1 | /* glpnet06.c (out-of-kilter algorithm) */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | * E-mail: <mao@gnu.org>. |
---|
10 | * |
---|
11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation, either version 3 of the License, or |
---|
14 | * (at your option) any later version. |
---|
15 | * |
---|
16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | * License for more details. |
---|
20 | * |
---|
21 | * You should have received a copy of the GNU General Public License |
---|
22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | ***********************************************************************/ |
---|
24 | |
---|
25 | #include "glpenv.h" |
---|
26 | #include "glpnet.h" |
---|
27 | |
---|
28 | /*********************************************************************** |
---|
29 | * NAME |
---|
30 | * |
---|
31 | * okalg - out-of-kilter algorithm |
---|
32 | * |
---|
33 | * SYNOPSIS |
---|
34 | * |
---|
35 | * #include "glpnet.h" |
---|
36 | * int okalg(int nv, int na, const int tail[], const int head[], |
---|
37 | * const int low[], const int cap[], const int cost[], int x[], |
---|
38 | * int pi[]); |
---|
39 | * |
---|
40 | * DESCRIPTION |
---|
41 | * |
---|
42 | * The routine okalg implements the out-of-kilter algorithm to find a |
---|
43 | * minimal-cost circulation in the specified flow network. |
---|
44 | * |
---|
45 | * INPUT PARAMETERS |
---|
46 | * |
---|
47 | * nv is the number of nodes, nv >= 0. |
---|
48 | * |
---|
49 | * na is the number of arcs, na >= 0. |
---|
50 | * |
---|
51 | * tail[a], a = 1,...,na, is the index of tail node of arc a. |
---|
52 | * |
---|
53 | * head[a], a = 1,...,na, is the index of head node of arc a. |
---|
54 | * |
---|
55 | * low[a], a = 1,...,na, is an lower bound to the flow through arc a. |
---|
56 | * |
---|
57 | * cap[a], a = 1,...,na, is an upper bound to the flow through arc a, |
---|
58 | * which is the capacity of the arc. |
---|
59 | * |
---|
60 | * cost[a], a = 1,...,na, is a per-unit cost of the flow through arc a. |
---|
61 | * |
---|
62 | * NOTES |
---|
63 | * |
---|
64 | * 1. Multiple arcs are allowed, but self-loops are not allowed. |
---|
65 | * |
---|
66 | * 2. It is required that 0 <= low[a] <= cap[a] for all arcs. |
---|
67 | * |
---|
68 | * 3. Arc costs may have any sign. |
---|
69 | * |
---|
70 | * OUTPUT PARAMETERS |
---|
71 | * |
---|
72 | * x[a], a = 1,...,na, is optimal value of the flow through arc a. |
---|
73 | * |
---|
74 | * pi[i], i = 1,...,nv, is Lagrange multiplier for flow conservation |
---|
75 | * equality constraint corresponding to node i (the node potential). |
---|
76 | * |
---|
77 | * RETURNS |
---|
78 | * |
---|
79 | * 0 optimal circulation found; |
---|
80 | * |
---|
81 | * 1 there is no feasible circulation; |
---|
82 | * |
---|
83 | * 2 integer overflow occured; |
---|
84 | * |
---|
85 | * 3 optimality test failed (logic error). |
---|
86 | * |
---|
87 | * REFERENCES |
---|
88 | * |
---|
89 | * L.R.Ford, Jr., and D.R.Fulkerson, "Flows in Networks," The RAND |
---|
90 | * Corp., Report R-375-PR (August 1962), Chap. III "Minimal Cost Flow |
---|
91 | * Problems," pp.113-26. */ |
---|
92 | |
---|
93 | static int overflow(int u, int v) |
---|
94 | { /* check for integer overflow on computing u + v */ |
---|
95 | if (u > 0 && v > 0 && u + v < 0) return 1; |
---|
96 | if (u < 0 && v < 0 && u + v > 0) return 1; |
---|
97 | return 0; |
---|
98 | } |
---|
99 | |
---|
100 | int okalg(int nv, int na, const int tail[], const int head[], |
