1 | /* glpmat.h (linear algebra routines) */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | * E-mail: <mao@gnu.org>. |
---|
10 | * |
---|
11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation, either version 3 of the License, or |
---|
14 | * (at your option) any later version. |
---|
15 | * |
---|
16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | * License for more details. |
---|
20 | * |
---|
21 | * You should have received a copy of the GNU General Public License |
---|
22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | ***********************************************************************/ |
---|
24 | |
---|
25 | #ifndef GLPMAT_H |
---|
26 | #define GLPMAT_H |
---|
27 | |
---|
28 | /*********************************************************************** |
---|
29 | * FULL-VECTOR STORAGE |
---|
30 | * |
---|
31 | * For a sparse vector x having n elements, ne of which are non-zero, |
---|
32 | * the full-vector storage format uses two arrays x_ind and x_vec, which |
---|
33 | * are set up as follows: |
---|
34 | * |
---|
35 | * x_ind is an integer array of length [1+ne]. Location x_ind[0] is |
---|
36 | * not used, and locations x_ind[1], ..., x_ind[ne] contain indices of |
---|
37 | * non-zero elements in vector x. |
---|
38 | * |
---|
39 | * x_vec is a floating-point array of length [1+n]. Location x_vec[0] |
---|
40 | * is not used, and locations x_vec[1], ..., x_vec[n] contain numeric |
---|
41 | * values of ALL elements in vector x, including its zero elements. |
---|
42 | * |
---|
43 | * Let, for example, the following sparse vector x be given: |
---|
44 | * |
---|
45 | * (0, 1, 0, 0, 2, 3, 0, 4) |
---|
46 | * |
---|
47 | * Then the arrays are: |
---|
48 | * |
---|
49 | * x_ind = { X; 2, 5, 6, 8 } |
---|
50 | * |
---|
51 | * x_vec = { X; 0, 1, 0, 0, 2, 3, 0, 4 } |
---|
52 | * |
---|
53 | * COMPRESSED-VECTOR STORAGE |
---|
54 | * |
---|
55 | * For a sparse vector x having n elements, ne of which are non-zero, |
---|
56 | * the compressed-vector storage format uses two arrays x_ind and x_vec, |
---|
57 | * which are set up as follows: |
---|
58 | * |
---|
59 | * x_ind is an integer array of length [1+ne]. Location x_ind[0] is |
---|
60 | * not used, and locations x_ind[1], ..., x_ind[ne] contain indices of |
---|
61 | * non-zero elements in vector x. |
---|
62 | * |
---|
63 | * x_vec is a floating-point array of length [1+ne]. Location x_vec[0] |
---|
64 | * is not used, and locations x_vec[1], ..., x_vec[ne] contain numeric |
---|
65 | * values of corresponding non-zero elements in vector x. |
---|
66 | * |
---|
67 | * Let, for example, the following sparse vector x be given: |
---|
68 | * |
---|
69 | * (0, 1, 0, 0, 2, 3, 0, 4) |
---|
70 | * |
---|
71 | * Then the arrays are: |
---|
72 | * |
---|
73 | * x_ind = { X; 2, 5, 6, 8 } |
---|
74 | * |
---|
75 | * x_vec = { X; 1, 2, 3, 4 } |
---|
76 | * |
---|
77 | * STORAGE-BY-ROWS |
---|
78 | * |
---|
79 | * For a sparse matrix A, which has m rows, n columns, and ne non-zero |
---|
80 | * elements the storage-by-rows format uses three arrays A_ptr, A_ind, |
---|
81 | * and A_val, which are set up as follows: |
---|
82 | * |
---|
83 | * A_ptr is an integer array of length [1+m+1] also called "row pointer |
---|
84 | * array". It contains the relative starting positions of each row of A |
---|
85 | * in the arrays A_ind and A_val, i.e. element A_ptr[i], 1 <= i <= m, |
---|
86 | * indicates where row i begins in the arrays A_ind and A_val. If all |
---|
87 | * elements in row i are zero, then A_ptr[i] = A_ptr[i+1]. Location |
---|
88 | * A_ptr[0] is not used, location A_ptr[1] must contain 1, and location |
---|
89 | * A_ptr[m+1] must contain ne+1 that indicates the position after the |
---|
90 | * last element in the arrays A_ind and A_val. |
---|
91 | * |
---|
92 | * A_ind is an integer array of length [1+ne]. Location A_ind[0] is not |
---|
93 | * used, and locations A_ind[1], ..., A_ind[ne] contain column indices |
---|
94 | * of (non-zero) elements in matrix A. |
---|
95 | * |
---|
96 | * A_val is a floating-point array of length [1+ne]. Location A_val[0] |
---|
97 | * is not used, and locations A_val[1], ..., A_val[ne] contain numeric |
---|
98 | * values of non-zero elements in matrix A. |
---|
99 | * |
---|
100 | * Non-zero elements of matrix A are stored contiguously, and the rows |
---|
101 | * of matrix A are stored consecutively from 1 to m in the arrays A_ind |
---|
