[1] | 1 | /* glpnet02.c (permutations to block triangular form) */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * This code is the result of translation of the Fortran subroutines |
---|
| 7 | * MC13D and MC13E associated with the following paper: |
---|
| 8 | * |
---|
| 9 | * I.S.Duff, J.K.Reid, Algorithm 529: Permutations to block triangular |
---|
| 10 | * form, ACM Trans. on Math. Softw. 4 (1978), 189-192. |
---|
| 11 | * |
---|
| 12 | * Use of ACM Algorithms is subject to the ACM Software Copyright and |
---|
| 13 | * License Agreement. See <http://www.acm.org/publications/policies>. |
---|
| 14 | * |
---|
| 15 | * The translation was made by Andrew Makhorin <mao@gnu.org>. |
---|
| 16 | * |
---|
| 17 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 18 | * under the terms of the GNU General Public License as published by |
---|
| 19 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 20 | * (at your option) any later version. |
---|
| 21 | * |
---|
| 22 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 23 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 24 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 25 | * License for more details. |
---|
| 26 | * |
---|
| 27 | * You should have received a copy of the GNU General Public License |
---|
| 28 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 29 | ***********************************************************************/ |
---|
| 30 | |
---|
| 31 | #include "glpnet.h" |
---|
| 32 | |
---|
| 33 | /*********************************************************************** |
---|
| 34 | * NAME |
---|
| 35 | * |
---|
| 36 | * mc13d - permutations to block triangular form |
---|
| 37 | * |
---|
| 38 | * SYNOPSIS |
---|
| 39 | * |
---|
| 40 | * #include "glpnet.h" |
---|
| 41 | * int mc13d(int n, const int icn[], const int ip[], const int lenr[], |
---|
| 42 | * int ior[], int ib[], int lowl[], int numb[], int prev[]); |
---|
| 43 | * |
---|
| 44 | * DESCRIPTION |
---|
| 45 | * |
---|
| 46 | * Given the column numbers of the nonzeros in each row of the sparse |
---|
| 47 | * matrix, the routine mc13d finds a symmetric permutation that makes |
---|
| 48 | * the matrix block lower triangular. |
---|
| 49 | * |
---|
| 50 | * INPUT PARAMETERS |
---|
| 51 | * |
---|
| 52 | * n order of the matrix. |
---|
| 53 | * |
---|
| 54 | * icn array containing the column indices of the non-zeros. Those |
---|
| 55 | * belonging to a single row must be contiguous but the ordering |
---|
| 56 | * of column indices within each row is unimportant and wasted |
---|
| 57 | * space between rows is permitted. |
---|
| 58 | * |
---|
| 59 | * ip ip[i], i = 1,2,...,n, is the position in array icn of the |
---|
| 60 | * first column index of a non-zero in row i. |
---|
| 61 | * |
---|
| 62 | * lenr lenr[i], i = 1,2,...,n, is the number of non-zeros in row i. |
---|
| 63 | * |
---|
| 64 | * OUTPUT PARAMETERS |
---|
| 65 | * |
---|
| 66 | * ior ior[i], i = 1,2,...,n, gives the position on the original |
---|
| 67 | * ordering of the row or column which is in position i in the |
---|
| 68 | * permuted form. |
---|
| 69 | * |
---|
| 70 | * ib ib[i], i = 1,2,...,num, is the row number in the permuted |
---|