---|
101 | const int low[], const int cap[], const int cost[], int x[], |
---|
102 | int pi[]) |
---|
103 | { int a, aok, delta, i, j, k, lambda, pos1, pos2, s, t, temp, ret, |
---|
104 | *ptr, *arc, *link, *list; |
---|
105 | /* sanity checks */ |
---|
106 | xassert(nv >= 0); |
---|
107 | xassert(na >= 0); |
---|
108 | for (a = 1; a <= na; a++) |
---|
109 | { i = tail[a], j = head[a]; |
---|
110 | xassert(1 <= i && i <= nv); |
---|
111 | xassert(1 <= j && j <= nv); |
---|
112 | xassert(i != j); |
---|
113 | xassert(0 <= low[a] && low[a] <= cap[a]); |
---|
114 | } |
---|
115 | /* allocate working arrays */ |
---|
116 | ptr = xcalloc(1+nv+1, sizeof(int)); |
---|
117 | arc = xcalloc(1+na+na, sizeof(int)); |
---|
118 | link = xcalloc(1+nv, sizeof(int)); |
---|
119 | list = xcalloc(1+nv, sizeof(int)); |
---|
120 | /* ptr[i] := (degree of node i) */ |
---|
121 | for (i = 1; i <= nv; i++) |
---|
122 | ptr[i] = 0; |
---|
123 | for (a = 1; a <= na; a++) |
---|
124 | { ptr[tail[a]]++; |
---|
125 | ptr[head[a]]++; |
---|
126 | } |
---|
127 | /* initialize arc pointers */ |
---|
128 | ptr[1]++; |
---|
129 | for (i = 1; i < nv; i++) |
---|
130 | ptr[i+1] += ptr[i]; |
---|
131 | ptr[nv+1] = ptr[nv]; |
---|
132 | /* build arc lists */ |
---|
133 | for (a = 1; a <= na; a++) |
---|
134 | { arc[--ptr[tail[a]]] = a; |
---|
135 | arc[--ptr[head[a]]] = a; |
---|
136 | } |
---|
137 | xassert(ptr[1] == 1); |
---|
138 | xassert(ptr[nv+1] == na+na+1); |
---|
139 | /* now the indices of arcs incident to node i are stored in |
---|
140 | locations arc[ptr[i]], arc[ptr[i]+1], ..., arc[ptr[i+1]-1] */ |
---|
141 | /* initialize arc flows and node potentials */ |
---|
142 | for (a = 1; a <= na; a++) |
---|
143 | x[a] = 0; |
---|
144 | for (i = 1; i <= nv; i++) |
---|
145 | pi[i] = 0; |
---|
146 | loop: /* main loop starts here */ |
---|
147 | /* find out-of-kilter arc */ |
---|
148 | aok = 0; |
---|
149 | for (a = 1; a <= na; a++) |
---|
150 | { i = tail[a], j = head[a]; |
---|
151 | if (overflow(cost[a], pi[i] - pi[j])) |
---|
152 | { ret = 2; |
---|
153 | goto done; |
---|
154 | } |
---|
155 | lambda = cost[a] + (pi[i] - pi[j]); |
---|
156 | if (x[a] < low[a] || lambda < 0 && x[a] < cap[a]) |
---|
157 | { /* arc a = i->j is out of kilter, and we need to increase |
---|
158 | the flow through this arc */ |
---|
159 | aok = a, s = j, t = i; |
---|
160 | break; |
---|
161 | } |
---|
162 | if (x[a] > cap[a] || lambda > 0 && x[a] > low[a]) |
---|
163 | { /* arc a = i->j is out of kilter, and we need to decrease |
---|
164 | the flow through this arc */ |
---|
165 | aok = a, s = i, t = j; |
---|
166 | break; |
---|
167 | } |
---|
168 | } |
---|
169 | if (aok == 0) |
---|
170 | { /* all arcs are in kilter */ |
---|
171 | /* check for feasibility */ |
---|
172 | for (a = 1; a <= na; a++) |
---|
173 | { if (!(low[a] <= x[a] && x[a] <= cap[a])) |
---|
174 | { ret = 3; |
---|
175 | goto done; |
---|
176 | } |
---|
177 | } |
---|
178 | for (i = 1; i <= nv; i++) |
---|
179 | { temp = 0; |
---|
180 | for (k = ptr[i]; k < ptr[i+1]; k++) |
---|
181 | { a = arc[k]; |
---|
182 | if (tail[a] == i) |
---|
183 | { /* a is outgoing arc */ |
---|
184 | temp += x[a]; |
---|
185 | } |
---|
186 | else if (head[a] == i) |
---|
187 | { /* a is incoming arc */ |
---|
188 | temp -= x[a]; |
---|
189 | } |
---|
190 | else |
---|
191 | xassert(a != a); |
---|
192 | } |
---|
193 | if (temp != 0) |
---|
194 | { ret = 3; |
---|
195 | goto done; |
---|
