[1] | 1 | /* glpnet01.c (permutations for zero-free diagonal) */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * This code is the result of translation of the Fortran subroutines |
---|
| 7 | * MC21A and MC21B associated with the following paper: |
---|
| 8 | * |
---|
| 9 | * I.S.Duff, Algorithm 575: Permutations for zero-free diagonal, ACM |
---|
| 10 | * Trans. on Math. Softw. 7 (1981), 387-390. |
---|
| 11 | * |
---|
| 12 | * Use of ACM Algorithms is subject to the ACM Software Copyright and |
---|
| 13 | * License Agreement. See <http://www.acm.org/publications/policies>. |
---|
| 14 | * |
---|
| 15 | * The translation was made by Andrew Makhorin <mao@gnu.org>. |
---|
| 16 | * |
---|
| 17 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 18 | * under the terms of the GNU General Public License as published by |
---|
| 19 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 20 | * (at your option) any later version. |
---|
| 21 | * |
---|
| 22 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 23 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 24 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 25 | * License for more details. |
---|
| 26 | * |
---|
| 27 | * You should have received a copy of the GNU General Public License |
---|
| 28 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 29 | ***********************************************************************/ |
---|
| 30 | |
---|
| 31 | #include "glpnet.h" |
---|
| 32 | |
---|
| 33 | /*********************************************************************** |
---|
| 34 | * NAME |
---|
| 35 | * |
---|
| 36 | * mc21a - permutations for zero-free diagonal |
---|
| 37 | * |
---|
| 38 | * SYNOPSIS |
---|
| 39 | * |
---|
| 40 | * #include "glpnet.h" |
---|
| 41 | * int mc21a(int n, const int icn[], const int ip[], const int lenr[], |
---|
| 42 | * int iperm[], int pr[], int arp[], int cv[], int out[]); |
---|
| 43 | * |
---|
| 44 | * DESCRIPTION |
---|
| 45 | * |
---|
| 46 | * Given the pattern of nonzeros of a sparse matrix, the routine mc21a |
---|
| 47 | * attempts to find a permutation of its rows that makes the matrix have |
---|
| 48 | * no zeros on its diagonal. |
---|
| 49 | * |
---|
| 50 | * INPUT PARAMETERS |
---|
| 51 | * |
---|
| 52 | * n order of matrix. |
---|
| 53 | * |
---|
| 54 | * icn array containing the column indices of the non-zeros. Those |
---|
| 55 | * belonging to a single row must be contiguous but the ordering |
---|
| 56 | * of column indices within each row is unimportant and wasted |
---|
| 57 | * space between rows is permitted. |
---|
| 58 | * |
---|
| 59 | * ip ip[i], i = 1,2,...,n, is the position in array icn of the |
---|
| 60 | * first column index of a non-zero in row i. |
---|
| 61 | * |
---|
| 62 | * lenr lenr[i], i = 1,2,...,n, is the number of non-zeros in row i. |
---|
| 63 | * |
---|
| 64 | * OUTPUT PARAMETER |
---|
| 65 | * |
---|
| 66 | * iperm contains permutation to make diagonal have the smallest |
---|