| 71 | * matrix of the beginning of block i, 1 <= num <= n. |
---|
| 72 | * |
---|
| 73 | * WORKING ARRAYS |
---|
| 74 | * |
---|
| 75 | * arp working array of length [1+n], where arp[0] is not used. |
---|
| 76 | * arp[i] is one less than the number of unsearched edges leaving |
---|
| 77 | * node i. At the end of the algorithm it is set to a permutation |
---|
| 78 | * which puts the matrix in block lower triangular form. |
---|
| 79 | * |
---|
| 80 | * ib working array of length [1+n], where ib[0] is not used. |
---|
| 81 | * ib[i] is the position in the ordering of the start of the ith |
---|
| 82 | * block. ib[n+1-i] holds the node number of the ith node on the |
---|
| 83 | * stack. |
---|
| 84 | * |
---|
| 85 | * lowl working array of length [1+n], where lowl[0] is not used. |
---|
| 86 | * lowl[i] is the smallest stack position of any node to which a |
---|
| 87 | * path from node i has been found. It is set to n+1 when node i |
---|
| 88 | * is removed from the stack. |
---|
| 89 | * |
---|
| 90 | * numb working array of length [1+n], where numb[0] is not used. |
---|
| 91 | * numb[i] is the position of node i in the stack if it is on it, |
---|
| 92 | * is the permuted order of node i for those nodes whose final |
---|
| 93 | * position has been found and is otherwise zero. |
---|
| 94 | * |
---|
| 95 | * prev working array of length [1+n], where prev[0] is not used. |
---|
| 96 | * prev[i] is the node at the end of the path when node i was |
---|
| 97 | * placed on the stack. |
---|
| 98 | * |
---|
| 99 | * RETURNS |
---|
| 100 | * |
---|
| 101 | * The routine mc13d returns num, the number of blocks found. */ |
---|
| 102 | |
---|
| 103 | int mc13d(int n, const int icn[], const int ip[], const int lenr[], |
---|
| 104 | int ior[], int ib[], int lowl[], int numb[], int prev[]) |
---|
| 105 | { int *arp = ior; |
---|
| 106 | int dummy, i, i1, i2, icnt, ii, isn, ist, ist1, iv, iw, j, lcnt, |
---|
| 107 | nnm1, num, stp; |
---|
| 108 | /* icnt is the number of nodes whose positions in final ordering |
---|
| 109 | have been found. */ |
---|
| 110 | icnt = 0; |
---|
| 111 | /* num is the number of blocks that have been found. */ |
---|
| 112 | num = 0; |
---|
| 113 | nnm1 = n + n - 1; |
---|
| 114 | /* Initialization of arrays. */ |
---|
| 115 | for (j = 1; j <= n; j++) |
---|
| 116 | { numb[j] = 0; |
---|
| 117 | arp[j] = lenr[j] - 1; |
---|
| 118 | } |
---|
| 119 | for (isn = 1; isn <= n; isn++) |
---|
| 120 | { /* Look for a starting node. */ |
---|
| 121 | if (numb[isn] != 0) continue; |
---|
| 122 | iv = isn; |
---|
| 123 | /* ist is the number of nodes on the stack ... it is the stack |
---|
| 124 | pointer. */ |
---|
| 125 | ist = 1; |
---|
| 126 | /* Put node iv at beginning of stack. */ |
---|
| 127 | lowl[iv] = numb[iv] = 1; |
---|
| 128 | ib[n] = iv; |
---|
| 129 | /* The body of this loop puts a new node on the stack or |
---|
| 130 | backtracks. */ |
---|
| 131 | for (dummy = 1; dummy <= nnm1; dummy++) |
---|
| 132 | { i1 = arp[iv]; |
---|
| 133 | /* Have all edges leaving node iv been searched? */ |
---|
| 134 | if (i1 >= 0) |
---|
| 135 | { i2 = ip[iv] + lenr[iv] - 1; |
---|
| 136 | i1 = i2 - i1; |
---|
| 137 | /* Look at edges leaving node iv until one enters a new |
---|
