1 | /* glpluf.c (LU-factorization) */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | * E-mail: <mao@gnu.org>. |
---|
10 | * |
---|
11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation, either version 3 of the License, or |
---|
14 | * (at your option) any later version. |
---|
15 | * |
---|
16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | * License for more details. |
---|
20 | * |
---|
21 | * You should have received a copy of the GNU General Public License |
---|
22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | ***********************************************************************/ |
---|
24 | |
---|
25 | #include "glpenv.h" |
---|
26 | #include "glpluf.h" |
---|
27 | #define xfault xerror |
---|
28 | |
---|
29 | /* CAUTION: DO NOT CHANGE THE LIMIT BELOW */ |
---|
30 | |
---|
31 | #define N_MAX 100000000 /* = 100*10^6 */ |
---|
32 | /* maximal order of the original matrix */ |
---|
33 | |
---|
34 | /*********************************************************************** |
---|
35 | * NAME |
---|
36 | * |
---|
37 | * luf_create_it - create LU-factorization |
---|
38 | * |
---|
39 | * SYNOPSIS |
---|
40 | * |
---|
41 | * #include "glpluf.h" |
---|
42 | * LUF *luf_create_it(void); |
---|
43 | * |
---|
44 | * DESCRIPTION |
---|
45 | * |
---|
46 | * The routine luf_create_it creates a program object, which represents |
---|
47 | * LU-factorization of a square matrix. |
---|
48 | * |
---|
49 | * RETURNS |
---|
50 | * |
---|
51 | * The routine luf_create_it returns a pointer to the object created. */ |
---|
52 | |
---|
53 | LUF *luf_create_it(void) |
---|
54 | { LUF *luf; |
---|
55 | luf = xmalloc(sizeof(LUF)); |
---|
56 | luf->n_max = luf->n = 0; |
---|
57 | luf->valid = 0; |
---|
58 | luf->fr_ptr = luf->fr_len = NULL; |
---|
59 | luf->fc_ptr = luf->fc_len = NULL; |
---|
60 | luf->vr_ptr = luf->vr_len = luf->vr_cap = NULL; |
---|
61 | luf->vr_piv = NULL; |
---|
62 | luf->vc_ptr = luf->vc_len = luf->vc_cap = NULL; |
---|
63 | luf->pp_row = luf->pp_col = NULL; |
---|
64 | luf->qq_row = luf->qq_col = NULL; |
---|
65 | luf->sv_size = 0; |
---|
66 | luf->sv_beg = luf->sv_end = 0; |
---|
67 | luf->sv_ind = NULL; |
---|
68 | luf->sv_val = NULL; |
---|
69 | luf->sv_head = luf->sv_tail = 0; |
---|
70 | luf->sv_prev = luf->sv_next = NULL; |
---|
71 | luf->vr_max = NULL; |
---|
72 | luf->rs_head = luf->rs_prev = luf->rs_next = NULL; |
---|
73 | luf->cs_head = luf->cs_prev = luf->cs_next = NULL; |
---|
74 | luf->flag = NULL; |
---|
75 | luf->work = NULL; |
---|
76 | luf->new_sva = 0; |
---|
77 | luf->piv_tol = 0.10; |
---|
78 | luf->piv_lim = 4; |
---|
79 | luf->suhl = 1; |
---|
80 | luf->eps_tol = 1e-15; |
---|
81 | luf->max_gro = 1e+10; |
---|
82 | luf->nnz_a = luf->nnz_f = luf->nnz_v = 0; |
---|
83 | luf->max_a = luf->big_v = 0.0; |
---|
84 | luf->rank = 0; |
---|
85 | return luf; |
---|
86 | } |
---|
87 | |
---|
88 | /*********************************************************************** |
---|
89 | * NAME |
---|
90 | * |
---|
91 | * luf_defrag_sva - defragment the sparse vector area |
---|
92 | * |
---|
93 | * SYNOPSIS |
---|
94 | * |
---|
95 | * #include "glpluf.h" |
---|
96 | * void luf_defrag_sva(LUF *luf); |
---|
97 | * |
---|
98 | * DESCRIPTION |
---|
99 | * |
---|
100 | * The routine luf_defrag_sva defragments the sparse vector area (SVA) |
---|
101 | * gathering all unused locations in one continuous extent. In order to |
---|
102 | * do that the routine moves all unused locations from the left part of |
---|
103 | * SVA (which contains rows and columns of the matrix V) to the middle |
---|
104 | * part (which contains free locations). This is attained by relocating |
---|
105 | * elements of rows and columns of the matrix V toward the beginning of |
---|
106 | * the left part. |
---|
107 | * |
---|
108 | * NOTE that this "garbage collection" involves changing row and column |
---|
109 | * pointers of the matrix V. */ |
---|
110 | |
---|
111 | void luf_defrag_sva(LUF *luf) |
---|
112 | { int n = luf->n; |
---|
113 | int *vr_ptr = luf->vr_ptr; |
---|
114 | int *vr_len = luf->vr_len; |
---|
115 | int *vr_cap = luf->vr_cap; |
---|
116 | int *vc_ptr = luf->vc_ptr; |
---|
117 | int *vc_len = luf->vc_len; |
---|
118 | int *vc_cap = luf->vc_cap; |
---|
119 | int *sv_ind = luf->sv_ind; |
---|
120 | double *sv_val = luf->sv_val; |
---|
121 | int *sv_next = luf->sv_next; |
---|
122 | int sv_beg = 1; |
---|
123 | int i, j, k; |
---|
124 | /* skip rows and columns, which do not need to be relocated */ |
---|
125 | for (k = luf->sv_head; k != 0; k = sv_next[k]) |
---|
126 | { if (k <= n) |
---|
127 | { /* i-th row of the matrix V */ |
---|
128 | i = k; |
---|
129 | if (vr_ptr[i] != sv_beg) break; |
---|
130 | vr_cap[i] = vr_len[i]; |
---|
131 | sv_beg += vr_cap[i]; |
---|
132 | } |
---|
133 | else |
---|
134 | { /* j-th column of the matrix V */ |
---|
135 | j = k - n; |
---|
136 | if (vc_ptr[j] != sv_beg) break; |
---|
137 | vc_cap[j] = vc_len[j]; |
---|
138 | sv_beg += vc_cap[j]; |
---|
139 | } |
---|
140 | } |
---|
141 | /* relocate other rows and columns in order to gather all unused |
---|
142 | locations in one continuous extent */ |
---|
143 | for (k = k; k != 0; k = sv_next[k]) |
---|
144 | { if (k <= n) |
---|
145 | { /* i-th row of the matrix V */ |
---|
146 | i = k; |
---|
147 | memmove(&sv_ind[sv_beg], &sv_ind[vr_ptr[i]], |
---|
148 | vr_len[i] * sizeof(int)); |
---|
149 | memmove(&sv_val[sv_beg], &sv_val[vr_ptr[i]], |
---|
150 | vr_len[i] * sizeof(double)); |
---|
151 | vr_ptr[i] = sv_beg; |
---|
152 | vr_cap[i] = vr_len[i]; |
---|
153 | sv_beg += vr_cap[i]; |
---|
154 | } |
---|
155 | else |
---|
156 | { /* j-th column of the matrix V */ |
---|
157 | j = k - n; |
---|
158 | memmove(&sv_ind[sv_beg], &sv_ind[vc_ptr[j]], |
---|
159 | vc_len[j] * sizeof(int)); |
---|
160 | memmove(&sv_val[sv_beg], &sv_val[vc_ptr[j]], |
---|
161 | vc_len[j] * sizeof(double)); |
---|
162 | vc_ptr[j] = sv_beg; |
---|
163 | vc_cap[j] = vc_len[j]; |
---|
164 | sv_beg += vc_cap[j]; |
---|
165 | } |
---|
166 | } |
---|
167 | /* set new pointer to the beginning of the free part */ |
---|
168 | luf->sv_beg = sv_beg; |
---|
169 | return; |
---|
170 | } |
---|
171 | |
---|
172 | /*********************************************************************** |
---|
173 | * NAME |
---|
174 | * |
---|
175 | * luf_enlarge_row - enlarge row capacity |
---|
176 | * |
---|
177 | * SYNOPSIS |
---|
178 | * |
---|
179 | * #include "glpluf.h" |
---|
180 | * int luf_enlarge_row(LUF *luf, int i, int cap); |
---|
181 | * |
---|
182 | * DESCRIPTION |
---|
183 | * |
---|
184 | * The routine luf_enlarge_row enlarges capacity of the i-th row of the |
---|
185 | * matrix V to cap locations (assuming that its current capacity is less |
---|
186 | * than cap). In order to do that the routine relocates elements of the |
---|
187 | * i-th row to the end of the left part of SVA (which contains rows and |
---|
188 | * columns of the matrix V) and then expands the left part by allocating |
---|
189 | * cap free locations from the free part. If there are less than cap |
---|
190 | * free locations, the routine defragments the sparse vector area. |
---|
191 | * |
---|
192 | * Due to "garbage collection" this operation may change row and column |
---|
193 | * pointers of the matrix V. |
---|
194 | * |
---|
195 | * RETURNS |
---|
196 | * |
---|
197 | * If no error occured, the routine returns zero. Otherwise, in case of |
---|
198 | * overflow of the sparse vector area, the routine returns non-zero. */ |
---|
199 | |
---|
200 | int luf_enlarge_row(LUF *luf, int i, int cap) |
---|
201 | { int n = luf->n; |
---|
202 | int *vr_ptr = luf->vr_ptr; |
---|
203 | int *vr_len = luf->vr_len; |
---|
204 | int *vr_cap = luf->vr_cap; |
---|
205 | int *vc_cap = luf->vc_cap; |
---|
206 | int *sv_ind = luf->sv_ind; |
---|
207 | double *sv_val = luf->sv_val; |
---|
208 | int *sv_prev = luf->sv_prev; |
---|
209 | int *sv_next = luf->sv_next; |
---|
210 | int ret = 0; |
---|
211 | int cur, k, kk; |
---|
212 | xassert(1 <= i && i <= n); |
---|
213 | xassert(vr_cap[i] < cap); |
---|
214 | /* if there are less than cap free locations, defragment SVA */ |
---|
215 | if (luf->sv_end - luf->sv_beg < cap) |
---|
216 | { luf_defrag_sva(luf); |
---|
217 | if (luf->sv_end - luf->sv_beg < cap) |
---|
218 | { ret = 1; |
---|
219 | goto done; |
---|
220 | } |
---|
221 | } |
---|
222 | /* save current capacity of the i-th row */ |
---|
223 | cur = vr_cap[i]; |
---|
224 | /* copy existing elements to the beginning of the free part */ |
---|
225 | memmove(&sv_ind[luf->sv_beg], &sv_ind[vr_ptr[i]], |
---|
226 | vr_len[i] * sizeof(int)); |
---|
227 | memmove(&sv_val[luf->sv_beg], &sv_val[vr_ptr[i]], |
---|
228 | vr_len[i] * sizeof(double)); |
---|
229 | /* set new pointer and new capacity of the i-th row */ |
---|
230 | vr_ptr[i] = luf->sv_beg; |
---|
231 | vr_cap[i] = cap; |
---|
232 | /* set new pointer to the beginning of the free part */ |
---|
233 | luf->sv_beg += cap; |
---|
234 | /* now the i-th row starts in the rightmost location among other |
---|
235 | rows and columns of the matrix V, so its node should be moved |
---|
236 | to the end of the row/column linked list */ |
---|
237 | k = i; |
---|
238 | /* remove the i-th row node from the linked list */ |
---|
239 | if (sv_prev[k] == 0) |
---|
240 | luf->sv_head = sv_next[k]; |
---|
241 | else |
---|
242 | { /* capacity of the previous row/column can be increased at the |
---|
243 | expense of old locations of the i-th row */ |
---|
244 | kk = sv_prev[k]; |
---|
245 | if (kk <= n) vr_cap[kk] += cur; else vc_cap[kk-n] += cur; |
---|
246 | sv_next[sv_prev[k]] = sv_next[k]; |
---|
247 | } |
---|
248 | if (sv_next[k] == 0) |
---|
249 | luf->sv_tail = sv_prev[k]; |
---|
250 | else |
---|
251 | sv_prev[sv_next[k]] = sv_prev[k]; |
---|
252 | /* insert the i-th row node to the end of the linked list */ |
---|
253 | sv_prev[k] = luf->sv_tail; |
---|
254 | sv_next[k] = 0; |
---|
255 | if (sv_prev[k] == 0) |
---|
256 | luf->sv_head = k; |
---|
257 | else |
---|
258 | sv_next[sv_prev[k]] = k; |
---|
259 | luf->sv_tail = k; |
---|
260 | done: return ret; |
---|
261 | } |
---|
262 | |
---|
263 | /*********************************************************************** |
---|
264 | * NAME |
---|
265 | * |
---|
266 | * luf_enlarge_col - enlarge column capacity |
---|
267 | * |