| 67 | * number of zeros on it. Elements (iperm[i], i), i = 1,2,...,n, |
---|
| 68 | * are non-zero at the end of the algorithm unless the matrix is |
---|
| 69 | * structurally singular. In this case, (iperm[i], i) will be |
---|
| 70 | * zero for n - numnz entries. |
---|
| 71 | * |
---|
| 72 | * WORKING ARRAYS |
---|
| 73 | * |
---|
| 74 | * pr working array of length [1+n], where pr[0] is not used. |
---|
| 75 | * pr[i] is the previous row to i in the depth first search. |
---|
| 76 | * |
---|
| 77 | * arp working array of length [1+n], where arp[0] is not used. |
---|
| 78 | * arp[i] is one less than the number of non-zeros in row i which |
---|
| 79 | * have not been scanned when looking for a cheap assignment. |
---|
| 80 | * |
---|
| 81 | * cv working array of length [1+n], where cv[0] is not used. |
---|
| 82 | * cv[i] is the most recent row extension at which column i was |
---|
| 83 | * visited. |
---|
| 84 | * |
---|
| 85 | * out working array of length [1+n], where out[0] is not used. |
---|
| 86 | * out[i] is one less than the number of non-zeros in row i |
---|
| 87 | * which have not been scanned during one pass through the main |
---|
| 88 | * loop. |
---|
| 89 | * |
---|
| 90 | * RETURNS |
---|
| 91 | * |
---|
| 92 | * The routine mc21a returns numnz, the number of non-zeros on diagonal |
---|
| 93 | * of permuted matrix. */ |
---|
| 94 | |
---|
| 95 | int mc21a(int n, const int icn[], const int ip[], const int lenr[], |
---|
| 96 | int iperm[], int pr[], int arp[], int cv[], int out[]) |
---|
| 97 | { int i, ii, in1, in2, j, j1, jord, k, kk, numnz; |
---|
| 98 | /* Initialization of arrays. */ |
---|
| 99 | for (i = 1; i <= n; i++) |
---|
| 100 | { arp[i] = lenr[i] - 1; |
---|
| 101 | cv[i] = iperm[i] = 0; |
---|
| 102 | } |
---|
| 103 | numnz = 0; |
---|
| 104 | /* Main loop. */ |
---|
| 105 | /* Each pass round this loop either results in a new assignment |
---|
| 106 | or gives a row with no assignment. */ |
---|
| 107 | for (jord = 1; jord <= n; jord++) |
---|
| 108 | { j = jord; |
---|
| 109 | pr[j] = -1; |
---|
| 110 | for (k = 1; k <= jord; k++) |
---|
| 111 | { /* Look for a cheap assignment. */ |
---|
| 112 | in1 = arp[j]; |
---|
| 113 | if (in1 >= 0) |
---|
| 114 | { in2 = ip[j] + lenr[j] - 1; |
---|
| 115 | in1 = in2 - in1; |
---|
| 116 | for (ii = in1; ii <= in2; ii++) |
---|
| 117 | { i = icn[ii]; |
---|
| 118 | if (iperm[i] == 0) goto L110; |
---|
| 119 | } |
---|
| 120 | /* No cheap assignment in row. */ |
---|
| 121 | arp[j] = -1; |
---|
| 122 | } |
---|
| 123 | /* Begin looking for assignment chain starting with row j.*/ |
---|
| 124 | out[j] = lenr[j] - 1; |
---|
| 125 | /* Inner loop. Extends chain by one or backtracks. */ |
---|
| 126 | for (kk = 1; kk <= jord; kk++) |
---|
| 127 | { in1 = out[j]; |
---|
| 128 | if (in1 >= 0) |
---|
| 129 | { in2 = ip[j] + lenr[j] - 1; |
---|
| 130 | in1 = in2 - in1; |
---|
| 131 | /* Forward scan. */ |
---|
| 132 | for (ii = in1; ii <= in2; ii++) |
---|
| 133 | { i = icn[ii]; |
---|
| 134 | if (cv[i] != jord) |