| 138 | node or all edges are exhausted. */ |
---|
| 139 | for (ii = i1; ii <= i2; ii++) |
---|
| 140 | { iw = icn[ii]; |
---|
| 141 | /* Has node iw been on stack already? */ |
---|
| 142 | if (numb[iw] == 0) goto L70; |
---|
| 143 | /* Update value of lowl[iv] if necessary. */ |
---|
| 144 | if (lowl[iw] < lowl[iv]) lowl[iv] = lowl[iw]; |
---|
| 145 | } |
---|
| 146 | /* There are no more edges leaving node iv. */ |
---|
| 147 | arp[iv] = -1; |
---|
| 148 | } |
---|
| 149 | /* Is node iv the root of a block? */ |
---|
| 150 | if (lowl[iv] < numb[iv]) goto L60; |
---|
| 151 | /* Order nodes in a block. */ |
---|
| 152 | num++; |
---|
| 153 | ist1 = n + 1 - ist; |
---|
| 154 | lcnt = icnt + 1; |
---|
| 155 | /* Peel block off the top of the stack starting at the top |
---|
| 156 | and working down to the root of the block. */ |
---|
| 157 | for (stp = ist1; stp <= n; stp++) |
---|
| 158 | { iw = ib[stp]; |
---|
| 159 | lowl[iw] = n + 1; |
---|
| 160 | numb[iw] = ++icnt; |
---|
| 161 | if (iw == iv) break; |
---|
| 162 | } |
---|
| 163 | ist = n - stp; |
---|
| 164 | ib[num] = lcnt; |
---|
| 165 | /* Are there any nodes left on the stack? */ |
---|
| 166 | if (ist != 0) goto L60; |
---|
| 167 | /* Have all the nodes been ordered? */ |
---|
| 168 | if (icnt < n) break; |
---|
| 169 | goto L100; |
---|
| 170 | L60: /* Backtrack to previous node on path. */ |
---|
| 171 | iw = iv; |
---|
| 172 | iv = prev[iv]; |
---|
| 173 | /* Update value of lowl[iv] if necessary. */ |
---|
| 174 | if (lowl[iw] < lowl[iv]) lowl[iv] = lowl[iw]; |
---|
| 175 | continue; |
---|
| 176 | L70: /* Put new node on the stack. */ |
---|
| 177 | arp[iv] = i2 - ii - 1; |
---|
| 178 | prev[iw] = iv; |
---|
| 179 | iv = iw; |
---|
| 180 | lowl[iv] = numb[iv] = ++ist; |
---|
| 181 | ib[n+1-ist] = iv; |
---|
| 182 | } |
---|
| 183 | } |
---|
| 184 | L100: /* Put permutation in the required form. */ |
---|
| 185 | for (i = 1; i <= n; i++) |
---|
| 186 | arp[numb[i]] = i; |
---|
| 187 | return num; |
---|
| 188 | } |
---|
| 189 | |
---|
| 190 | /**********************************************************************/ |
---|
| 191 | |
---|
| 192 | #if 0 |
---|
| 193 | #include "glplib.h" |
---|
| 194 | |
---|
| 195 | void test(int n, int ipp); |
---|
| 196 | |
---|
| 197 | int main(void) |
---|
| 198 | { /* test program for routine mc13d */ |
---|
| 199 | test( 1, 0); |
---|
| 200 | test( 2, 1); |
---|
| 201 | test( 2, 2); |
---|
| 202 | test( 3, 3); |
---|
| 203 | test( 4, 4); |
---|
| 204 | test( 5, 10); |
---|
| 205 | test(10, 10); |
---|
| 206 | test(10, 20); |
---|
| 207 | test(20, 20); |
---|
| 208 | test(20, 50); |
---|
| 209 | test(50, 50); |
---|
| 210 | test(50, 200); |
---|
| 211 | return 0; |
---|
| 212 | } |
---|
| 213 | |
---|
| 214 | void fa01bs(int max, int *nrand); |
---|
| 215 | |
---|
| 216 | void setup(int n, char a[1+50][1+50], int ip[], int icn[], int lenr[]); |
---|
| 217 | |
---|
| 218 | void test(int n, int ipp) |
---|
| 219 | { int ip[1+50], icn[1+1000], ior[1+50], ib[1+51], iw[1+150], |
---|
| 220 | lenr[1+50]; |
---|
| 221 | char a[1+50][1+50], hold[1+100]; |
---|
| 222 | int i, ii, iblock, ij, index, j, jblock, jj, k9, num; |
---|
| 223 | xprintf("\n\n\nMatrix is of order %d and has %d off-diagonal non-" |