---|
268 | * SYNOPSIS |
---|
269 | * |
---|
270 | * #include "glpluf.h" |
---|
271 | * int luf_enlarge_col(LUF *luf, int j, int cap); |
---|
272 | * |
---|
273 | * DESCRIPTION |
---|
274 | * |
---|
275 | * The routine luf_enlarge_col enlarges capacity of the j-th column of |
---|
276 | * the matrix V to cap locations (assuming that its current capacity is |
---|
277 | * less than cap). In order to do that the routine relocates elements |
---|
278 | * of the j-th column to the end of the left part of SVA (which contains |
---|
279 | * rows and columns of the matrix V) and then expands the left part by |
---|
280 | * allocating cap free locations from the free part. If there are less |
---|
281 | * than cap free locations, the routine defragments the sparse vector |
---|
282 | * area. |
---|
283 | * |
---|
284 | * Due to "garbage collection" this operation may change row and column |
---|
285 | * pointers of the matrix V. |
---|
286 | * |
---|
287 | * RETURNS |
---|
288 | * |
---|
289 | * If no error occured, the routine returns zero. Otherwise, in case of |
---|
290 | * overflow of the sparse vector area, the routine returns non-zero. */ |
---|
291 | |
---|
292 | int luf_enlarge_col(LUF *luf, int j, int cap) |
---|
293 | { int n = luf->n; |
---|
294 | int *vr_cap = luf->vr_cap; |
---|
295 | int *vc_ptr = luf->vc_ptr; |
---|
296 | int *vc_len = luf->vc_len; |
---|
297 | int *vc_cap = luf->vc_cap; |
---|
298 | int *sv_ind = luf->sv_ind; |
---|
299 | double *sv_val = luf->sv_val; |
---|
300 | int *sv_prev = luf->sv_prev; |
---|
301 | int *sv_next = luf->sv_next; |
---|
302 | int ret = 0; |
---|
303 | int cur, k, kk; |
---|
304 | xassert(1 <= j && j <= n); |
---|
305 | xassert(vc_cap[j] < cap); |
---|
306 | /* if there are less than cap free locations, defragment SVA */ |
---|
307 | if (luf->sv_end - luf->sv_beg < cap) |
---|
308 | { luf_defrag_sva(luf); |
---|
309 | if (luf->sv_end - luf->sv_beg < cap) |
---|
310 | { ret = 1; |
---|
311 | goto done; |
---|
312 | } |
---|
313 | } |
---|
314 | /* save current capacity of the j-th column */ |
---|
315 | cur = vc_cap[j]; |
---|
316 | /* copy existing elements to the beginning of the free part */ |
---|
317 | memmove(&sv_ind[luf->sv_beg], &sv_ind[vc_ptr[j]], |
---|
318 | vc_len[j] * sizeof(int)); |
---|
319 | memmove(&sv_val[luf->sv_beg], &sv_val[vc_ptr[j]], |
---|
320 | vc_len[j] * sizeof(double)); |
---|
321 | /* set new pointer and new capacity of the j-th column */ |
---|
322 | vc_ptr[j] = luf->sv_beg; |
---|
323 | vc_cap[j] = cap; |
---|
324 | /* set new pointer to the beginning of the free part */ |
---|
325 | luf->sv_beg += cap; |
---|
326 | /* now the j-th column starts in the rightmost location among |
---|
327 | other rows and columns of the matrix V, so its node should be |
---|
328 | moved to the end of the row/column linked list */ |
---|
329 | k = n + j; |
---|
330 | /* remove the j-th column node from the linked list */ |
---|
331 | if (sv_prev[k] == 0) |
---|
332 | luf->sv_head = sv_next[k]; |
---|
333 | else |
---|
334 | { /* capacity of the previous row/column can be increased at the |
---|
335 | expense of old locations of the j-th column */ |
---|
336 | kk = sv_prev[k]; |
---|
337 | if (kk <= n) vr_cap[kk] += cur; else vc_cap[kk-n] += cur; |
---|
338 | sv_next[sv_prev[k]] = sv_next[k]; |
---|
339 | } |
---|
340 | if (sv_next[k] == 0) |
---|
341 | luf->sv_tail = sv_prev[k]; |
---|
342 | else |
---|
343 | sv_prev[sv_next[k]] = sv_prev[k]; |
---|
344 | /* insert the j-th column node to the end of the linked list */ |
---|
345 | sv_prev[k] = luf->sv_tail; |
---|
346 | sv_next[k] = 0; |
---|
347 | if (sv_prev[k] == 0) |
---|
348 | luf->sv_head = k; |
---|
349 | else |
---|
350 | sv_next[sv_prev[k]] = k; |
---|
351 | luf->sv_tail = k; |
---|
352 | done: return ret; |
---|
353 | } |
---|
354 | |
---|
355 | /*********************************************************************** |
---|
356 | * reallocate - reallocate LU-factorization arrays |
---|
357 | * |
---|
358 | * This routine reallocates arrays, whose size depends of n, the order |
---|
359 | * of the matrix A to be factorized. */ |
---|
360 | |
---|
361 | static void reallocate(LUF *luf, int n) |
---|
362 | { int n_max = luf->n_max; |
---|
363 | luf->n = n; |
---|
364 | if (n <= n_max) goto done; |
---|
365 | if (luf->fr_ptr != NULL) xfree(luf->fr_ptr); |
---|
366 | if (luf->fr_len != NULL) xfree(luf->fr_len); |
---|
367 | if (luf->fc_ptr != NULL) xfree(luf->fc_ptr); |
---|
368 | if (luf->fc_len != NULL) xfree(luf->fc_len); |
---|
369 | if (luf->vr_ptr != NULL) xfree(luf->vr_ptr); |
---|
370 | if (luf->vr_len != NULL) xfree(luf->vr_len); |
---|
371 | if (luf->vr_cap != NULL) xfree(luf->vr_cap); |
---|
372 | if (luf->vr_piv != NULL) xfree(luf->vr_piv); |
---|
373 | if (luf->vc_ptr != NULL) xfree(luf->vc_ptr); |
---|
374 | if (luf->vc_len != NULL) xfree(luf->vc_len); |
---|
375 | if (luf->vc_cap != NULL) xfree(luf->vc_cap); |
---|
376 | if (luf->pp_row != NULL) xfree(luf->pp_row); |
---|
377 | if (luf->pp_col != NULL) xfree(luf->pp_col); |
---|
378 | if (luf->qq_row != NULL) xfree(luf->qq_row); |
---|
379 | if (luf->qq_col != NULL) xfree(luf->qq_col); |
---|
380 | if (luf->sv_prev != NULL) xfree(luf->sv_prev); |
---|
381 | if (luf->sv_next != NULL) xfree(luf->sv_next); |
---|
382 | if (luf->vr_max != NULL) xfree(luf->vr_max); |
---|
383 | if (luf->rs_head != NULL) xfree(luf->rs_head); |
---|
384 | if (luf->rs_prev != NULL) xfree(luf->rs_prev); |
---|
385 | if (luf->rs_next != NULL) xfree(luf->rs_next); |
---|
386 | if (luf->cs_head != NULL) xfree(luf->cs_head); |
---|
387 | if (luf->cs_prev != NULL) xfree(luf->cs_prev); |
---|
388 | if (luf->cs_next != NULL) xfree(luf->cs_next); |
---|
389 | if (luf->flag != NULL) xfree(luf->flag); |
---|
390 | if (luf->work != NULL) xfree(luf->work); |
---|
391 | luf->n_max = n_max = n + 100; |
---|
392 | luf->fr_ptr = xcalloc(1+n_max, sizeof(int)); |
---|
393 | luf->fr_len = xcalloc(1+n_max, sizeof(int)); |
---|
394 | luf->fc_ptr = xcalloc(1+n_max, sizeof(int)); |
---|
395 | luf->fc_len = xcalloc(1+n_max, sizeof(int)); |
---|
396 | luf->vr_ptr = xcalloc(1+n_max, sizeof(int)); |
---|
397 | luf->vr_len = xcalloc(1+n_max, sizeof(int)); |
---|
398 | luf->vr_cap = xcalloc(1+n_max, sizeof(int)); |
---|
399 | luf->vr_piv = xcalloc(1+n_max, sizeof(double)); |
---|
400 | luf->vc_ptr = xcalloc(1+n_max, sizeof(int)); |
---|
401 | luf->vc_len = xcalloc(1+n_max, sizeof(int)); |
---|
402 | luf->vc_cap = xcalloc(1+n_max, sizeof(int)); |
---|
403 | luf->pp_row = xcalloc(1+n_max, sizeof(int)); |
---|
404 | luf->pp_col = xcalloc(1+n_max, sizeof(int)); |
---|
405 | luf->qq_row = xcalloc(1+n_max, sizeof(int)); |
---|
406 | luf->qq_col = xcalloc(1+n_max, sizeof(int)); |
---|
407 | luf->sv_prev = xcalloc(1+n_max+n_max, sizeof(int)); |
---|
408 | luf->sv_next = xcalloc(1+n_max+n_max, sizeof(int)); |
---|
409 | luf->vr_max = xcalloc(1+n_max, sizeof(double)); |
---|
410 | luf->rs_head = xcalloc(1+n_max, sizeof(int)); |
---|
411 | luf->rs_prev = xcalloc(1+n_max, sizeof(int)); |
---|
412 | luf->rs_next = xcalloc(1+n_max, sizeof(int)); |
---|
413 | luf->cs_head = xcalloc(1+n_max, sizeof(int)); |
---|
414 | luf->cs_prev = xcalloc(1+n_max, sizeof(int)); |
---|
415 | luf->cs_next = xcalloc(1+n_max, sizeof(int)); |
---|
416 | luf->flag = xcalloc(1+n_max, sizeof(int)); |
---|
417 | luf->work = xcalloc(1+n_max, sizeof(double)); |
---|
418 | done: return; |
---|
419 | } |
---|
420 | |
---|
421 | /*********************************************************************** |
---|
422 | * initialize - initialize LU-factorization data structures |
---|
423 | * |
---|
424 | * This routine initializes data structures for subsequent computing |
---|
425 | * the LU-factorization of a given matrix A, which is specified by the |
---|
426 | * formal routine col. On exit V = A and F = P = Q = I, where I is the |
---|
427 | * unity matrix. (Row-wise representation of the matrix F is not used |
---|
428 | * at the factorization stage and therefore is not initialized.) |
---|
429 | * |
---|
430 | * If no error occured, the routine returns zero. Otherwise, in case of |
---|
431 | * overflow of the sparse vector area, the routine returns non-zero. */ |
---|
432 | |
---|
433 | static int initialize(LUF *luf, int (*col)(void *info, int j, int rn[], |
---|
434 | double aj[]), void *info) |
---|
435 | { int n = luf->n; |
---|
436 | int *fc_ptr = luf->fc_ptr; |
---|
437 | int *fc_len = luf->fc_len; |
---|
438 | int *vr_ptr = luf->vr_ptr; |
---|
439 | int *vr_len = luf->vr_len; |
---|
440 | int *vr_cap = luf->vr_cap; |
---|
441 | int *vc_ptr = luf->vc_ptr; |
---|
442 | int *vc_len = luf->vc_len; |
---|
443 | int *vc_cap = luf->vc_cap; |
---|
444 | int *pp_row = luf->pp_row; |
---|
445 | int *pp_col = luf->pp_col; |
---|
446 | int *qq_row = luf->qq_row; |
---|
447 | int *qq_col = luf->qq_col; |
---|
448 | int *sv_ind = luf->sv_ind; |
---|
449 | double *sv_val = luf->sv_val; |
---|
450 | int *sv_prev = luf->sv_prev; |
---|
451 | int *sv_next = luf->sv_next; |
---|
452 | double *vr_max = luf->vr_max; |
---|
453 | int *rs_head = luf->rs_head; |
---|
454 | int *rs_prev = luf->rs_prev; |
---|
455 | int *rs_next = luf->rs_next; |
---|
456 | int *cs_head = luf->cs_head; |
---|
457 | int *cs_prev = luf->cs_prev; |
---|
458 | int *cs_next = luf->cs_next; |
---|
459 | int *flag = luf->flag; |
---|
460 | double *work = luf->work; |
---|
461 | int ret = 0; |
---|
462 | int i, i_ptr, j, j_beg, j_end, k, len, nnz, sv_beg, sv_end, ptr; |
---|
463 | double big, val; |
---|
464 | /* free all locations of the sparse vector area */ |
---|
465 | sv_beg = 1; |
---|
466 | sv_end = luf->sv_size + 1; |
---|
467 | /* (row-wise representation of the matrix F is not initialized, |
---|
468 | because it is not used at the factorization stage) */ |
---|
469 | /* build the matrix F in column-wise format (initially F = I) */ |
---|
470 | for (j = 1; j <= n; j++) |
---|
471 | { fc_ptr[j] = sv_end; |
---|
472 | fc_len[j] = 0; |
---|
473 | } |
---|
474 | /* clear rows of the matrix V; clear the flag array */ |
---|
475 | for (i = 1; i <= n; i++) |
---|
476 | vr_len[i] = vr_cap[i] = 0, flag[i] = 0; |
---|
477 | /* build the matrix V in column-wise format (initially V = A); |
---|
478 | count non-zeros in rows of this matrix; count total number of |
---|
479 | non-zeros; compute largest of absolute values of elements */ |
