[1] | 1 | /* glpmat.h (linear algebra routines) */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #ifndef GLPMAT_H |
---|
| 26 | #define GLPMAT_H |
---|
| 27 | |
---|
| 28 | /*********************************************************************** |
---|
| 29 | * FULL-VECTOR STORAGE |
---|
| 30 | * |
---|
| 31 | * For a sparse vector x having n elements, ne of which are non-zero, |
---|
| 32 | * the full-vector storage format uses two arrays x_ind and x_vec, which |
---|
| 33 | * are set up as follows: |
---|
| 34 | * |
---|
| 35 | * x_ind is an integer array of length [1+ne]. Location x_ind[0] is |
---|
| 36 | * not used, and locations x_ind[1], ..., x_ind[ne] contain indices of |
---|
| 37 | * non-zero elements in vector x. |
---|
| 38 | * |
---|
| 39 | * x_vec is a floating-point array of length [1+n]. Location x_vec[0] |
---|
| 40 | * is not used, and locations x_vec[1], ..., x_vec[n] contain numeric |
---|
| 41 | * values of ALL elements in vector x, including its zero elements. |
---|
| 42 | * |
---|
| 43 | * Let, for example, the following sparse vector x be given: |
---|
| 44 | * |
---|
| 45 | * (0, 1, 0, 0, 2, 3, 0, 4) |
---|
| 46 | * |
---|
| 47 | * Then the arrays are: |
---|
| 48 | * |
---|
| 49 | * x_ind = { X; 2, 5, 6, 8 } |
---|
| 50 | * |
---|
| 51 | * x_vec = { X; 0, 1, 0, 0, 2, 3, 0, 4 } |
---|
| 52 | * |
---|
| 53 | * COMPRESSED-VECTOR STORAGE |
---|
| 54 | * |
---|
| 55 | * For a sparse vector x having n elements, ne of which are non-zero, |
---|
| 56 | * the compressed-vector storage format uses two arrays x_ind and x_vec, |
---|
| 57 | * which are set up as follows: |
---|
| 58 | * |
---|
| 59 | * x_ind is an integer array of length [1+ne]. Location x_ind[0] is |
---|
| 60 | * not used, and locations x_ind[1], ..., x_ind[ne] contain indices of |
---|
| 61 | * non-zero elements in vector x. |
---|
| 62 | * |
---|
| 63 | * x_vec is a floating-point array of length [1+ne]. Location x_vec[0] |
---|
| 64 | * is not used, and locations x_vec[1], ..., x_vec[ne] contain numeric |
---|
| 65 | * values of corresponding non-zero elements in vector x. |
---|
| 66 | * |
---|
| 67 | * Let, for example, the following sparse vector x be given: |
---|
| 68 | * |
---|
| 69 | * (0, 1, 0, 0, 2, 3, 0, 4) |
---|
| 70 | * |
---|
| 71 | * Then the arrays are: |
---|
| 72 | * |
---|
| 73 | * x_ind = { X; 2, 5, 6, 8 } |
---|
| 74 | * |
---|
| 75 | * x_vec = { X; 1, 2, 3, 4 } |
---|
| 76 | * |
---|
| 77 | * STORAGE-BY-ROWS |
---|
| 78 | * |
---|
| 79 | * For a sparse matrix A, which has m rows, n columns, and ne non-zero |
---|
| 80 | * elements the storage-by-rows format uses three arrays A_ptr, A_ind, |
---|
| 81 | * and A_val, which are set up as follows: |
---|
| 82 | * |
---|
| 83 | * A_ptr is an integer array of length [1+m+1] also called "row pointer |
---|
| 84 | * array". It contains the relative starting positions of each row of A |
---|
| 85 | * in the arrays A_ind and A_val, i.e. element A_ptr[i], 1 <= i <= m, |
---|
| 86 | * indicates where row i begins in the arrays A_ind and A_val. If all |
---|
| 87 | * elements in row i are zero, then A_ptr[i] = A_ptr[i+1]. Location |
---|
| 88 | * A_ptr[0] is not used, location A_ptr[1] must contain 1, and location |
---|
| 89 | * A_ptr[m+1] must contain ne+1 that indicates the position after the |
---|
| 90 | * last element in the arrays A_ind and A_val. |
---|
| 91 | * |
---|
| 92 | * A_ind is an integer array of length [1+ne]. Location A_ind[0] is not |
---|
| 93 | * used, and locations A_ind[1], ..., A_ind[ne] contain column indices |
---|
| 94 | * of (non-zero) elements in matrix A. |
---|
| 95 | * |
---|
| 96 | * A_val is a floating-point array of length [1+ne]. Location A_val[0] |
---|
| 97 | * is not used, and locations A_val[1], ..., A_val[ne] contain numeric |
---|
| 98 | * values of non-zero elements in matrix A. |
---|
| 99 | * |
---|
| 100 | * Non-zero elements of matrix A are stored contiguously, and the rows |
---|
| 101 | * of matrix A are stored consecutively from 1 to m in the arrays A_ind |
---|
| 102 | * and A_val. The elements in each row of A may be stored in any order |
---|
| 103 | * in A_ind and A_val. Note that elements with duplicate column indices |
---|
| 104 | * are not allowed. |
---|
| 105 | * |
---|
| 106 | * Let, for example, the following sparse matrix A be given: |
---|
| 107 | * |