102 | * and A_val. The elements in each row of A may be stored in any order |
---|
103 | * in A_ind and A_val. Note that elements with duplicate column indices |
---|
104 | * are not allowed. |
---|
105 | * |
---|
106 | * Let, for example, the following sparse matrix A be given: |
---|
107 | * |
---|
108 | * | 11 . 13 . . . | |
---|
109 | * | 21 22 . 24 . . | |
---|
110 | * | . 32 33 . . . | |
---|
111 | * | . . 43 44 . 46 | |
---|
112 | * | . . . . . . | |
---|
113 | * | 61 62 . . . 66 | |
---|
114 | * |
---|
115 | * Then the arrays are: |
---|
116 | * |
---|
117 | * A_ptr = { X; 1, 3, 6, 8, 11, 11; 14 } |
---|
118 | * |
---|
119 | * A_ind = { X; 1, 3; 4, 2, 1; 2, 3; 4, 3, 6; 1, 2, 6 } |
---|
120 | * |
---|
121 | * A_val = { X; 11, 13; 24, 22, 21; 32, 33; 44, 43, 46; 61, 62, 66 } |
---|
122 | * |
---|
123 | * PERMUTATION MATRICES |
---|
124 | * |
---|
125 | * Let P be a permutation matrix of the order n. It is represented as |
---|
126 | * an integer array P_per of length [1+n+n] as follows: if p[i,j] = 1, |
---|
127 | * then P_per[i] = j and P_per[n+j] = i. Location P_per[0] is not used. |
---|
128 | * |
---|
129 | * Let A' = P*A. If i-th row of A corresponds to i'-th row of A', then |
---|
130 | * P_per[i'] = i and P_per[n+i] = i'. |
---|
131 | * |
---|
132 | * References: |
---|
133 | * |
---|
134 | * 1. Gustavson F.G. Some basic techniques for solving sparse systems of |
---|
135 | * linear equations. In Rose and Willoughby (1972), pp. 41-52. |
---|
136 | * |
---|
137 | * 2. Basic Linear Algebra Subprograms Technical (BLAST) Forum Standard. |
---|
138 | * University of Tennessee (2001). */ |
---|
139 | |
---|
140 | #define check_fvs _glp_mat_check_fvs |
---|
141 | int check_fvs(int n, int nnz, int ind[], double vec[]); |
---|
142 | /* check sparse vector in full-vector storage format */ |
---|
143 | |
---|
144 | #define check_pattern _glp_mat_check_pattern |
---|
145 | int check_pattern(int m, int n, int A_ptr[], int A_ind[]); |
---|
146 | /* check pattern of sparse matrix */ |
---|
147 | |
---|
148 | #define transpose _glp_mat_transpose |
---|
149 | void transpose(int m, int n, int A_ptr[], int A_ind[], double A_val[], |
---|
150 | int AT_ptr[], int AT_ind[], double AT_val[]); |
---|
151 | /* transpose sparse matrix */ |
---|
152 | |
---|
153 | #define adat_symbolic _glp_mat_adat_symbolic |
---|
154 | int *adat_symbolic(int m, int n, int P_per[], int A_ptr[], int A_ind[], |
---|
155 | int S_ptr[]); |
---|
156 | /* compute S = P*A*D*A'*P' (symbolic phase) */ |
---|
157 | |
---|
158 | #define adat_numeric _glp_mat_adat_numeric |
---|
159 | void adat_numeric(int m, int n, int P_per[], |
---|
160 | int A_ptr[], int A_ind[], double A_val[], double D_diag[], |
---|
161 | int S_ptr[], int S_ind[], double S_val[], double S_diag[]); |
---|
162 | /* compute S = P*A*D*A'*P' (numeric phase) */ |
---|
163 | |
---|
164 | #define min_degree _glp_mat_min_degree |
---|
165 | void min_degree(int n, int A_ptr[], int A_ind[], int P_per[]); |
---|
166 | /* minimum degree ordering */ |
---|
167 | |
---|
168 | #define amd_order1 _glp_mat_amd_order1 |
---|
169 | void amd_order1(int n, int A_ptr[], int A_ind[], int P_per[]); |
---|
170 | /* approximate minimum degree ordering (AMD) */ |
---|
171 | |
---|
172 | #define symamd_ord _glp_mat_symamd_ord |
---|
173 | void symamd_ord(int n, int A_ptr[], int A_ind[], int P_per[]); |
---|
174 | /* approximate minimum degree ordering (SYMAMD) */ |
---|
175 | |
---|
176 | #define chol_symbolic _glp_mat_chol_symbolic |
---|
177 | int *chol_symbolic(int n, int A_ptr[], int A_ind[], int U_ptr[]); |
---|
178 | /* compute Cholesky factorization (symbolic phase) */ |
---|
179 | |
---|
180 | #define chol_numeric _glp_mat_chol_numeric |
---|
181 | int chol_numeric(int n, |
---|
182 | int A_ptr[], int A_ind[], double A_val[], double A_diag[], |
---|
183 | int U_ptr[], int U_ind[], double U_val[], double U_diag[]); |
---|
184 | /* compute Cholesky factorization (numeric phase) */ |
---|
185 | |
---|
186 | #define u_solve _glp_mat_u_solve |
---|
187 | void u_solve(int n, int U_ptr[], int U_ind[], double U_val[], |
---|
188 | double U_diag[], double x[]); |
---|
189 | /* solve upper triangular system U*x = b */ |
---|
190 | |
---|
191 | #define ut_solve _glp_mat_ut_solve |
---|
192 | void ut_solve(int n, int U_ptr[], int U_ind[], double U_val[], |
---|
193 | double U_diag[], double x[]); |
---|
194 | /* solve lower triangular system U'*x = b */ |
---|
195 | |
---|
196 | #endif |
---|
197 | |
---|
198 | /* eof */ |
---|