---|
480 | nnz = 0; |
---|
481 | big = 0.0; |
---|
482 | for (j = 1; j <= n; j++) |
---|
483 | { int *rn = pp_row; |
---|
484 | double *aj = work; |
---|
485 | /* obtain j-th column of the matrix A */ |
---|
486 | len = col(info, j, rn, aj); |
---|
487 | if (!(0 <= len && len <= n)) |
---|
488 | xfault("luf_factorize: j = %d; len = %d; invalid column len" |
---|
489 | "gth\n", j, len); |
---|
490 | /* check for free locations */ |
---|
491 | if (sv_end - sv_beg < len) |
---|
492 | { /* overflow of the sparse vector area */ |
---|
493 | ret = 1; |
---|
494 | goto done; |
---|
495 | } |
---|
496 | /* set pointer to the j-th column */ |
---|
497 | vc_ptr[j] = sv_beg; |
---|
498 | /* set length of the j-th column */ |
---|
499 | vc_len[j] = vc_cap[j] = len; |
---|
500 | /* count total number of non-zeros */ |
---|
501 | nnz += len; |
---|
502 | /* walk through elements of the j-th column */ |
---|
503 | for (ptr = 1; ptr <= len; ptr++) |
---|
504 | { /* get row index and numerical value of a[i,j] */ |
---|
505 | i = rn[ptr]; |
---|
506 | val = aj[ptr]; |
---|
507 | if (!(1 <= i && i <= n)) |
---|
508 | xfault("luf_factorize: i = %d; j = %d; invalid row index" |
---|
509 | "\n", i, j); |
---|
510 | if (flag[i]) |
---|
511 | xfault("luf_factorize: i = %d; j = %d; duplicate element" |
---|
512 | " not allowed\n", i, j); |
---|
513 | if (val == 0.0) |
---|
514 | xfault("luf_factorize: i = %d; j = %d; zero element not " |
---|
515 | "allowed\n", i, j); |
---|
516 | /* add new element v[i,j] = a[i,j] to j-th column */ |
---|
517 | sv_ind[sv_beg] = i; |
---|
518 | sv_val[sv_beg] = val; |
---|
519 | sv_beg++; |
---|
520 | /* big := max(big, |a[i,j]|) */ |
---|
521 | if (val < 0.0) val = - val; |
---|
522 | if (big < val) big = val; |
---|
523 | /* mark non-zero in the i-th position of the j-th column */ |
---|
524 | flag[i] = 1; |
---|
525 | /* increase length of the i-th row */ |
---|
526 | vr_cap[i]++; |
---|
527 | } |
---|
528 | /* reset all non-zero marks */ |
---|
529 | for (ptr = 1; ptr <= len; ptr++) flag[rn[ptr]] = 0; |
---|
530 | } |
---|
531 | /* allocate rows of the matrix V */ |
---|
532 | for (i = 1; i <= n; i++) |
---|
533 | { /* get length of the i-th row */ |
---|
534 | len = vr_cap[i]; |
---|
535 | /* check for free locations */ |
---|
536 | if (sv_end - sv_beg < len) |
---|
537 | { /* overflow of the sparse vector area */ |
---|
538 | ret = 1; |
---|
539 | goto done; |
---|
540 | } |
---|
541 | /* set pointer to the i-th row */ |
---|
542 | vr_ptr[i] = sv_beg; |
---|
543 | /* reserve locations for the i-th row */ |
---|
544 | sv_beg += len; |
---|
545 | } |
---|
546 | /* build the matrix V in row-wise format using representation of |
---|
547 | this matrix in column-wise format */ |
---|
548 | for (j = 1; j <= n; j++) |
---|
549 | { /* walk through elements of the j-th column */ |
---|
550 | j_beg = vc_ptr[j]; |
---|
551 | j_end = j_beg + vc_len[j] - 1; |
---|
552 | for (k = j_beg; k <= j_end; k++) |
---|
553 | { /* get row index and numerical value of v[i,j] */ |
---|
554 | i = sv_ind[k]; |
---|
555 | val = sv_val[k]; |
---|
556 | /* store element in the i-th row */ |
---|
557 | i_ptr = vr_ptr[i] + vr_len[i]; |
---|
558 | sv_ind[i_ptr] = j; |
---|
559 | sv_val[i_ptr] = val; |
---|
560 | /* increase count of the i-th row */ |
---|
561 | vr_len[i]++; |
---|
562 | } |
---|
563 | } |
---|
564 | /* initialize the matrices P and Q (initially P = Q = I) */ |
---|
565 | for (k = 1; k <= n; k++) |
---|
566 | pp_row[k] = pp_col[k] = qq_row[k] = qq_col[k] = k; |
---|
567 | /* set sva partitioning pointers */ |
---|
568 | luf->sv_beg = sv_beg; |
---|
569 | luf->sv_end = sv_end; |
---|
570 | /* the initial physical order of rows and columns of the matrix V |
---|
571 | is n+1, ..., n+n, 1, ..., n (firstly columns, then rows) */ |
---|
572 | luf->sv_head = n+1; |
---|
573 | luf->sv_tail = n; |
---|
574 | for (i = 1; i <= n; i++) |
---|
575 | { sv_prev[i] = i-1; |
---|
576 | sv_next[i] = i+1; |
---|
577 | } |
---|
578 | sv_prev[1] = n+n; |
---|
579 | sv_next[n] = 0; |
---|
580 | for (j = 1; j <= n; j++) |
---|
581 | { sv_prev[n+j] = n+j-1; |
---|
582 | sv_next[n+j] = n+j+1; |
---|
583 | } |
---|
584 | sv_prev[n+1] = 0; |
---|
585 | sv_next[n+n] = 1; |
---|
586 | /* clear working arrays */ |
---|
587 | for (k = 1; k <= n; k++) |
---|
588 | { flag[k] = 0; |
---|
589 | work[k] = 0.0; |
---|
590 | } |
---|
591 | /* initialize some statistics */ |
---|
592 | luf->nnz_a = nnz; |
---|
593 | luf->nnz_f = 0; |
---|
594 | luf->nnz_v = nnz; |
---|
595 | luf->max_a = big; |
---|
596 | luf->big_v = big; |
---|
597 | luf->rank = -1; |
---|
598 | /* initially the active submatrix is the entire matrix V */ |
---|
599 | /* largest of absolute values of elements in each active row is |
---|
600 | unknown yet */ |
---|
601 | for (i = 1; i <= n; i++) vr_max[i] = -1.0; |
---|
602 | /* build linked lists of active rows */ |
---|
603 | for (len = 0; len <= n; len++) rs_head[len] = 0; |
---|
604 | for (i = 1; i <= n; i++) |
---|
605 | { len = vr_len[i]; |
---|
606 | rs_prev[i] = 0; |
---|
607 | rs_next[i] = rs_head[len]; |
---|
608 | if (rs_next[i] != 0) rs_prev[rs_next[i]] = i; |
---|
609 | rs_head[len] = i; |
---|
610 | } |
---|
611 | /* build linked lists of active columns */ |
---|
612 | for (len = 0; len <= n; len++) cs_head[len] = 0; |
---|
613 | for (j = 1; j <= n; j++) |
---|
614 | { len = vc_len[j]; |
---|
615 | cs_prev[j] = 0; |
---|
616 | cs_next[j] = cs_head[len]; |
---|
617 | if (cs_next[j] != 0) cs_prev[cs_next[j]] = j; |
---|
618 | cs_head[len] = j; |
---|
619 | } |
---|
620 | done: /* return to the factorizing routine */ |
---|
621 | return ret; |
---|
622 | } |
---|
623 | |
---|
624 | /*********************************************************************** |
---|
625 | * find_pivot - choose a pivot element |
---|
626 | * |
---|
627 | * This routine chooses a pivot element in the active submatrix of the |
---|
628 | * matrix U = P*V*Q. |
---|
629 | * |
---|
630 | * It is assumed that on entry the matrix U has the following partially |
---|
631 | * triangularized form: |
---|
632 | * |
---|
633 | * 1 k n |
---|
634 | * 1 x x x x x x x x x x |
---|
635 | * . x x x x x x x x x |
---|
636 | * . . x x x x x x x x |
---|
637 | * . . . x x x x x x x |
---|
638 | * k . . . . * * * * * * |
---|
639 | * . . . . * * * * * * |
---|
640 | * . . . . * * * * * * |
---|
641 | * . . . . * * * * * * |
---|
642 | * . . . . * * * * * * |
---|
643 | * n . . . . * * * * * * |
---|
644 | * |
---|
645 | * where rows and columns k, k+1, ..., n belong to the active submatrix |
---|
646 | * (elements of the active submatrix are marked by '*'). |
---|
647 | * |
---|
648 | * Since the matrix U = P*V*Q is not stored, the routine works with the |
---|
649 | * matrix V. It is assumed that the row-wise representation corresponds |
---|
650 | * to the matrix V, but the column-wise representation corresponds to |
---|
651 | * the active submatrix of the matrix V, i.e. elements of the matrix V, |
---|
652 | * which doesn't belong to the active submatrix, are missing from the |
---|
653 | * column linked lists. It is also assumed that each active row of the |
---|
654 | * matrix V is in the set R[len], where len is number of non-zeros in |
---|
655 | * the row, and each active column of the matrix V is in the set C[len], |
---|
656 | * where len is number of non-zeros in the column (in the latter case |
---|
657 | * only elements of the active submatrix are counted; such elements are |
---|
658 | * marked by '*' on the figure above). |
---|
659 | * |
---|
660 | * For the reason of numerical stability the routine applies so called |
---|
661 | * threshold pivoting proposed by J.Reid. It is assumed that an element |
---|
662 | * v[i,j] can be selected as a pivot candidate if it is not very small |
---|
663 | * (in absolute value) among other elements in the same row, i.e. if it |
---|
664 | * satisfies to the stability condition |v[i,j]| >= tol * max|v[i,*]|, |
---|
665 | * where 0 < tol < 1 is a given tolerance. |
---|
666 | * |
---|
667 | * In order to keep sparsity of the matrix V the routine uses Markowitz |
---|
668 | * strategy, trying to choose such element v[p,q], which satisfies to |
---|
669 | * the stability condition (see above) and has smallest Markowitz cost |
---|
670 | * (nr[p]-1) * (nc[q]-1), where nr[p] and nc[q] are numbers of non-zero |
---|
671 | * elements, respectively, in the p-th row and in the q-th column of the |
---|
672 | * active submatrix. |
---|
673 | * |
---|
674 | * In order to reduce the search, i.e. not to walk through all elements |
---|
675 | * of the active submatrix, the routine exploits a technique proposed by |
---|
676 | * I.Duff. This technique is based on using the sets R[len] and C[len] |
---|
677 | * of active rows and columns. |
---|
678 | * |
---|
679 | * If the pivot element v[p,q] has been chosen, the routine stores its |
---|
680 | * indices to the locations *p and *q and returns zero. Otherwise, if |
---|
681 | * the active submatrix is empty and therefore the pivot element can't |
---|
682 | * be chosen, the routine returns non-zero. */ |
---|
683 | |
---|
684 | static int find_pivot(LUF *luf, int *_p, int *_q) |
---|
685 | { int n = luf->n; |
---|
686 | int *vr_ptr = luf->vr_ptr; |
---|
687 | int *vr_len = luf->vr_len; |
---|
688 | int *vc_ptr = luf->vc_ptr; |
---|
689 | int *vc_len = luf->vc_len; |
---|
690 | int *sv_ind = luf->sv_ind; |
---|
691 | double *sv_val = luf->sv_val; |
---|
692 | double *vr_max = luf->vr_max; |
---|
693 | int *rs_head = luf->rs_head; |
---|
694 | int *rs_next = luf->rs_next; |
---|
695 | int *cs_head = luf->cs_head; |
---|
696 | int *cs_prev = luf->cs_prev; |
---|
697 | int *cs_next = luf->cs_next; |
---|
698 | double piv_tol = luf->piv_tol; |
---|
699 | int piv_lim = luf->piv_lim; |
---|
700 | int suhl = luf->suhl; |
---|
701 | int p, q, len, i, i_beg, i_end, i_ptr, j, j_beg, j_end, j_ptr, |
---|
702 | ncand, next_j, min_p, min_q, min_len; |
---|
703 | double best, cost, big, temp; |
---|
704 | /* initially no pivot candidates have been found so far */ |
---|
705 | p = q = 0, best = DBL_MAX, ncand = 0; |
---|
706 | /* if in the active submatrix there is a column that has the only |
---|
707 | non-zero (column singleton), choose it as pivot */ |
---|
708 | j = cs_head[1]; |
---|