196 | } |
---|
197 | } |
---|
198 | /* check for optimality */ |
---|
199 | for (a = 1; a <= na; a++) |
---|
200 | { i = tail[a], j = head[a]; |
---|
201 | lambda = cost[a] + (pi[i] - pi[j]); |
---|
202 | if (lambda > 0 && x[a] != low[a] || |
---|
203 | lambda < 0 && x[a] != cap[a]) |
---|
204 | { ret = 3; |
---|
205 | goto done; |
---|
206 | } |
---|
207 | } |
---|
208 | /* current circulation is optimal */ |
---|
209 | ret = 0; |
---|
210 | goto done; |
---|
211 | } |
---|
212 | /* now we need to find a cycle (t, a, s, ..., t), which allows |
---|
213 | increasing the flow along it, where a is the out-of-kilter arc |
---|
214 | just found */ |
---|
215 | /* link[i] = 0 means that node i is not labelled yet; |
---|
216 | link[i] = a means that arc a immediately precedes node i */ |
---|
217 | /* initially only node s is labelled */ |
---|
218 | for (i = 1; i <= nv; i++) |
---|
219 | link[i] = 0; |
---|
220 | link[s] = aok, list[1] = s, pos1 = pos2 = 1; |
---|
221 | /* breadth first search */ |
---|
222 | while (pos1 <= pos2) |
---|
223 | { /* dequeue node i */ |
---|
224 | i = list[pos1++]; |
---|
225 | /* consider all arcs incident to node i */ |
---|
226 | for (k = ptr[i]; k < ptr[i+1]; k++) |
---|
227 | { a = arc[k]; |
---|
228 | if (tail[a] == i) |
---|
229 | { /* a = i->j is a forward arc from s to t */ |
---|
230 | j = head[a]; |
---|
231 | /* if node j has been labelled, skip the arc */ |
---|
232 | if (link[j] != 0) continue; |
---|
233 | /* if the arc does not allow increasing the flow through |
---|
234 | it, skip the arc */ |
---|
235 | if (x[a] >= cap[a]) continue; |
---|
236 | if (overflow(cost[a], pi[i] - pi[j])) |
---|
237 | { ret = 2; |
---|
238 | goto done; |
---|
239 | } |
---|
240 | lambda = cost[a] + (pi[i] - pi[j]); |
---|
241 | if (lambda > 0 && x[a] >= low[a]) continue; |
---|
242 | } |
---|
243 | else if (head[a] == i) |
---|
244 | { /* a = i<-j is a backward arc from s to t */ |
---|
245 | j = tail[a]; |
---|
246 | /* if node j has been labelled, skip the arc */ |
---|
247 | if (link[j] != 0) continue; |
---|
248 | /* if the arc does not allow decreasing the flow through |
---|
249 | it, skip the arc */ |
---|
250 | if (x[a] <= low[a]) continue; |
---|
251 | if (overflow(cost[a], pi[j] - pi[i])) |
---|
252 | { ret = 2; |
---|
253 | goto done; |
---|
254 | } |
---|
255 | lambda = cost[a] + (pi[j] - pi[i]); |
---|
256 | if (lambda < 0 && x[a] <= cap[a]) continue; |
---|
257 | } |
---|
258 | else |
---|
259 | xassert(a != a); |
---|
260 | /* label node j and enqueue it */ |
---|
261 | link[j] = a, list[++pos2] = j; |
---|
262 | /* check for breakthrough */ |
---|
263 | if (j == t) goto brkt; |
---|
264 | } |
---|
265 | } |
---|
266 | /* NONBREAKTHROUGH */ |
---|
267 | /* consider all arcs, whose one endpoint is labelled and other is |
---|
268 | not, and determine maximal change of node potentials */ |
---|
269 | delta = 0; |
---|
270 | for (a = 1; a <= na; a++) |
---|
271 | { i = tail[a], j = head[a]; |
---|
272 | if (link[i] != 0 && link[j] == 0) |
---|
273 | { /* a = i->j, where node i is labelled, node j is not */ |
---|
274 | if (overflow(cost[a], pi[i] - pi[j])) |
---|
275 | { ret = 2; |
---|
276 | goto done; |
---|
277 | } |
---|
278 | lambda = cost[a] + (pi[i] - pi[j]); |
---|
279 | if (x[a] <= cap[a] && lambda > 0) |
---|
280 | if (delta == 0 || delta > + lambda) delta = + lambda; |
---|
281 | } |
---|
282 | else if (link[i] == 0 && link[j] != 0) |
---|