---|
| 135 | { /* Column i has not yet been accessed during |
---|
| 136 | this pass. */ |
---|
| 137 | j1 = j; |
---|
| 138 | j = iperm[i]; |
---|
| 139 | cv[i] = jord; |
---|
| 140 | pr[j] = j1; |
---|
| 141 | out[j1] = in2 - ii - 1; |
---|
| 142 | goto L100; |
---|
| 143 | } |
---|
| 144 | } |
---|
| 145 | } |
---|
| 146 | /* Backtracking step. */ |
---|
| 147 | j = pr[j]; |
---|
| 148 | if (j == -1) goto L130; |
---|
| 149 | } |
---|
| 150 | L100: ; |
---|
| 151 | } |
---|
| 152 | L110: /* New assignment is made. */ |
---|
| 153 | iperm[i] = j; |
---|
| 154 | arp[j] = in2 - ii - 1; |
---|
| 155 | numnz++; |
---|
| 156 | for (k = 1; k <= jord; k++) |
---|
| 157 | { j = pr[j]; |
---|
| 158 | if (j == -1) break; |
---|
| 159 | ii = ip[j] + lenr[j] - out[j] - 2; |
---|
| 160 | i = icn[ii]; |
---|
| 161 | iperm[i] = j; |
---|
| 162 | } |
---|
| 163 | L130: ; |
---|
| 164 | } |
---|
| 165 | /* If matrix is structurally singular, we now complete the |
---|
| 166 | permutation iperm. */ |
---|
| 167 | if (numnz < n) |
---|
| 168 | { for (i = 1; i <= n; i++) |
---|
| 169 | arp[i] = 0; |
---|
| 170 | k = 0; |
---|
| 171 | for (i = 1; i <= n; i++) |
---|
| 172 | { if (iperm[i] == 0) |
---|
| 173 | out[++k] = i; |
---|
| 174 | else |
---|
| 175 | arp[iperm[i]] = i; |
---|
| 176 | } |
---|
| 177 | k = 0; |
---|
| 178 | for (i = 1; i <= n; i++) |
---|
| 179 | { if (arp[i] == 0) |
---|
| 180 | iperm[out[++k]] = i; |
---|
| 181 | } |
---|
| 182 | } |
---|
| 183 | return numnz; |
---|
| 184 | } |
---|
| 185 | |
---|
| 186 | /**********************************************************************/ |
---|
| 187 | |
---|
| 188 | #if 0 |
---|
| 189 | #include "glplib.h" |
---|
| 190 | |
---|
| 191 | int sing; |
---|
| 192 | |
---|
| 193 | void ranmat(int m, int n, int icn[], int iptr[], int nnnp1, int *knum, |
---|
| 194 | int iw[]); |
---|
| 195 | |
---|
| 196 | void fa01bs(int max, int *nrand); |
---|
| 197 | |
---|
| 198 | int main(void) |
---|
| 199 | { /* test program for the routine mc21a */ |
---|
| 200 | /* these runs on random matrices cause all possible statements in |
---|
| 201 | mc21a to be executed */ |
---|
| 202 | int i, iold, j, j1, j2, jj, knum, l, licn, n, nov4, num, numnz; |
---|
| 203 | int ip[1+21], icn[1+1000], iperm[1+20], lenr[1+20], iw1[1+80]; |
---|
| 204 | licn = 1000; |
---|
| 205 | /* run on random matrices of orders 1 through 20 */ |
---|
| 206 | for (n = 1; n <= 20; n++) |
---|
| 207 | { nov4 = n / 4; |
---|
| 208 | if (nov4 < 1) nov4 = 1; |
---|
| 209 | L10: fa01bs(nov4, &l); |
---|
| 210 | knum = l * n; |
---|
| 211 | /* knum is requested number of non-zeros in random matrix */ |
---|
| 212 | if (knum > licn) goto L10; |
---|
| 213 | /* if sing is false, matrix is guaranteed structurally |
---|
| 214 | non-singular */ |
---|
| 215 | sing = ((n / 2) * 2 == n); |
---|
| 216 | /* call to subroutine to generate random matrix */ |
---|
| 217 | ranmat(n, n, icn, ip, n+1, &knum, iw1); |
---|
| 218 | /* knum is now actual number of non-zeros in random matrix */ |