709 | if (j != 0) |
---|
710 | { xassert(vc_len[j] == 1); |
---|
711 | p = sv_ind[vc_ptr[j]], q = j; |
---|
712 | goto done; |
---|
713 | } |
---|
714 | /* if in the active submatrix there is a row that has the only |
---|
715 | non-zero (row singleton), choose it as pivot */ |
---|
716 | i = rs_head[1]; |
---|
717 | if (i != 0) |
---|
718 | { xassert(vr_len[i] == 1); |
---|
719 | p = i, q = sv_ind[vr_ptr[i]]; |
---|
720 | goto done; |
---|
721 | } |
---|
722 | /* there are no singletons in the active submatrix; walk through |
---|
723 | other non-empty rows and columns */ |
---|
724 | for (len = 2; len <= n; len++) |
---|
725 | { /* consider active columns that have len non-zeros */ |
---|
726 | for (j = cs_head[len]; j != 0; j = next_j) |
---|
727 | { /* the j-th column has len non-zeros */ |
---|
728 | j_beg = vc_ptr[j]; |
---|
729 | j_end = j_beg + vc_len[j] - 1; |
---|
730 | /* save pointer to the next column with the same length */ |
---|
731 | next_j = cs_next[j]; |
---|
732 | /* find an element in the j-th column, which is placed in a |
---|
733 | row with minimal number of non-zeros and satisfies to the |
---|
734 | stability condition (such element may not exist) */ |
---|
735 | min_p = min_q = 0, min_len = INT_MAX; |
---|
736 | for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) |
---|
737 | { /* get row index of v[i,j] */ |
---|
738 | i = sv_ind[j_ptr]; |
---|
739 | i_beg = vr_ptr[i]; |
---|
740 | i_end = i_beg + vr_len[i] - 1; |
---|
741 | /* if the i-th row is not shorter than that one, where |
---|
742 | minimal element is currently placed, skip v[i,j] */ |
---|
743 | if (vr_len[i] >= min_len) continue; |
---|
744 | /* determine the largest of absolute values of elements |
---|
745 | in the i-th row */ |
---|
746 | big = vr_max[i]; |
---|
747 | if (big < 0.0) |
---|
748 | { /* the largest value is unknown yet; compute it */ |
---|
749 | for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
---|
750 | { temp = sv_val[i_ptr]; |
---|
751 | if (temp < 0.0) temp = - temp; |
---|
752 | if (big < temp) big = temp; |
---|
753 | } |
---|
754 | vr_max[i] = big; |
---|
755 | } |
---|
756 | /* find v[i,j] in the i-th row */ |
---|
757 | for (i_ptr = vr_ptr[i]; sv_ind[i_ptr] != j; i_ptr++); |
---|
758 | xassert(i_ptr <= i_end); |
---|
759 | /* if v[i,j] doesn't satisfy to the stability condition, |
---|
760 | skip it */ |
---|
761 | temp = sv_val[i_ptr]; |
---|
762 | if (temp < 0.0) temp = - temp; |
---|
763 | if (temp < piv_tol * big) continue; |
---|
764 | /* v[i,j] is better than the current minimal element */ |
---|
765 | min_p = i, min_q = j, min_len = vr_len[i]; |
---|
766 | /* if Markowitz cost of the current minimal element is |
---|
767 | not greater than (len-1)**2, it can be chosen right |
---|
768 | now; this heuristic reduces the search and works well |
---|
769 | in many cases */ |
---|
770 | if (min_len <= len) |
---|
771 | { p = min_p, q = min_q; |
---|
772 | goto done; |
---|
773 | } |
---|
774 | } |
---|
775 | /* the j-th column has been scanned */ |
---|
776 | if (min_p != 0) |
---|
777 | { /* the minimal element is a next pivot candidate */ |
---|
778 | ncand++; |
---|
779 | /* compute its Markowitz cost */ |
---|
780 | cost = (double)(min_len - 1) * (double)(len - 1); |
---|
781 | /* choose between the minimal element and the current |
---|
782 | candidate */ |
---|
783 | if (cost < best) p = min_p, q = min_q, best = cost; |
---|
784 | /* if piv_lim candidates have been considered, there are |
---|
785 | doubts that a much better candidate exists; therefore |
---|
786 | it's time to terminate the search */ |
---|
787 | if (ncand == piv_lim) goto done; |
---|
788 | } |
---|
789 | else |
---|
790 | { /* the j-th column has no elements, which satisfy to the |
---|
791 | stability condition; Uwe Suhl suggests to exclude such |
---|
792 | column from the further consideration until it becomes |
---|
793 | a column singleton; in hard cases this significantly |
---|
794 | reduces a time needed for pivot searching */ |
---|
795 | if (suhl) |
---|
796 | { /* remove the j-th column from the active set */ |
---|
797 | if (cs_prev[j] == 0) |
---|
798 | cs_head[len] = cs_next[j]; |
---|
799 | else |
---|
800 | cs_next[cs_prev[j]] = cs_next[j]; |
---|
801 | if (cs_next[j] == 0) |
---|
802 | /* nop */; |
---|
803 | else |
---|
804 | cs_prev[cs_next[j]] = cs_prev[j]; |
---|
805 | /* the following assignment is used to avoid an error |
---|
806 | when the routine eliminate (see below) will try to |
---|
807 | remove the j-th column from the active set */ |
---|
808 | cs_prev[j] = cs_next[j] = j; |
---|
809 | } |
---|
810 | } |
---|
811 | } |
---|
812 | /* consider active rows that have len non-zeros */ |
---|
813 | for (i = rs_head[len]; i != 0; i = rs_next[i]) |
---|
814 | { /* the i-th row has len non-zeros */ |
---|
815 | i_beg = vr_ptr[i]; |
---|
816 | i_end = i_beg + vr_len[i] - 1; |
---|
817 | /* determine the largest of absolute values of elements in |
---|
818 | the i-th row */ |
---|
819 | big = vr_max[i]; |
---|
820 | if (big < 0.0) |
---|
821 | { /* the largest value is unknown yet; compute it */ |
---|
822 | for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
---|
823 | { temp = sv_val[i_ptr]; |
---|
824 | if (temp < 0.0) temp = - temp; |
---|
825 | if (big < temp) big = temp; |
---|
826 | } |
---|
827 | vr_max[i] = big; |
---|
828 | } |
---|
829 | /* find an element in the i-th row, which is placed in a |
---|
830 | column with minimal number of non-zeros and satisfies to |
---|
831 | the stability condition (such element always exists) */ |
---|
832 | min_p = min_q = 0, min_len = INT_MAX; |
---|
833 | for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
---|
834 | { /* get column index of v[i,j] */ |
---|
835 | j = sv_ind[i_ptr]; |
---|
836 | /* if the j-th column is not shorter than that one, where |
---|
837 | minimal element is currently placed, skip v[i,j] */ |
---|
838 | if (vc_len[j] >= min_len) continue; |
---|
839 | /* if v[i,j] doesn't satisfy to the stability condition, |
---|
840 | skip it */ |
---|
841 | temp = sv_val[i_ptr]; |
---|
842 | if (temp < 0.0) temp = - temp; |
---|
843 | if (temp < piv_tol * big) continue; |
---|
844 | /* v[i,j] is better than the current minimal element */ |
---|
845 | min_p = i, min_q = j, min_len = vc_len[j]; |
---|
846 | /* if Markowitz cost of the current minimal element is |
---|
847 | not greater than (len-1)**2, it can be chosen right |
---|
848 | now; this heuristic reduces the search and works well |
---|
849 | in many cases */ |
---|
850 | if (min_len <= len) |
---|
851 | { p = min_p, q = min_q; |
---|
852 | goto done; |
---|
853 | } |
---|
854 | } |
---|
855 | /* the i-th row has been scanned */ |
---|
856 | if (min_p != 0) |
---|
857 | { /* the minimal element is a next pivot candidate */ |
---|
858 | ncand++; |
---|
859 | /* compute its Markowitz cost */ |
---|
860 | cost = (double)(len - 1) * (double)(min_len - 1); |
---|
861 | /* choose between the minimal element and the current |
---|
862 | candidate */ |
---|
863 | if (cost < best) p = min_p, q = min_q, best = cost; |
---|
864 | /* if piv_lim candidates have been considered, there are |
---|
865 | doubts that a much better candidate exists; therefore |
---|
866 | it's time to terminate the search */ |
---|
867 | if (ncand == piv_lim) goto done; |
---|
868 | } |
---|
869 | else |
---|
870 | { /* this can't be because this can never be */ |
---|
871 | xassert(min_p != min_p); |
---|
872 | } |
---|
873 | } |
---|
874 | } |
---|
875 | done: /* bring the pivot to the factorizing routine */ |
---|
876 | *_p = p, *_q = q; |
---|
877 | return (p == 0); |
---|
878 | } |
---|
879 | |
---|
880 | /*********************************************************************** |
---|
881 | * eliminate - perform gaussian elimination. |
---|
882 | * |
---|
883 | * This routine performs elementary gaussian transformations in order |
---|
884 | * to eliminate subdiagonal elements in the k-th column of the matrix |
---|
885 | * U = P*V*Q using the pivot element u[k,k], where k is the number of |
---|
886 | * the current elimination step. |
---|
887 | * |
---|
888 | * The parameters p and q are, respectively, row and column indices of |
---|
889 | * the element v[p,q], which corresponds to the element u[k,k]. |
---|
890 | * |
---|
891 | * Each time when the routine applies the elementary transformation to |
---|
892 | * a non-pivot row of the matrix V, it stores the corresponding element |
---|
893 | * to the matrix F in order to keep the main equality A = F*V. |
---|
894 | * |
---|
895 | * The routine assumes that on entry the matrices L = P*F*inv(P) and |
---|
896 | * U = P*V*Q are the following: |
---|
897 | * |
---|
898 | * 1 k 1 k n |
---|
899 | * 1 1 . . . . . . . . . 1 x x x x x x x x x x |
---|
900 | * x 1 . . . . . . . . . x x x x x x x x x |
---|
901 | * x x 1 . . . . . . . . . x x x x x x x x |
---|
902 | * x x x 1 . . . . . . . . . x x x x x x x |
---|
903 | * k x x x x 1 . . . . . k . . . . * * * * * * |
---|
904 | * x x x x _ 1 . . . . . . . . # * * * * * |
---|
905 | * x x x x _ . 1 . . . . . . . # * * * * * |
---|
906 | * x x x x _ . . 1 . . . . . . # * * * * * |
---|
907 | * x x x x _ . . . 1 . . . . . # * * * * * |
---|
908 | * n x x x x _ . . . . 1 n . . . . # * * * * * |
---|
909 | * |
---|
910 | * matrix L matrix U |
---|
911 | * |
---|
912 | * where rows and columns of the matrix U with numbers k, k+1, ..., n |
---|
913 | * form the active submatrix (eliminated elements are marked by '#' and |
---|
914 | * other elements of the active submatrix are marked by '*'). Note that |
---|
915 | * each eliminated non-zero element u[i,k] of the matrix U gives the |
---|
916 | * corresponding element l[i,k] of the matrix L (marked by '_'). |
---|
917 | * |
---|
918 | * Actually all operations are performed on the matrix V. Should note |
---|
919 | * that the row-wise representation corresponds to the matrix V, but the |
---|
920 | * column-wise representation corresponds to the active submatrix of the |
---|
921 | * matrix V, i.e. elements of the matrix V, which doesn't belong to the |
---|
922 | * active submatrix, are missing from the column linked lists. |
---|
923 | * |
---|
924 | * Let u[k,k] = v[p,q] be the pivot. In order to eliminate subdiagonal |
---|
925 | * elements u[i',k] = v[i,q], i' = k+1, k+2, ..., n, the routine applies |