---|
| 108 | * | 11 . 13 . . . | |
---|
| 109 | * | 21 22 . 24 . . | |
---|
| 110 | * | . 32 33 . . . | |
---|
| 111 | * | . . 43 44 . 46 | |
---|
| 112 | * | . . . . . . | |
---|
| 113 | * | 61 62 . . . 66 | |
---|
| 114 | * |
---|
| 115 | * Then the arrays are: |
---|
| 116 | * |
---|
| 117 | * A_ptr = { X; 1, 3, 6, 8, 11, 11; 14 } |
---|
| 118 | * |
---|
| 119 | * A_ind = { X; 1, 3; 4, 2, 1; 2, 3; 4, 3, 6; 1, 2, 6 } |
---|
| 120 | * |
---|
| 121 | * A_val = { X; 11, 13; 24, 22, 21; 32, 33; 44, 43, 46; 61, 62, 66 } |
---|
| 122 | * |
---|
| 123 | * PERMUTATION MATRICES |
---|
| 124 | * |
---|
| 125 | * Let P be a permutation matrix of the order n. It is represented as |
---|
| 126 | * an integer array P_per of length [1+n+n] as follows: if p[i,j] = 1, |
---|
| 127 | * then P_per[i] = j and P_per[n+j] = i. Location P_per[0] is not used. |
---|
| 128 | * |
---|
| 129 | * Let A' = P*A. If i-th row of A corresponds to i'-th row of A', then |
---|
| 130 | * P_per[i'] = i and P_per[n+i] = i'. |
---|
| 131 | * |
---|
| 132 | * References: |
---|
| 133 | * |
---|
| 134 | * 1. Gustavson F.G. Some basic techniques for solving sparse systems of |
---|
| 135 | * linear equations. In Rose and Willoughby (1972), pp. 41-52. |
---|
| 136 | * |
---|
| 137 | * 2. Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard. |
---|
| 138 | * University of Tennessee (2001). */ |
---|
| 139 | |
---|
| 140 | #define check_fvs _glp_mat_check_fvs |
---|
| 141 | int check_fvs(int n, int nnz, int ind[], double vec[]); |
---|
| 142 | /* check sparse vector in full-vector storage format */ |
---|
| 143 | |
---|
| 144 | #define check_pattern _glp_mat_check_pattern |
---|
| 145 | int check_pattern(int m, int n, int A_ptr[], int A_ind[]); |
---|
| 146 | /* check pattern of sparse matrix */ |
---|
| 147 | |
---|
| 148 | #define transpose _glp_mat_transpose |
---|
| 149 | void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[], |
---|
| 150 | int AT_ptr[], int AT_ind[], double AT_val[]); |
---|
| 151 | /* transpose sparse matrix */ |
---|
| 152 | |
---|
| 153 | #define adat_symbolic _glp_mat_adat_symbolic |
---|
| 154 | int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[], |
---|
| 155 | int S_ptr[]); |
---|
| 156 | /* compute S = P*A*D*A'*P' (symbolic phase) */ |
---|
| 157 | |
---|
| 158 | #define adat_numeric _glp_mat_adat_numeric |
---|
| 159 | void adat_numeric(int m, int n, int P_per[], |
---|
| 160 | int A_ptr[], int A_ind[], double A_val[], double D_diag[], |
---|
| 161 | int S_ptr[], int S_ind[], double S_val[], double S_diag[]); |
---|
| 162 | /* compute S = P*A*D*A'*P' (numeric phase) */ |
---|
| 163 | |
---|
| 164 | #define min_degree _glp_mat_min_degree |
---|
| 165 | void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]); |
---|
| 166 | /* minimum degree ordering */ |
---|
| 167 | |
---|
| 168 | #define amd_order1 _glp_mat_amd_order1 |
---|
| 169 | void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[]); |
---|
| 170 | /* approximate minimum degree ordering (AMD) */ |
---|
| 171 | |
---|
| 172 | #define symamd_ord _glp_mat_symamd_ord |
---|
| 173 | void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[]); |
---|
| 174 | /* approximate minimum degree ordering (SYMAMD) */ |
---|
| 175 | |
---|
| 176 | #define chol_symbolic _glp_mat_chol_symbolic |
---|
| 177 | int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]); |
---|
| 178 | /* compute Cholesky factorization (symbolic phase) */ |
---|
| 179 | |
---|
| 180 | #define chol_numeric _glp_mat_chol_numeric |
---|
| 181 | int chol_numeric(int n, |
---|
| 182 | int A_ptr[], int A_ind[], double A_val[], double A_diag[], |
---|
| 183 | int U_ptr[], int U_ind[], double U_val[], double U_diag[]); |
---|
| 184 | /* compute Cholesky factorization (numeric phase) */ |
---|
| 185 | |
---|
| 186 | #define u_solve _glp_mat_u_solve |
---|
| 187 | void u_solve(int n, int U_ptr[], int U_ind[], double U_val[], |
---|
| 188 | double U_diag[], double x[]); |
---|
| 189 | /* solve upper triangular system U*x = b */ |
---|
| 190 | |
---|
| 191 | #define ut_solve _glp_mat_ut_solve |
---|
| 192 | void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[], |
---|
| 193 | double U_diag[], double x[]); |
---|
| 194 | /* solve lower triangular system U'*x = b */ |
---|
| 195 | |
---|
| 196 | #endif |
---|
| 197 | |
---|
| 198 | /* eof */ |
---|