---|
| 224 | "zeros\n", n, ipp); |
---|
| 225 | for (j = 1; j <= n; j++) |
---|
| 226 | { for (i = 1; i <= n; i++) |
---|
| 227 | a[i][j] = 0; |
---|
| 228 | a[j][j] = 1; |
---|
| 229 | } |
---|
| 230 | for (k9 = 1; k9 <= ipp; k9++) |
---|
| 231 | { /* these statements should be replaced by calls to your |
---|
| 232 | favorite random number generator to place two pseudo-random |
---|
| 233 | numbers between 1 and n in the variables i and j */ |
---|
| 234 | for (;;) |
---|
| 235 | { fa01bs(n, &i); |
---|
| 236 | fa01bs(n, &j); |
---|
| 237 | if (!a[i][j]) break; |
---|
| 238 | } |
---|
| 239 | a[i][j] = 1; |
---|
| 240 | } |
---|
| 241 | /* setup converts matrix a[i,j] to required sparsity-oriented |
---|
| 242 | storage format */ |
---|
| 243 | setup(n, a, ip, icn, lenr); |
---|
| 244 | num = mc13d(n, icn, ip, lenr, ior, ib, &iw[0], &iw[n], &iw[n+n]); |
---|
| 245 | /* output reordered matrix with blocking to improve clarity */ |
---|
| 246 | xprintf("\nThe reordered matrix which has %d block%s is of the fo" |
---|
| 247 | "rm\n", num, num == 1 ? "" : "s"); |
---|
| 248 | ib[num+1] = n + 1; |
---|
| 249 | index = 100; |
---|
| 250 | iblock = 1; |
---|
| 251 | for (i = 1; i <= n; i++) |
---|
| 252 | { for (ij = 1; ij <= index; ij++) |
---|
| 253 | hold[ij] = ' '; |
---|
| 254 | if (i == ib[iblock]) |
---|
| 255 | { xprintf("\n"); |
---|
| 256 | iblock++; |
---|
| 257 | } |
---|
| 258 | jblock = 1; |
---|
| 259 | index = 0; |
---|
| 260 | for (j = 1; j <= n; j++) |
---|
| 261 | { if (j == ib[jblock]) |
---|
| 262 | { hold[++index] = ' '; |
---|
| 263 | jblock++; |
---|
| 264 | } |
---|
| 265 | ii = ior[i]; |
---|
| 266 | jj = ior[j]; |
---|
| 267 | hold[++index] = (char)(a[ii][jj] ? 'X' : '0'); |
---|
| 268 | } |
---|
| 269 | xprintf("%.*s\n", index, &hold[1]); |
---|
| 270 | } |
---|
| 271 | xprintf("\nThe starting point for each block is given by\n"); |
---|
| 272 | for (i = 1; i <= num; i++) |
---|
| 273 | { if ((i - 1) % 12 == 0) xprintf("\n"); |
---|
| 274 | xprintf(" %4d", ib[i]); |
---|
| 275 | } |
---|
| 276 | xprintf("\n"); |
---|
| 277 | return; |
---|
| 278 | } |
---|
| 279 | |
---|
| 280 | void setup(int n, char a[1+50][1+50], int ip[], int icn[], int lenr[]) |
---|
| 281 | { int i, j, ind; |
---|
| 282 | for (i = 1; i <= n; i++) |
---|
| 283 | lenr[i] = 0; |
---|
| 284 | ind = 1; |
---|
| 285 | for (i = 1; i <= n; i++) |
---|
| 286 | { ip[i] = ind; |
---|
| 287 | for (j = 1; j <= n; j++) |
---|
| 288 | { if (a[i][j]) |
---|
| 289 | { lenr[i]++; |
---|
| 290 | icn[ind++] = j; |
---|
| 291 | } |
---|
| 292 | } |
---|
| 293 | } |
---|
| 294 | return; |
---|
| 295 | } |
---|
| 296 | |
---|
| 297 | double g = 1431655765.0; |
---|
| 298 | |
---|
| 299 | double fa01as(int i) |
---|
| 300 | { /* random number generator */ |
---|
| 301 | g = fmod(g * 9228907.0, 4294967296.0); |
---|
| 302 | if (i >= 0) |
---|
| 303 | return g / 4294967296.0; |
---|
| 304 | else |
---|
| 305 | return 2.0 * g / 4294967296.0 - 1.0; |
---|
| 306 | } |
---|
| 307 | |
---|
| 308 | void fa01bs(int max, int *nrand) |
---|
| 309 | { *nrand = (int)(fa01as(1) * (double)max) + 1; |
---|
| 310 | return; |
---|
| 311 | } |
---|
| 312 | #endif |
---|
| 313 | |
---|
| 314 | /* eof */ |
---|