---|
926 | * the following elementary gaussian transformations: |
---|
927 | * |
---|
928 | * (i-th row of V) := (i-th row of V) - f[i,p] * (p-th row of V), |
---|
929 | * |
---|
930 | * where f[i,p] = v[i,q] / v[p,q] is a gaussian multiplier. |
---|
931 | * |
---|
932 | * Additionally, in order to keep the main equality A = F*V, each time |
---|
933 | * when the routine applies the transformation to i-th row of the matrix |
---|
934 | * V, it also adds f[i,p] as a new element to the matrix F. |
---|
935 | * |
---|
936 | * IMPORTANT: On entry the working arrays flag and work should contain |
---|
937 | * zeros. This status is provided by the routine on exit. |
---|
938 | * |
---|
939 | * If no error occured, the routine returns zero. Otherwise, in case of |
---|
940 | * overflow of the sparse vector area, the routine returns non-zero. */ |
---|
941 | |
---|
942 | static int eliminate(LUF *luf, int p, int q) |
---|
943 | { int n = luf->n; |
---|
944 | int *fc_ptr = luf->fc_ptr; |
---|
945 | int *fc_len = luf->fc_len; |
---|
946 | int *vr_ptr = luf->vr_ptr; |
---|
947 | int *vr_len = luf->vr_len; |
---|
948 | int *vr_cap = luf->vr_cap; |
---|
949 | double *vr_piv = luf->vr_piv; |
---|
950 | int *vc_ptr = luf->vc_ptr; |
---|
951 | int *vc_len = luf->vc_len; |
---|
952 | int *vc_cap = luf->vc_cap; |
---|
953 | int *sv_ind = luf->sv_ind; |
---|
954 | double *sv_val = luf->sv_val; |
---|
955 | int *sv_prev = luf->sv_prev; |
---|
956 | int *sv_next = luf->sv_next; |
---|
957 | double *vr_max = luf->vr_max; |
---|
958 | int *rs_head = luf->rs_head; |
---|
959 | int *rs_prev = luf->rs_prev; |
---|
960 | int *rs_next = luf->rs_next; |
---|
961 | int *cs_head = luf->cs_head; |
---|
962 | int *cs_prev = luf->cs_prev; |
---|
963 | int *cs_next = luf->cs_next; |
---|
964 | int *flag = luf->flag; |
---|
965 | double *work = luf->work; |
---|
966 | double eps_tol = luf->eps_tol; |
---|
967 | /* at this stage the row-wise representation of the matrix F is |
---|
968 | not used, so fr_len can be used as a working array */ |
---|
969 | int *ndx = luf->fr_len; |
---|
970 | int ret = 0; |
---|
971 | int len, fill, i, i_beg, i_end, i_ptr, j, j_beg, j_end, j_ptr, k, |
---|
972 | p_beg, p_end, p_ptr, q_beg, q_end, q_ptr; |
---|
973 | double fip, val, vpq, temp; |
---|
974 | xassert(1 <= p && p <= n); |
---|
975 | xassert(1 <= q && q <= n); |
---|
976 | /* remove the p-th (pivot) row from the active set; this row will |
---|
977 | never return there */ |
---|
978 | if (rs_prev[p] == 0) |
---|
979 | rs_head[vr_len[p]] = rs_next[p]; |
---|
980 | else |
---|
981 | rs_next[rs_prev[p]] = rs_next[p]; |
---|
982 | if (rs_next[p] == 0) |
---|
983 | ; |
---|
984 | else |
---|
985 | rs_prev[rs_next[p]] = rs_prev[p]; |
---|
986 | /* remove the q-th (pivot) column from the active set; this column |
---|
987 | will never return there */ |
---|
988 | if (cs_prev[q] == 0) |
---|
989 | cs_head[vc_len[q]] = cs_next[q]; |
---|
990 | else |
---|
991 | cs_next[cs_prev[q]] = cs_next[q]; |
---|
992 | if (cs_next[q] == 0) |
---|
993 | ; |
---|
994 | else |
---|
995 | cs_prev[cs_next[q]] = cs_prev[q]; |
---|
996 | /* find the pivot v[p,q] = u[k,k] in the p-th row */ |
---|
997 | p_beg = vr_ptr[p]; |
---|
998 | p_end = p_beg + vr_len[p] - 1; |
---|
999 | for (p_ptr = p_beg; sv_ind[p_ptr] != q; p_ptr++) /* nop */; |
---|
1000 | xassert(p_ptr <= p_end); |
---|
1001 | /* store value of the pivot */ |
---|
1002 | vpq = (vr_piv[p] = sv_val[p_ptr]); |
---|
1003 | /* remove the pivot from the p-th row */ |
---|
1004 | sv_ind[p_ptr] = sv_ind[p_end]; |
---|
1005 | sv_val[p_ptr] = sv_val[p_end]; |
---|
1006 | vr_len[p]--; |
---|
1007 | p_end--; |
---|
1008 | /* find the pivot v[p,q] = u[k,k] in the q-th column */ |
---|
1009 | q_beg = vc_ptr[q]; |
---|
1010 | q_end = q_beg + vc_len[q] - 1; |
---|
1011 | for (q_ptr = q_beg; sv_ind[q_ptr] != p; q_ptr++) /* nop */; |
---|
1012 | xassert(q_ptr <= q_end); |
---|
1013 | /* remove the pivot from the q-th column */ |
---|
1014 | sv_ind[q_ptr] = sv_ind[q_end]; |
---|
1015 | vc_len[q]--; |
---|
1016 | q_end--; |
---|
1017 | /* walk through the p-th (pivot) row, which doesn't contain the |
---|
1018 | pivot v[p,q] already, and do the following... */ |
---|
1019 | for (p_ptr = p_beg; p_ptr <= p_end; p_ptr++) |
---|
1020 | { /* get column index of v[p,j] */ |
---|
1021 | j = sv_ind[p_ptr]; |
---|
1022 | /* store v[p,j] to the working array */ |
---|
1023 | flag[j] = 1; |
---|
1024 | work[j] = sv_val[p_ptr]; |
---|
1025 | /* remove the j-th column from the active set; this column will |
---|
1026 | return there later with new length */ |
---|
1027 | if (cs_prev[j] == 0) |
---|
1028 | cs_head[vc_len[j]] = cs_next[j]; |
---|
1029 | else |
---|
1030 | cs_next[cs_prev[j]] = cs_next[j]; |
---|
1031 | if (cs_next[j] == 0) |
---|
1032 | ; |
---|
1033 | else |
---|
1034 | cs_prev[cs_next[j]] = cs_prev[j]; |
---|
1035 | /* find v[p,j] in the j-th column */ |
---|
1036 | j_beg = vc_ptr[j]; |
---|
1037 | j_end = j_beg + vc_len[j] - 1; |
---|
1038 | for (j_ptr = j_beg; sv_ind[j_ptr] != p; j_ptr++) /* nop */; |
---|
1039 | xassert(j_ptr <= j_end); |
---|
1040 | /* since v[p,j] leaves the active submatrix, remove it from the |
---|
1041 | j-th column; however, v[p,j] is kept in the p-th row */ |
---|
1042 | sv_ind[j_ptr] = sv_ind[j_end]; |
---|
1043 | vc_len[j]--; |
---|
1044 | } |
---|
1045 | /* walk through the q-th (pivot) column, which doesn't contain the |
---|
1046 | pivot v[p,q] already, and perform gaussian elimination */ |
---|
1047 | while (q_beg <= q_end) |
---|
1048 | { /* element v[i,q] should be eliminated */ |
---|
1049 | /* get row index of v[i,q] */ |
---|
1050 | i = sv_ind[q_beg]; |
---|
1051 | /* remove the i-th row from the active set; later this row will |
---|
1052 | return there with new length */ |
---|
1053 | if (rs_prev[i] == 0) |
---|
1054 | rs_head[vr_len[i]] = rs_next[i]; |
---|
1055 | else |
---|
1056 | rs_next[rs_prev[i]] = rs_next[i]; |
---|
1057 | if (rs_next[i] == 0) |
---|
1058 | ; |
---|
1059 | else |
---|
1060 | rs_prev[rs_next[i]] = rs_prev[i]; |
---|
1061 | /* find v[i,q] in the i-th row */ |
---|
1062 | i_beg = vr_ptr[i]; |
---|
1063 | i_end = i_beg + vr_len[i] - 1; |
---|
1064 | for (i_ptr = i_beg; sv_ind[i_ptr] != q; i_ptr++) /* nop */; |
---|
1065 | xassert(i_ptr <= i_end); |
---|
1066 | /* compute gaussian multiplier f[i,p] = v[i,q] / v[p,q] */ |
---|
1067 | fip = sv_val[i_ptr] / vpq; |
---|
1068 | /* since v[i,q] should be eliminated, remove it from the i-th |
---|
1069 | row */ |
---|
1070 | sv_ind[i_ptr] = sv_ind[i_end]; |
---|
1071 | sv_val[i_ptr] = sv_val[i_end]; |
---|
1072 | vr_len[i]--; |
---|
1073 | i_end--; |
---|
1074 | /* and from the q-th column */ |
---|
1075 | sv_ind[q_beg] = sv_ind[q_end]; |
---|
1076 | vc_len[q]--; |
---|
1077 | q_end--; |
---|
1078 | /* perform gaussian transformation: |
---|
1079 | (i-th row) := (i-th row) - f[i,p] * (p-th row) |
---|
1080 | note that now the p-th row, which is in the working array, |
---|
1081 | doesn't contain the pivot v[p,q], and the i-th row doesn't |
---|
1082 | contain the eliminated element v[i,q] */ |
---|
1083 | /* walk through the i-th row and transform existing non-zero |
---|
1084 | elements */ |
---|
1085 | fill = vr_len[p]; |
---|
1086 | for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
---|
1087 | { /* get column index of v[i,j] */ |
---|
1088 | j = sv_ind[i_ptr]; |
---|
1089 | /* v[i,j] := v[i,j] - f[i,p] * v[p,j] */ |
---|
1090 | if (flag[j]) |
---|
1091 | { /* v[p,j] != 0 */ |
---|
1092 | temp = (sv_val[i_ptr] -= fip * work[j]); |
---|
1093 | if (temp < 0.0) temp = - temp; |
---|
1094 | flag[j] = 0; |
---|
1095 | fill--; /* since both v[i,j] and v[p,j] exist */ |
---|
1096 | if (temp == 0.0 || temp < eps_tol) |
---|
1097 | { /* new v[i,j] is closer to zero; replace it by exact |
---|
1098 | zero, i.e. remove it from the active submatrix */ |
---|
1099 | /* remove v[i,j] from the i-th row */ |
---|
1100 | sv_ind[i_ptr] = sv_ind[i_end]; |
---|
1101 | sv_val[i_ptr] = sv_val[i_end]; |
---|
1102 | vr_len[i]--; |
---|
1103 | i_ptr--; |
---|
1104 | i_end--; |
---|
1105 | /* find v[i,j] in the j-th column */ |
---|
1106 | j_beg = vc_ptr[j]; |
---|
1107 | j_end = j_beg + vc_len[j] - 1; |
---|
1108 | for (j_ptr = j_beg; sv_ind[j_ptr] != i; j_ptr++); |
---|
1109 | xassert(j_ptr <= j_end); |
---|
1110 | /* remove v[i,j] from the j-th column */ |
---|
1111 | sv_ind[j_ptr] = sv_ind[j_end]; |
---|
1112 | vc_len[j]--; |
---|
1113 | } |
---|
1114 | else |
---|
1115 | { /* v_big := max(v_big, |v[i,j]|) */ |
---|
1116 | if (luf->big_v < temp) luf->big_v = temp; |
---|
1117 | } |
---|
1118 | } |
---|
1119 | } |
---|
1120 | /* now flag is the pattern of the set v[p,*] \ v[i,*], and fill |
---|
1121 | is number of non-zeros in this set; therefore up to fill new |
---|
1122 | non-zeros may appear in the i-th row */ |
---|
1123 | if (vr_len[i] + fill > vr_cap[i]) |
---|
1124 | { /* enlarge the i-th row */ |
---|
1125 | if (luf_enlarge_row(luf, i, vr_len[i] + fill)) |
---|
1126 | { /* overflow of the sparse vector area */ |
---|
1127 | ret = 1; |
---|
1128 | goto done; |
---|
1129 | } |
---|
1130 | /* defragmentation may change row and column pointers of the |
---|
1131 | matrix V */ |
---|
1132 | p_beg = vr_ptr[p]; |
---|
1133 | p_end = p_beg + vr_len[p] - 1; |
---|
1134 | q_beg = vc_ptr[q]; |
---|
1135 | q_end = q_beg + vc_len[q] - 1; |
---|
1136 | } |
---|
1137 | /* walk through the p-th (pivot) row and create new elements |
---|
1138 | of the i-th row that appear due to fill-in; column indices |
---|
1139 | of these new elements are accumulated in the array ndx */ |
---|
1140 | len = 0; |
---|
1141 | for (p_ptr = p_beg; p_ptr <= p_end; p_ptr++) |
---|
1142 | { /* get column index of v[p,j], which may cause fill-in */ |
---|
1143 | j = sv_ind[p_ptr]; |
---|
1144 | if (flag[j]) |
---|
1145 | { /* compute new non-zero v[i,j] = 0 - f[i,p] * v[p,j] */ |
---|
1146 | temp = (val = - fip * work[j]); |
---|
1147 | if (temp < 0.0) temp = - temp; |
---|
1148 | if (temp == 0.0 || temp < eps_tol) |
---|
1149 | /* if v[i,j] is closer to zero; just ignore it */; |
---|
1150 | else |
---|
1151 | { /* add v[i,j] to the i-th row */ |
---|
1152 | i_ptr = vr_ptr[i] + vr_len[i]; |
---|
1153 | sv_ind[i_ptr] = j; |
---|
1154 | sv_val[i_ptr] = val; |
---|
1155 | vr_len[i]++; |