---|
| 219 | if (knum > licn) goto L10; |
---|
| 220 | xprintf("n = %2d; nz = %4d; sing = %d\n", n, knum, sing); |
---|
| 221 | /* set up array of row lengths */ |
---|
| 222 | for (i = 1; i <= n; i++) |
---|
| 223 | lenr[i] = ip[i+1] - ip[i]; |
---|
| 224 | /* call to mc21a */ |
---|
| 225 | numnz = mc21a(n, icn, ip, lenr, iperm, &iw1[0], &iw1[n], |
---|
| 226 | &iw1[n+n], &iw1[n+n+n]); |
---|
| 227 | /* testing to see if there are numnz non-zeros on the diagonal |
---|
| 228 | of the permuted matrix. */ |
---|
| 229 | num = 0; |
---|
| 230 | for (i = 1; i <= n; i++) |
---|
| 231 | { iold = iperm[i]; |
---|
| 232 | j1 = ip[iold]; |
---|
| 233 | j2 = j1 + lenr[iold] - 1; |
---|
| 234 | if (j2 < j1) continue; |
---|
| 235 | for (jj = j1; jj <= j2; jj++) |
---|
| 236 | { j = icn[jj]; |
---|
| 237 | if (j == i) |
---|
| 238 | { num++; |
---|
| 239 | break; |
---|
| 240 | } |
---|
| 241 | } |
---|
| 242 | } |
---|
| 243 | if (num != numnz) |
---|
| 244 | xprintf("Failure in mc21a, numnz = %d instead of %d\n", |
---|
| 245 | numnz, num); |
---|
| 246 | } |
---|
| 247 | return 0; |
---|
| 248 | } |
---|
| 249 | |
---|
| 250 | void ranmat(int m, int n, int icn[], int iptr[], int nnnp1, int *knum, |
---|
| 251 | int iw[]) |
---|
| 252 | { /* subroutine to generate random matrix */ |
---|
| 253 | int i, ii, inum, j, lrow, matnum; |
---|
| 254 | inum = (*knum / n) * 2; |
---|
| 255 | if (inum > n-1) inum = n-1; |
---|
| 256 | matnum = 1; |
---|
| 257 | /* each pass through this loop generates a row of the matrix */ |
---|
| 258 | for (j = 1; j <= m; j++) |
---|
| 259 | { iptr[j] = matnum; |
---|
| 260 | if (!(sing || j > n)) |
---|
| 261 | icn[matnum++] = j; |
---|
| 262 | if (n == 1) continue; |
---|
| 263 | for (i = 1; i <= n; i++) iw[i] = 0; |
---|
| 264 | if (!sing) iw[j] = 1; |
---|
| 265 | fa01bs(inum, &lrow); |
---|
| 266 | lrow--; |
---|
| 267 | if (lrow == 0) continue; |
---|
| 268 | /* lrow off-diagonal non-zeros in row j of the matrix */ |
---|
| 269 | for (ii = 1; ii <= lrow; ii++) |
---|
| 270 | { for (;;) |
---|
| 271 | { fa01bs(n, &i); |
---|
| 272 | if (iw[i] != 1) break; |
---|
| 273 | } |
---|
| 274 | iw[i] = 1; |
---|
| 275 | icn[matnum++] = i; |
---|
| 276 | } |
---|
| 277 | } |
---|
| 278 | for (i = m+1; i <= nnnp1; i++) |
---|
| 279 | iptr[i] = matnum; |
---|
| 280 | *knum = matnum - 1; |
---|
| 281 | return; |
---|
| 282 | } |
---|
| 283 | |
---|
| 284 | double g = 1431655765.0; |
---|
| 285 | |
---|
| 286 | double fa01as(int i) |
---|
| 287 | { /* random number generator */ |
---|
| 288 | g = fmod(g * 9228907.0, 4294967296.0); |
---|
| 289 | if (i >= 0) |
---|
| 290 | return g / 4294967296.0; |
---|
| 291 | else |
---|
| 292 | return 2.0 * g / 4294967296.0 - 1.0; |
---|
| 293 | } |
---|
| 294 | |
---|
| 295 | void fa01bs(int max, int *nrand) |
---|
| 296 | { *nrand = (int)(fa01as(1) * (double)max) + 1; |
---|
| 297 | return; |
---|
| 298 | } |
---|
| 299 | #endif |
---|
| 300 | |
---|
| 301 | /* eof */ |
---|