the system A*x = b (if the |
---|
| 1772 | * flag tr is zero) or the system A'*x = b (if the flag tr is non-zero), |
---|
| 1773 | * where the parameter luf specifies LU-factorization of the matrix A, |
---|
| 1774 | * A' is a matrix transposed to A. |
---|
| 1775 | * |
---|
| 1776 | * On entry the array x should contain elements of the right-hand side |
---|
| 1777 | * vector b in locations x[1], ..., x[n], where n is the order of the |
---|
| 1778 | * matrix A. On exit this array will contain elements of the solution |
---|
| 1779 | * vector x in the same locations. */ |
---|
| 1780 | |
---|
| 1781 | void luf_a_solve(LUF *luf, int tr, double x[]) |
---|
| 1782 | { if (!luf->valid) |
---|
| 1783 | xfault("luf_a_solve: LU-factorization is not valid\n"); |
---|
| 1784 | if (!tr) |
---|
| 1785 | { /* A = F*V, therefore inv(A) = inv(V)*inv(F) */ |
---|
| 1786 | luf_f_solve(luf, 0, x); |
---|
| 1787 | luf_v_solve(luf, 0, x); |
---|
| 1788 | } |
---|
| 1789 | else |
---|
| 1790 | { /* A' = V'*F', therefore inv(A') = inv(F')*inv(V') */ |
---|
| 1791 | luf_v_solve(luf, 1, x); |
---|
| 1792 | luf_f_solve(luf, 1, x); |
---|
| 1793 | } |
---|
| 1794 | return; |
---|
| 1795 | } |
---|
| 1796 | |
---|
| 1797 | /*********************************************************************** |
---|
| 1798 | * NAME |
---|
| 1799 | * |
---|
| 1800 | * luf_delete_it - delete LU-factorization |
---|
| 1801 | * |
---|
| 1802 | * SYNOPSIS |
---|
| 1803 | * |
---|
| 1804 | * #include "glpluf.h" |
---|
| 1805 | * void luf_delete_it(LUF *luf); |
---|
| 1806 | * |
---|
| 1807 | * DESCRIPTION |
---|
| 1808 | * |
---|
| 1809 | * The routine luf_delete deletes LU-factorization specified by the |
---|
| 1810 | * parameter luf and frees all the memory allocated to this program |
---|
| 1811 | * object. */ |
---|
| 1812 | |
---|
| 1813 | void luf_delete_it(LUF *luf) |
---|
| 1814 | { if (luf->fr_ptr != NULL) xfree(luf->fr_ptr); |
---|
| 1815 | if (luf->fr_len != NULL) xfree(luf->fr_len); |
---|
| 1816 | if (luf->fc_ptr != NULL) xfree(luf->fc_ptr); |
---|
| 1817 | if (luf->fc_len != NULL) xfree(luf->fc_len); |
---|
| 1818 | if (luf->vr_ptr != NULL) xfree(luf->vr_ptr); |
---|
| 1819 | if (luf->vr_len != NULL) xfree(luf->vr_len); |
---|
| 1820 | if (luf->vr_cap != NULL) xfree(luf->vr_cap); |
---|
| 1821 | if (luf->vr_piv != NULL) xfree(luf->vr_piv); |
---|
| 1822 | if (luf->vc_ptr != NULL) xfree(luf->vc_ptr); |
---|
| 1823 | if (luf->vc_len != NULL) xfree(luf->vc_len); |
---|
| 1824 | if (luf->vc_cap != NULL) xfree(luf->vc_cap); |
---|
| 1825 | if (luf->pp_row != NULL) xfree(luf->pp_row); |
---|
| 1826 | if (luf->pp_col != NULL) xfree(luf->pp_col); |
---|
| 1827 | if (luf->qq_row != NULL) xfree(luf->qq_row); |
---|
| 1828 | if (luf->qq_col != NULL) xfree(luf->qq_col); |
---|
| 1829 | if (luf->sv_ind != NULL) xfree(luf->sv_ind); |
---|
| 1830 | if (luf->sv_val != NULL) xfree(luf->sv_val); |
---|
| 1831 | if (luf->sv_prev != NULL) xfree(luf->sv_prev); |
---|
| 1832 | if (luf->sv_next != NULL) xfree(luf->sv_next); |
---|
| 1833 | if (luf->vr_max != NULL) xfree(luf->vr_max); |
---|
| 1834 | if (luf->rs_head != NULL) xfree(luf->rs_head); |
---|
| 1835 | if (luf->rs_prev != NULL) xfree(luf->rs_prev); |
---|
| 1836 | if (luf->rs_next != NULL) xfree(luf->rs_next); |
---|
| 1837 | if (luf->cs_head != NULL) xfree(luf->cs_head); |
---|
| 1838 | if (luf->cs_prev != NULL) xfree(luf->cs_prev); |
---|
| 1839 | if (luf->cs_next != NULL) xfree(luf->cs_next); |
---|
| 1840 | if (luf->flag != NULL) xfree(luf->flag); |
---|
| 1841 | if (luf->work != NULL) xfree(luf->work); |
---|
| 1842 | xfree(luf); |
---|
| 1843 | return; |
---|
| 1844 | } |
---|
| 1845 | |
---|
| 1846 | /* eof */ |
---|