---|
1156 | /* remember column index of v[i,j] */ |
---|
1157 | ndx[++len] = j; |
---|
1158 | /* big_v := max(big_v, |v[i,j]|) */ |
---|
1159 | if (luf->big_v < temp) luf->big_v = temp; |
---|
1160 | } |
---|
1161 | } |
---|
1162 | else |
---|
1163 | { /* there is no fill-in, because v[i,j] already exists in |
---|
1164 | the i-th row; restore the flag of the element v[p,j], |
---|
1165 | which was reset before */ |
---|
1166 | flag[j] = 1; |
---|
1167 | } |
---|
1168 | } |
---|
1169 | /* add new non-zeros v[i,j] to the corresponding columns */ |
---|
1170 | for (k = 1; k <= len; k++) |
---|
1171 | { /* get column index of new non-zero v[i,j] */ |
---|
1172 | j = ndx[k]; |
---|
1173 | /* one free location is needed in the j-th column */ |
---|
1174 | if (vc_len[j] + 1 > vc_cap[j]) |
---|
1175 | { /* enlarge the j-th column */ |
---|
1176 | if (luf_enlarge_col(luf, j, vc_len[j] + 10)) |
---|
1177 | { /* overflow of the sparse vector area */ |
---|
1178 | ret = 1; |
---|
1179 | goto done; |
---|
1180 | } |
---|
1181 | /* defragmentation may change row and column pointers of |
---|
1182 | the matrix V */ |
---|
1183 | p_beg = vr_ptr[p]; |
---|
1184 | p_end = p_beg + vr_len[p] - 1; |
---|
1185 | q_beg = vc_ptr[q]; |
---|
1186 | q_end = q_beg + vc_len[q] - 1; |
---|
1187 | } |
---|
1188 | /* add new non-zero v[i,j] to the j-th column */ |
---|
1189 | j_ptr = vc_ptr[j] + vc_len[j]; |
---|
1190 | sv_ind[j_ptr] = i; |
---|
1191 | vc_len[j]++; |
---|
1192 | } |
---|
1193 | /* now the i-th row has been completely transformed, therefore |
---|
1194 | it can return to the active set with new length */ |
---|
1195 | rs_prev[i] = 0; |
---|
1196 | rs_next[i] = rs_head[vr_len[i]]; |
---|
1197 | if (rs_next[i] != 0) rs_prev[rs_next[i]] = i; |
---|
1198 | rs_head[vr_len[i]] = i; |
---|
1199 | /* the largest of absolute values of elements in the i-th row |
---|
1200 | is currently unknown */ |
---|
1201 | vr_max[i] = -1.0; |
---|
1202 | /* at least one free location is needed to store the gaussian |
---|
1203 | multiplier */ |
---|
1204 | if (luf->sv_end - luf->sv_beg < 1) |
---|
1205 | { /* there are no free locations at all; defragment SVA */ |
---|
1206 | luf_defrag_sva(luf); |
---|
1207 | if (luf->sv_end - luf->sv_beg < 1) |
---|
1208 | { /* overflow of the sparse vector area */ |
---|
1209 | ret = 1; |
---|
1210 | goto done; |
---|
1211 | } |
---|
1212 | /* defragmentation may change row and column pointers of the |
---|
1213 | matrix V */ |
---|
1214 | p_beg = vr_ptr[p]; |
---|
1215 | p_end = p_beg + vr_len[p] - 1; |
---|
1216 | q_beg = vc_ptr[q]; |
---|
1217 | q_end = q_beg + vc_len[q] - 1; |
---|
1218 | } |
---|
1219 | /* add the element f[i,p], which is the gaussian multiplier, |
---|
1220 | to the matrix F */ |
---|
1221 | luf->sv_end--; |
---|
1222 | sv_ind[luf->sv_end] = i; |
---|
1223 | sv_val[luf->sv_end] = fip; |
---|
1224 | fc_len[p]++; |
---|
1225 | /* end of elimination loop */ |
---|
1226 | } |
---|
1227 | /* at this point the q-th (pivot) column should be empty */ |
---|
1228 | xassert(vc_len[q] == 0); |
---|
1229 | /* reset capacity of the q-th column */ |
---|
1230 | vc_cap[q] = 0; |
---|
1231 | /* remove node of the q-th column from the addressing list */ |
---|
1232 | k = n + q; |
---|
1233 | if (sv_prev[k] == 0) |
---|
1234 | luf->sv_head = sv_next[k]; |
---|
1235 | else |
---|
1236 | sv_next[sv_prev[k]] = sv_next[k]; |
---|
1237 | if (sv_next[k] == 0) |
---|
1238 | luf->sv_tail = sv_prev[k]; |
---|
1239 | else |
---|
1240 | sv_prev[sv_next[k]] = sv_prev[k]; |
---|
1241 | /* the p-th column of the matrix F has been completely built; set |
---|
1242 | its pointer */ |
---|
1243 | fc_ptr[p] = luf->sv_end; |
---|
1244 | /* walk through the p-th (pivot) row and do the following... */ |
---|
1245 | for (p_ptr = p_beg; p_ptr <= p_end; p_ptr++) |
---|
1246 | { /* get column index of v[p,j] */ |
---|
1247 | j = sv_ind[p_ptr]; |
---|
1248 | /* erase v[p,j] from the working array */ |
---|
1249 | flag[j] = 0; |
---|
1250 | work[j] = 0.0; |
---|
1251 | /* the j-th column has been completely transformed, therefore |
---|
1252 | it can return to the active set with new length; however |
---|
1253 | the special case c_prev[j] = c_next[j] = j means that the |
---|
1254 | routine find_pivot excluded the j-th column from the active |
---|
1255 | set due to Uwe Suhl's rule, and therefore in this case the |
---|
1256 | column can return to the active set only if it is a column |
---|
1257 | singleton */ |
---|
1258 | if (!(vc_len[j] != 1 && cs_prev[j] == j && cs_next[j] == j)) |
---|
1259 | { cs_prev[j] = 0; |
---|
1260 | cs_next[j] = cs_head[vc_len[j]]; |
---|
1261 | if (cs_next[j] != 0) cs_prev[cs_next[j]] = j; |
---|
1262 | cs_head[vc_len[j]] = j; |
---|
1263 | } |
---|
1264 | } |
---|
1265 | done: /* return to the factorizing routine */ |
---|
1266 | return ret; |
---|
1267 | } |
---|
1268 | |
---|
1269 | /*********************************************************************** |
---|
1270 | * build_v_cols - build the matrix V in column-wise format |
---|
1271 | * |
---|
1272 | * This routine builds the column-wise representation of the matrix V |
---|
1273 | * using its row-wise representation. |
---|
1274 | * |
---|
1275 | * If no error occured, the routine returns zero. Otherwise, in case of |
---|
1276 | * overflow of the sparse vector area, the routine returns non-zero. */ |
---|
1277 | |
---|
1278 | static int build_v_cols(LUF *luf) |
---|
1279 | { int n = luf->n; |
---|
1280 | int *vr_ptr = luf->vr_ptr; |
---|
1281 | int *vr_len = luf->vr_len; |
---|
1282 | int *vc_ptr = luf->vc_ptr; |
---|
1283 | int *vc_len = luf->vc_len; |
---|
1284 | int *vc_cap = luf->vc_cap; |
---|
1285 | int *sv_ind = luf->sv_ind; |
---|
1286 | double *sv_val = luf->sv_val; |
---|
1287 | int *sv_prev = luf->sv_prev; |
---|
1288 | int *sv_next = luf->sv_next; |
---|
1289 | int ret = 0; |
---|
1290 | int i, i_beg, i_end, i_ptr, j, j_ptr, k, nnz; |
---|
1291 | /* it is assumed that on entry all columns of the matrix V are |
---|
1292 | empty, i.e. vc_len[j] = vc_cap[j] = 0 for all j = 1, ..., n, |
---|
1293 | and have been removed from the addressing list */ |
---|
1294 | /* count non-zeros in columns of the matrix V; count total number |
---|
1295 | of non-zeros in this matrix */ |
---|
1296 | nnz = 0; |
---|
1297 | for (i = 1; i <= n; i++) |
---|
1298 | { /* walk through elements of the i-th row and count non-zeros |
---|
1299 | in the corresponding columns */ |
---|
1300 | i_beg = vr_ptr[i]; |
---|
1301 | i_end = i_beg + vr_len[i] - 1; |
---|
1302 | for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
---|
1303 | vc_cap[sv_ind[i_ptr]]++; |
---|
1304 | /* count total number of non-zeros */ |
---|
1305 | nnz += vr_len[i]; |
---|
1306 | } |
---|
1307 | /* store total number of non-zeros */ |
---|
1308 | luf->nnz_v = nnz; |
---|
1309 | /* check for free locations */ |
---|
1310 | if (luf->sv_end - luf->sv_beg < nnz) |
---|
1311 | { /* overflow of the sparse vector area */ |
---|
1312 | ret = 1; |
---|
1313 | goto done; |
---|
1314 | } |
---|
1315 | /* allocate columns of the matrix V */ |
---|
1316 | for (j = 1; j <= n; j++) |
---|
1317 | { /* set pointer to the j-th column */ |
---|
1318 | vc_ptr[j] = luf->sv_beg; |
---|
1319 | /* reserve locations for the j-th column */ |
---|
1320 | luf->sv_beg += vc_cap[j]; |
---|
1321 | } |
---|
1322 | /* build the matrix V in column-wise format using this matrix in |
---|
1323 | row-wise format */ |
---|
1324 | for (i = 1; i <= n; i++) |
---|
1325 | { /* walk through elements of the i-th row */ |
---|
1326 | i_beg = vr_ptr[i]; |
---|
1327 | i_end = i_beg + vr_len[i] - 1; |
---|
1328 | for (i_ptr = i_beg; i_ptr <= i_end; i_ptr++) |
---|
1329 | { /* get column index */ |
---|
1330 | j = sv_ind[i_ptr]; |
---|
1331 | /* store element in the j-th column */ |
---|
1332 | j_ptr = vc_ptr[j] + vc_len[j]; |
---|
1333 | sv_ind[j_ptr] = i; |
---|
1334 | sv_val[j_ptr] = sv_val[i_ptr]; |
---|
1335 | /* increase length of the j-th column */ |
---|
1336 | vc_len[j]++; |
---|
1337 | } |
---|
1338 | } |
---|
1339 | /* now columns are placed in the sparse vector area behind rows |
---|
1340 | in the order n+1, n+2, ..., n+n; so insert column nodes in the |
---|
1341 | addressing list using this order */ |
---|
1342 | for (k = n+1; k <= n+n; k++) |
---|
1343 | { sv_prev[k] = k-1; |
---|
1344 | sv_next[k] = k+1; |
---|
1345 | } |
---|
1346 | sv_prev[n+1] = luf->sv_tail; |
---|
1347 | sv_next[luf->sv_tail] = n+1; |
---|
1348 | sv_next[n+n] = 0; |
---|
1349 | luf->sv_tail = n+n; |
---|
1350 | done: /* return to the factorizing routine */ |
---|
1351 | return ret; |
---|
1352 | } |
---|
1353 | |
---|
1354 | /*********************************************************************** |
---|
1355 | * build_f_rows - build the matrix F in row-wise format |
---|
1356 | * |
---|
1357 | * This routine builds the row-wise representation of the matrix F using |
---|
1358 | * its column-wise representation. |
---|
1359 | * |
---|
1360 | * If no error occured, the routine returns zero. Otherwise, in case of |
---|
1361 | * overflow of the sparse vector area, the routine returns non-zero. */ |
---|
1362 | |
---|
1363 | static int build_f_rows(LUF *luf) |
---|
1364 | { int n = luf->n; |
---|
1365 | int *fr_ptr = luf->fr_ptr; |
---|
1366 | int *fr_len = luf->fr_len; |
---|
1367 | int *fc_ptr = luf->fc_ptr; |
---|
1368 | int *fc_len = luf->fc_len; |
---|
1369 | int *sv_ind = luf->sv_ind; |
---|
1370 | double *sv_val = luf->sv_val; |
---|
1371 | int ret = 0; |
---|
1372 | int i, j, j_beg, j_end, j_ptr, ptr, nnz; |
---|
1373 | /* clear rows of the matrix F */ |
---|
1374 | for (i = 1; i <= n; i++) fr_len[i] = 0; |
---|
1375 | /* count non-zeros in rows of the matrix F; count total number of |
---|
1376 | non-zeros in this matrix */ |
---|
1377 | nnz = 0; |
---|
1378 | for (j = 1; j <= n; j++) |
---|
1379 | { /* walk through elements of the j-th column and count non-zeros |
---|
1380 | in the corresponding rows */ |
---|
1381 | j_beg = fc_ptr[j]; |
---|
1382 | j_end = j_beg + fc_len[j] - 1; |
---|
1383 | for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) |
---|
1384 | fr_len[sv_ind[j_ptr]]++; |
---|
1385 | /* increase total number of non-zeros */ |
---|
1386 | nnz += fc_len[j]; |
---|
1387 | } |
---|
1388 | /* store total number of non-zeros */ |
---|
1389 | luf->nnz_f = nnz; |