283 | { /* a = j<-i, where node j is labelled, node i is not */ |
---|
284 | if (overflow(cost[a], pi[i] - pi[j])) |
---|
285 | { ret = 2; |
---|
286 | goto done; |
---|
287 | } |
---|
288 | lambda = cost[a] + (pi[i] - pi[j]); |
---|
289 | if (x[a] >= low[a] && lambda < 0) |
---|
290 | if (delta == 0 || delta > - lambda) delta = - lambda; |
---|
291 | } |
---|
292 | } |
---|
293 | if (delta == 0) |
---|
294 | { /* there is no feasible circulation */ |
---|
295 | ret = 1; |
---|
296 | goto done; |
---|
297 | } |
---|
298 | /* increase potentials of all unlabelled nodes */ |
---|
299 | for (i = 1; i <= nv; i++) |
---|
300 | { if (link[i] == 0) |
---|
301 | { if (overflow(pi[i], delta)) |
---|
302 | { ret = 2; |
---|
303 | goto done; |
---|
304 | } |
---|
305 | pi[i] += delta; |
---|
306 | } |
---|
307 | } |
---|
308 | goto loop; |
---|
309 | brkt: /* BREAKTHROUGH */ |
---|
310 | /* walk through arcs of the cycle (t, a, s, ..., t) found in the |
---|
311 | reverse order and determine maximal change of the flow */ |
---|
312 | delta = 0; |
---|
313 | for (j = t;; j = i) |
---|
314 | { /* arc a immediately precedes node j in the cycle */ |
---|
315 | a = link[j]; |
---|
316 | if (head[a] == j) |
---|
317 | { /* a = i->j is a forward arc of the cycle */ |
---|
318 | i = tail[a]; |
---|
319 | lambda = cost[a] + (pi[i] - pi[j]); |
---|
320 | if (lambda > 0 && x[a] < low[a]) |
---|
321 | { /* x[a] may be increased until its lower bound */ |
---|
322 | temp = low[a] - x[a]; |
---|
323 | } |
---|
324 | else if (lambda <= 0 && x[a] < cap[a]) |
---|
325 | { /* x[a] may be increased until its upper bound */ |
---|
326 | temp = cap[a] - x[a]; |
---|
327 | } |
---|
328 | else |
---|
329 | xassert(a != a); |
---|
330 | } |
---|
331 | else if (tail[a] == j) |
---|
332 | { /* a = i<-j is a backward arc of the cycle */ |
---|
333 | i = head[a]; |
---|
334 | lambda = cost[a] + (pi[j] - pi[i]); |
---|
335 | if (lambda < 0 && x[a] > cap[a]) |
---|
336 | { /* x[a] may be decreased until its upper bound */ |
---|
337 | temp = x[a] - cap[a]; |
---|
338 | } |
---|
339 | else if (lambda >= 0 && x[a] > low[a]) |
---|
340 | { /* x[a] may be decreased until its lower bound */ |
---|
341 | temp = x[a] - low[a]; |
---|
342 | } |
---|
343 | else |
---|
344 | xassert(a != a); |
---|
345 | } |
---|
346 | else |
---|
347 | xassert(a != a); |
---|
348 | if (delta == 0 || delta > temp) delta = temp; |
---|
349 | /* check for end of the cycle */ |
---|
350 | if (i == t) break; |
---|
351 | } |
---|
352 | xassert(delta > 0); |
---|
353 | /* increase the flow along the cycle */ |
---|
354 | for (j = t;; j = i) |
---|
355 | { /* arc a immediately precedes node j in the cycle */ |
---|
356 | a = link[j]; |
---|
357 | if (head[a] == j) |
---|
358 | { /* a = i->j is a forward arc of the cycle */ |
---|
359 | i = tail[a]; |
---|
360 | /* overflow cannot occur */ |
---|
361 | x[a] += delta; |
---|
362 | } |
---|
363 | else if (tail[a] == j) |
---|
364 | { /* a = i<-j is a backward arc of the cycle */ |
---|
365 | i = head[a]; |
---|
366 | /* overflow cannot occur */ |
---|
367 | x[a] -= delta; |
---|
368 | } |
---|
369 | else |
---|
370 | xassert(a != a); |
---|
371 | /* check for end of the cycle */ |
---|
372 | if (i == t) break; |
---|
373 | } |
---|
374 | goto loop; |
---|
375 | done: /* free working arrays */ |
---|
376 | xfree(ptr); |
---|
377 | xfree(arc); |
---|
378 | xfree(link); |
---|
379 | xfree(list); |
---|
380 | return ret; |
---|
381 | } |
---|
382 | |
---|
383 | /* eof */ |
---|