---|
1390 | /* check for free locations */ |
---|
1391 | if (luf->sv_end - luf->sv_beg < nnz) |
---|
1392 | { /* overflow of the sparse vector area */ |
---|
1393 | ret = 1; |
---|
1394 | goto done; |
---|
1395 | } |
---|
1396 | /* allocate rows of the matrix F */ |
---|
1397 | for (i = 1; i <= n; i++) |
---|
1398 | { /* set pointer to the end of the i-th row; later this pointer |
---|
1399 | will be set to the beginning of the i-th row */ |
---|
1400 | fr_ptr[i] = luf->sv_end; |
---|
1401 | /* reserve locations for the i-th row */ |
---|
1402 | luf->sv_end -= fr_len[i]; |
---|
1403 | } |
---|
1404 | /* build the matrix F in row-wise format using this matrix in |
---|
1405 | column-wise format */ |
---|
1406 | for (j = 1; j <= n; j++) |
---|
1407 | { /* walk through elements of the j-th column */ |
---|
1408 | j_beg = fc_ptr[j]; |
---|
1409 | j_end = j_beg + fc_len[j] - 1; |
---|
1410 | for (j_ptr = j_beg; j_ptr <= j_end; j_ptr++) |
---|
1411 | { /* get row index */ |
---|
1412 | i = sv_ind[j_ptr]; |
---|
1413 | /* store element in the i-th row */ |
---|
1414 | ptr = --fr_ptr[i]; |
---|
1415 | sv_ind[ptr] = j; |
---|
1416 | sv_val[ptr] = sv_val[j_ptr]; |
---|
1417 | } |
---|
1418 | } |
---|
1419 | done: /* return to the factorizing routine */ |
---|
1420 | return ret; |
---|
1421 | } |
---|
1422 | |
---|
1423 | /*********************************************************************** |
---|
1424 | * NAME |
---|
1425 | * |
---|
1426 | * luf_factorize - compute LU-factorization |
---|
1427 | * |
---|
1428 | * SYNOPSIS |
---|
1429 | * |
---|
1430 | * #include "glpluf.h" |
---|
1431 | * int luf_factorize(LUF *luf, int n, int (*col)(void *info, int j, |
---|
1432 | * int ind[], double val[]), void *info); |
---|
1433 | * |
---|
1434 | * DESCRIPTION |
---|
1435 | * |
---|
1436 | * The routine luf_factorize computes LU-factorization of a specified |
---|
1437 | * square matrix A. |
---|
1438 | * |
---|
1439 | * The parameter luf specifies LU-factorization program object created |
---|
1440 | * by the routine luf_create_it. |
---|
1441 | * |
---|
1442 | * The parameter n specifies the order of A, n > 0. |
---|
1443 | * |
---|
1444 | * The formal routine col specifies the matrix A to be factorized. To |
---|
1445 | * obtain j-th column of A the routine luf_factorize calls the routine |
---|
1446 | * col with the parameter j (1 <= j <= n). In response the routine col |
---|
1447 | * should store row indices and numerical values of non-zero elements |
---|
1448 | * of j-th column of A to locations ind[1,...,len] and val[1,...,len], |
---|
1449 | * respectively, where len is the number of non-zeros in j-th column |
---|
1450 | * returned on exit. Neither zero nor duplicate elements are allowed. |
---|
1451 | * |
---|
1452 | * The parameter info is a transit pointer passed to the routine col. |
---|
1453 | * |
---|
1454 | * RETURNS |
---|
1455 | * |
---|
1456 | * 0 LU-factorization has been successfully computed. |
---|
1457 | * |
---|
1458 | * LUF_ESING |
---|
1459 | * The specified matrix is singular within the working precision. |
---|
1460 | * (On some elimination step the active submatrix is exactly zero, |
---|
1461 | * so no pivot can be chosen.) |
---|
1462 | * |
---|
1463 | * LUF_ECOND |
---|
1464 | * The specified matrix is ill-conditioned. |
---|
1465 | * (On some elimination step too intensive growth of elements of the |
---|
1466 | * active submatix has been detected.) |
---|
1467 | * |
---|
1468 | * If matrix A is well scaled, the return code LUF_ECOND may also mean |
---|
1469 | * that the threshold pivoting tolerance piv_tol should be increased. |
---|
1470 | * |
---|
1471 | * In case of non-zero return code the factorization becomes invalid. |
---|
1472 | * It should not be used in other operations until the cause of failure |
---|
1473 | * has been eliminated and the factorization has been recomputed again |
---|
1474 | * with the routine luf_factorize. |
---|
1475 | * |
---|
1476 | * REPAIRING SINGULAR MATRIX |
---|
1477 | * |
---|
1478 | * If the routine luf_factorize returns non-zero code, it provides all |
---|
1479 | * necessary information that can be used for "repairing" the matrix A, |
---|
1480 | * where "repairing" means replacing linearly dependent columns of the |
---|
1481 | * matrix A by appropriate columns of the unity matrix. This feature is |
---|
1482 | * needed when this routine is used for factorizing the basis matrix |
---|
1483 | * within the simplex method procedure. |
---|
1484 | * |
---|
1485 | * On exit linearly dependent columns of the (partially transformed) |
---|
1486 | * matrix U have numbers rank+1, rank+2, ..., n, where rank is estimated |
---|
1487 | * rank of the matrix A stored by the routine to the member luf->rank. |
---|
1488 | * The correspondence between columns of A and U is the same as between |
---|
1489 | * columns of V and U. Thus, linearly dependent columns of the matrix A |
---|
1490 | * have numbers qq_col[rank+1], qq_col[rank+2], ..., qq_col[n], where |
---|
1491 | * qq_col is the column-like representation of the permutation matrix Q. |
---|
1492 | * It is understood that each j-th linearly dependent column of the |
---|
1493 | * matrix U should be replaced by the unity vector, where all elements |
---|
1494 | * are zero except the unity diagonal element u[j,j]. On the other hand |
---|
1495 | * j-th row of the matrix U corresponds to the row of the matrix V (and |
---|
1496 | * therefore of the matrix A) with the number pp_row[j], where pp_row is |
---|
1497 | * the row-like representation of the permutation matrix P. Thus, each |
---|
1498 | * j-th linearly dependent column of the matrix U should be replaced by |
---|
1499 | * column of the unity matrix with the number pp_row[j]. |
---|
1500 | * |
---|
1501 | * The code that repairs the matrix A may look like follows: |
---|
1502 | * |
---|
1503 | * for (j = rank+1; j <= n; j++) |
---|
1504 | * { replace the column qq_col[j] of the matrix A by the column |
---|
1505 | * pp_row[j] of the unity matrix; |
---|
1506 | * } |
---|
1507 | * |
---|
1508 | * where rank, pp_row, and qq_col are members of the structure LUF. */ |
---|
1509 | |
---|
1510 | int luf_factorize(LUF *luf, int n, int (*col)(void *info, int j, |
---|
1511 | int ind[], double val[]), void *info) |
---|
1512 | { int *pp_row, *pp_col, *qq_row, *qq_col; |
---|
1513 | double max_gro = luf->max_gro; |
---|
1514 | int i, j, k, p, q, t, ret; |
---|
1515 | if (n < 1) |
---|
1516 | xfault("luf_factorize: n = %d; invalid parameter\n", n); |
---|
1517 | if (n > N_MAX) |
---|
1518 | xfault("luf_factorize: n = %d; matrix too big\n", n); |
---|
1519 | /* invalidate the factorization */ |
---|
1520 | luf->valid = 0; |
---|
1521 | /* reallocate arrays, if necessary */ |
---|
1522 | reallocate(luf, n); |
---|
1523 | pp_row = luf->pp_row; |
---|
1524 | pp_col = luf->pp_col; |
---|
1525 | qq_row = luf->qq_row; |
---|
1526 | qq_col = luf->qq_col; |
---|
1527 | /* estimate initial size of the SVA, if not specified */ |
---|
1528 | if (luf->sv_size == 0 && luf->new_sva == 0) |
---|
1529 | luf->new_sva = 5 * (n + 10); |
---|
1530 | more: /* reallocate the sparse vector area, if required */ |
---|
1531 | if (luf->new_sva > 0) |
---|
1532 | { if (luf->sv_ind != NULL) xfree(luf->sv_ind); |
---|
1533 | if (luf->sv_val != NULL) xfree(luf->sv_val); |
---|
1534 | luf->sv_size = luf->new_sva; |
---|
1535 | luf->sv_ind = xcalloc(1+luf->sv_size, sizeof(int)); |
---|
1536 | luf->sv_val = xcalloc(1+luf->sv_size, sizeof(double)); |
---|
1537 | luf->new_sva = 0; |
---|
1538 | } |
---|
1539 | /* initialize LU-factorization data structures */ |
---|
1540 | if (initialize(luf, col, info)) |
---|
1541 | { /* overflow of the sparse vector area */ |
---|
1542 | luf->new_sva = luf->sv_size + luf->sv_size; |
---|
1543 | xassert(luf->new_sva > luf->sv_size); |
---|
1544 | goto more; |
---|
1545 | } |
---|
1546 | /* main elimination loop */ |
---|
1547 | for (k = 1; k <= n; k++) |
---|
1548 | { /* choose a pivot element v[p,q] */ |
---|
1549 | if (find_pivot(luf, &p, &q)) |
---|
1550 | { /* no pivot can be chosen, because the active submatrix is |
---|
1551 | exactly zero */ |
---|
1552 | luf->rank = k - 1; |
---|
1553 | ret = LUF_ESING; |
---|
1554 | goto done; |
---|
1555 | } |
---|
1556 | /* let v[p,q] correspond to u[i',j']; permute k-th and i'-th |
---|
1557 | rows and k-th and j'-th columns of the matrix U = P*V*Q to |
---|
1558 | move the element u[i',j'] to the position u[k,k] */ |
---|
1559 | i = pp_col[p], j = qq_row[q]; |
---|
1560 | xassert(k <= i && i <= n && k <= j && j <= n); |
---|
1561 | /* permute k-th and i-th rows of the matrix U */ |
---|
1562 | t = pp_row[k]; |
---|
1563 | pp_row[i] = t, pp_col[t] = i; |
---|
1564 | pp_row[k] = p, pp_col[p] = k; |
---|
1565 | /* permute k-th and j-th columns of the matrix U */ |
---|
1566 | t = qq_col[k]; |
---|
1567 | qq_col[j] = t, qq_row[t] = j; |
---|
1568 | qq_col[k] = q, qq_row[q] = k; |
---|
1569 | /* eliminate subdiagonal elements of k-th column of the matrix |
---|
1570 | U = P*V*Q using the pivot element u[k,k] = v[p,q] */ |
---|
1571 | if (eliminate(luf, p, q)) |
---|
1572 | { /* overflow of the sparse vector area */ |
---|
1573 | luf->new_sva = luf->sv_size + luf->sv_size; |
---|
1574 | xassert(luf->new_sva > luf->sv_size); |
---|
1575 | goto more; |
---|
1576 | } |
---|
1577 | /* check relative growth of elements of the matrix V */ |
---|
1578 | if (luf->big_v > max_gro * luf->max_a) |
---|
1579 | { /* the growth is too intensive, therefore most probably the |
---|
1580 | matrix A is ill-conditioned */ |
---|
1581 | luf->rank = k - 1; |
---|
1582 | ret = LUF_ECOND; |
---|
1583 | goto done; |
---|
1584 | } |
---|
1585 | } |
---|
1586 | /* now the matrix U = P*V*Q is upper triangular, the matrix V has |
---|
1587 | been built in row-wise format, and the matrix F has been built |
---|
1588 | in column-wise format */ |
---|
1589 | /* defragment the sparse vector area in order to merge all free |
---|
1590 | locations in one continuous extent */ |
---|
1591 | luf_defrag_sva(luf); |
---|
1592 | /* build the matrix V in column-wise format */ |
---|
1593 | if (build_v_cols(luf)) |
---|
1594 | { /* overflow of the sparse vector area */ |
---|
1595 | luf->new_sva = luf->sv_size + luf->sv_size; |
---|
1596 | xassert(luf->new_sva > luf->sv_size); |
---|
1597 | goto more; |
---|
1598 | } |
---|
1599 | /* build the matrix F in row-wise format */ |
---|
1600 | if (build_f_rows(luf)) |
---|
1601 | { /* overflow of the sparse vector area */ |
---|
1602 | luf->new_sva = luf->sv_size + luf->sv_size; |
---|
1603 | xassert(luf->new_sva > luf->sv_size); |
---|
1604 | goto more; |
---|
1605 | } |
---|
1606 | /* the LU-factorization has been successfully computed */ |
---|
1607 | luf->valid = 1; |
---|
1608 | luf->rank = n; |
---|
1609 | ret = 0; |
---|
1610 | /* if there are few free locations in the sparse vector area, try |
---|
1611 | increasing its size in the future */ |
---|
1612 | t = 3 * (n + luf->nnz_v) + 2 * luf->nnz_f; |
---|
1613 | if (luf->sv_size < t) |
---|
1614 | { luf->new_sva = luf->sv_size; |
---|
1615 | while (luf->new_sva < t) |
---|
1616 | { k = luf->new_sva; |
---|
1617 | luf->new_sva = k + k; |
---|
1618 | xassert(luf->new_sva > k); |
---|
1619 | } |
---|
1620 | } |
---|
1621 | done: /* return to the calling program */ |
---|
1622 | return ret; |
---|
1623 | } |
---|
1624 | |
---|
1625 | /*********************************************************************** |
---|
1626 | * NAME |
---|
1627 | * |
---|
1628 | * luf_f_solve - solve system F*x = b or F'*x = b |
---|
1629 | * |
---|
1630 | * SYNOPSIS |
---|
1631 | * |
---|
1632 | * #include "glpluf.h" |
---|
1633 | * void luf_f_solve(LUF *luf, int tr, double x[]); |
---|
1634 | * |
---|
1635 | * DESCRIPTION |
---|
1636 | * |
---|
1637 | * The routine luf_f_solve solves either the system F*x = b (if the |
---|
1638 | * flag tr is zero) or the system F'*x = b (if the flag tr is non-zero), |
---|
1639 | * where the matrix F is a component of LU-factorization specified by |
---|
1640 | * the parameter luf, F' is a matrix transposed to F. |
---|
1641 | * |
---|
1642 | * On entry the array x should contain elements of the right-hand side |
---|
1643 | * vector b in locations x[1], ..., x[n], where n is the order of the |
---|
1644 | * matrix F. On exit this array will contain elements of the solution |
---|
1645 | * vector x in the same locations. */ |
---|
1646 | |
---|
1647 | void luf_f_solve(LUF *luf, int tr, double x[]) |
---|
1648 | { int n = luf->n; |
---|
1649 | int *fr_ptr = luf->fr_ptr; |
---|
1650 | int *fr_len = luf->fr_len; |
---|
1651 | int *fc_ptr = luf->fc_ptr; |
---|
1652 | int *fc_len = luf->fc_len; |
---|
1653 | int *pp_row = luf->pp_row; |
---|
1654 | int *sv_ind = luf->sv_ind; |
---|
1655 | double *sv_val = luf->sv_val; |
---|
1656 | int i, j, k, beg, end, ptr; |
---|
1657 | double xk; |
---|
1658 | if (!luf->valid) |
---|
1659 | xfault("luf_f_solve: LU-factorization is not valid\n"); |
---|
1660 | if (!tr) |
---|
1661 | { /* solve the system F*x = b */ |
---|
1662 | for (j = 1; j <= n; j++) |
---|
1663 | { k = pp_row[j]; |
---|
1664 | xk = x[k]; |
---|
1665 | if (xk != 0.0) |
---|
1666 | { beg = fc_ptr[k]; |
---|
1667 | end = beg + fc_len[k] - 1; |
---|
1668 | for (ptr = beg; ptr <= end; ptr++) |
---|
1669 | x[sv_ind[ptr]] -= sv_val[ptr] * xk; |
---|
1670 | } |
---|
1671 | } |
---|
1672 | } |
---|
1673 | else |
---|
1674 | { /* solve the system F'*x = b */ |
---|
1675 | for (i = n; i >= 1; i--) |
---|
1676 | { k = pp_row[i]; |
---|
1677 | xk = x[k]; |
---|
1678 | if (xk != 0.0) |
---|
1679 | { beg = fr_ptr[k]; |
---|
1680 | end = beg + fr_len[k] - 1; |
---|
1681 | for (ptr = beg; ptr <= end; ptr++) |
---|
1682 | x[sv_ind[ptr]] -= sv_val[ptr] * xk; |
---|
1683 | } |
---|
1684 | } |
---|
1685 | } |
---|
1686 | return; |
---|
1687 | } |
---|
1688 | |
---|
1689 | /*********************************************************************** |
---|
1690 | * NAME |
---|
1691 | * |
---|
1692 | * luf_v_solve - solve system V*x = b or V'*x = b |
---|
1693 | * |
---|
1694 | * SYNOPSIS |
---|
1695 | * |
---|
1696 | * #include "glpluf.h" |
---|
1697 | * void luf_v_solve(LUF *luf, int tr, double x[]); |
---|
1698 | * |
---|
1699 | * DESCRIPTION |
---|
1700 | * |
---|
1701 | * The routine luf_v_solve solves either the system V*x = b (if the |
---|
1702 | * flag tr is zero) or the system V'*x = b (if the flag tr is non-zero), |
---|
1703 | * where the matrix V is a component of LU-factorization specified by |
---|
1704 | * the parameter luf, V' is a matrix transposed to V. |
---|
1705 | * |
---|
1706 | * On entry the array x should contain elements of the right-hand side |
---|
1707 | * vector b in locations x[1], ..., x[n], where n is the order of the |
---|
1708 | * matrix V. On exit this array will contain elements of the solution |
---|
1709 | * vector x in the same locations. */ |
---|
1710 | |
---|
1711 | void luf_v_solve(LUF *luf, int tr, double x[]) |
---|
1712 | { int n = luf->n; |
---|
1713 | int *vr_ptr = luf->vr_ptr; |
---|
1714 | int *vr_len = luf->vr_len; |
---|
1715 | double *vr_piv = luf->vr_piv; |
---|
1716 | int *vc_ptr = luf->vc_ptr; |
---|
1717 | int *vc_len = luf->vc_len; |
---|
1718 | int *pp_row = luf->pp_row; |
---|
1719 | int *qq_col = luf->qq_col; |
---|
1720 | int *sv_ind = luf->sv_ind; |
---|
1721 | double *sv_val = luf->sv_val; |
---|
1722 | double *b = luf->work; |
---|
1723 | int i, j, k, beg, end, ptr; |
---|
1724 | double temp; |
---|
1725 | if (!luf->valid) |
---|
1726 | xfault("luf_v_solve: LU-factorization is not valid\n"); |
---|
1727 | for (k = 1; k <= n; k++) b[k] = x[k], x[k] = 0.0; |
---|
1728 | if (!tr) |
---|
1729 | { /* solve the system V*x = b */ |
---|
1730 | for (k = n; k >= 1; k--) |
---|
1731 | { i = pp_row[k], j = qq_col[k]; |
---|
1732 | temp = b[i]; |
---|
1733 | if (temp != 0.0) |
---|
1734 | { x[j] = (temp /= vr_piv[i]); |
---|
1735 | beg = vc_ptr[j]; |
---|
1736 | end = beg + vc_len[j] - 1; |
---|
1737 | for (ptr = beg; ptr <= end; ptr++) |
---|
1738 | b[sv_ind[ptr]] -= sv_val[ptr] * temp; |
---|
1739 | } |
---|
1740 | } |
---|
1741 | } |
---|
1742 | else |
---|
1743 | { /* solve the system V'*x = b */ |
---|
1744 | for (k = 1; k <= n; k++) |
---|
1745 | { i = pp_row[k], j = qq_col[k]; |
---|
1746 | temp = b[j]; |
---|
1747 | if (temp != 0.0) |
---|
1748 | { x[i] = (temp /= vr_piv[i]); |
---|
1749 | beg = vr_ptr[i]; |
---|
1750 | end = beg + vr_len[i] - 1; |
---|
1751 | for (ptr = beg; ptr <= end; ptr++) |
---|
1752 | b[sv_ind[ptr]] -= sv_val[ptr] * temp; |
---|
1753 | } |
---|
1754 | } |
---|
1755 | } |
---|
1756 | return; |
---|
1757 | } |
---|
1758 | |
---|
1759 | /*********************************************************************** |
---|
1760 | * NAME |
---|
1761 | * |
---|
1762 | * luf_a_solve - solve system A*x = b or A'*x = b |
---|
1763 | * |
---|
1764 | * SYNOPSIS |
---|
1765 | * |
---|
1766 | * #include "glpluf.h" |
---|
1767 | * void luf_a_solve(LUF *luf, int tr, double x[]); |
---|
1768 | * |
---|
1769 | * DESCRIPTION |
---|
1770 | * |
---|
1771 | * The routine luf_a_solve solves either the system A*x = b (if the |
---|
1772 | * flag tr is zero) or the system A'*x = b (if the flag tr is non-zero), |
---|
1773 | * where the parameter luf specifies LU-factorization of the matrix A, |
---|
1774 | * A' is a matrix transposed to A. |
---|
1775 | * |
---|
1776 | * On entry the array x should contain elements of the right-hand side |
---|
1777 | * vector b in locations x[1], ..., x[n], where n is the order of the |
---|
1778 | * matrix A. On exit this array will contain elements of the solution |
---|
1779 | * vector x in the same locations. */ |
---|
1780 | |
---|
1781 | void luf_a_solve(LUF *luf, int tr, double x[]) |
---|
1782 | { if (!luf->valid) |
---|
1783 | xfault("luf_a_solve: LU-factorization is not valid\n"); |
---|
1784 | if (!tr) |
---|
1785 | { /* A = F*V, therefore inv(A) = inv(V)*inv(F) */ |
---|
1786 | luf_f_solve(luf, 0, x); |
---|
1787 | luf_v_solve(luf, 0, x); |
---|
1788 | } |
---|
1789 | else |
---|
1790 | { /* A' = V'*F', therefore inv(A') = inv(F')*inv(V') */ |
---|
1791 | luf_v_solve(luf, 1, x); |
---|
1792 | luf_f_solve(luf, 1, x); |
---|
1793 | } |
---|
1794 | return; |
---|
1795 | } |
---|
1796 | |
---|
1797 | /*********************************************************************** |
---|
1798 | * NAME |
---|
1799 | * |
---|
1800 | * luf_delete_it - delete LU-factorization |
---|
1801 | * |
---|
1802 | * SYNOPSIS |
---|
1803 | * |
---|
1804 | * #include "glpluf.h" |
---|
1805 | * void luf_delete_it(LUF *luf); |
---|
1806 | * |
---|
1807 | * DESCRIPTION |
---|
1808 | * |
---|
1809 | * The routine luf_delete deletes LU-factorization specified by the |
---|
1810 | * parameter luf and frees all the memory allocated to this program |
---|
1811 | * object. */ |
---|
1812 | |
---|
1813 | void luf_delete_it(LUF *luf) |
---|
1814 | { if (luf->fr_ptr != NULL) xfree(luf->fr_ptr); |
---|
1815 | if (luf->fr_len != NULL) xfree(luf->fr_len); |
---|
1816 | if (luf->fc_ptr != NULL) xfree(luf->fc_ptr); |
---|
1817 | if (luf->fc_len != NULL) xfree(luf->fc_len); |
---|
1818 | if (luf->vr_ptr != NULL) xfree(luf->vr_ptr); |
---|
1819 | if (luf->vr_len != NULL) xfree(luf->vr_len); |
---|
1820 | if (luf->vr_cap != NULL) xfree(luf->vr_cap); |
---|
1821 | if (luf->vr_piv != NULL) xfree(luf->vr_piv); |
---|
1822 | if (luf->vc_ptr != NULL) xfree(luf->vc_ptr); |
---|
1823 | if (luf->vc_len != NULL) xfree(luf->vc_len); |
---|
1824 | if (luf->vc_cap != NULL) xfree(luf->vc_cap); |
---|
1825 | if (luf->pp_row != NULL) xfree(luf->pp_row); |
---|
1826 | if (luf->pp_col != NULL) xfree(luf->pp_col); |
---|
1827 | if (luf->qq_row != NULL) xfree(luf->qq_row); |
---|
1828 | if (luf->qq_col != NULL) xfree(luf->qq_col); |
---|
1829 | if (luf->sv_ind != NULL) xfree(luf->sv_ind); |
---|
1830 | if (luf->sv_val != NULL) xfree(luf->sv_val); |
---|
1831 | if (luf->sv_prev != NULL) xfree(luf->sv_prev); |
---|
1832 | if (luf->sv_next != NULL) xfree(luf->sv_next); |
---|
1833 | if (luf->vr_max != NULL) xfree(luf->vr_max); |
---|
1834 | if (luf->rs_head != NULL) xfree(luf->rs_head); |
---|
1835 | if (luf->rs_prev != NULL) xfree(luf->rs_prev); |
---|
1836 | if (luf->rs_next != NULL) xfree(luf->rs_next); |
---|
1837 | if (luf->cs_head != NULL) xfree(luf->cs_head); |
---|
1838 | if (luf->cs_prev != NULL) xfree(luf->cs_prev); |
---|
1839 | if (luf->cs_next != NULL) xfree(luf->cs_next); |
---|
1840 | if (luf->flag != NULL) xfree(luf->flag); |
---|
1841 | if (luf->work != NULL) xfree(luf->work); |
---|
1842 | xfree(luf); |
---|
1843 | return; |
---|
1844 | } |
---|
1845 | |
---|
1846 | /* eof */ |
---|