[1] | 1 | /* glpnpp02.c */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpnpp.h" |
---|
| 26 | |
---|
| 27 | /*********************************************************************** |
---|
| 28 | * NAME |
---|
| 29 | * |
---|
| 30 | * npp_free_row - process free (unbounded) row |
---|
| 31 | * |
---|
| 32 | * SYNOPSIS |
---|
| 33 | * |
---|
| 34 | * #include "glpnpp.h" |
---|
| 35 | * void npp_free_row(NPP *npp, NPPROW *p); |
---|
| 36 | * |
---|
| 37 | * DESCRIPTION |
---|
| 38 | * |
---|
| 39 | * The routine npp_free_row processes row p, which is free (i.e. has |
---|
| 40 | * no finite bounds): |
---|
| 41 | * |
---|
| 42 | * -inf < sum a[p,j] x[j] < +inf. (1) |
---|
| 43 | * j |
---|
| 44 | * |
---|
| 45 | * PROBLEM TRANSFORMATION |
---|
| 46 | * |
---|
| 47 | * Constraint (1) cannot be active, so it is redundant and can be |
---|
| 48 | * removed from the original problem. |
---|
| 49 | * |
---|
| 50 | * Removing row p leads to removing a column of multiplier pi[p] for |
---|
| 51 | * this row in the dual system. Since row p has no bounds, pi[p] = 0, |
---|
| 52 | * so removing the column does not affect the dual solution. |
---|
| 53 | * |
---|
| 54 | * RECOVERING BASIC SOLUTION |
---|
| 55 | * |
---|
| 56 | * In solution to the original problem row p is inactive constraint, |
---|
| 57 | * so it is assigned status GLP_BS, and multiplier pi[p] is assigned |
---|
| 58 | * zero value. |
---|
| 59 | * |
---|
| 60 | * RECOVERING INTERIOR-POINT SOLUTION |
---|
| 61 | * |
---|
| 62 | * In solution to the original problem row p is inactive constraint, |
---|
| 63 | * so its multiplier pi[p] is assigned zero value. |
---|
| 64 | * |
---|
| 65 | * RECOVERING MIP SOLUTION |
---|
| 66 | * |
---|
| 67 | * None needed. */ |
---|
| 68 | |
---|
| 69 | struct free_row |
---|
| 70 | { /* free (unbounded) row */ |
---|
| 71 | int p; |
---|
| 72 | /* row reference number */ |
---|
| 73 | }; |
---|
| 74 | |
---|
| 75 | static int rcv_free_row(NPP *npp, void *info); |
---|
| 76 | |
---|
| 77 | void npp_free_row(NPP *npp, NPPROW *p) |
---|
| 78 | { /* process free (unbounded) row */ |
---|
| 79 | struct free_row *info; |
---|
| 80 | /* the row must be free */ |
---|
| 81 | xassert(p->lb == -DBL_MAX && p->ub == +DBL_MAX); |
---|
| 82 | /* create transformation stack entry */ |
---|
| 83 | info = npp_push_tse(npp, |
---|
| 84 | rcv_free_row, sizeof(struct free_row)); |
---|
| 85 | info->p = p->i; |
---|
| 86 | /* remove the row from the problem */ |
---|
| 87 | npp_del_row(npp, p); |
---|
| 88 | return; |
---|
| 89 | } |
---|
| 90 | |
---|
| 91 | static int rcv_free_row(NPP *npp, void *_info) |
---|
| 92 | { /* recover free (unbounded) row */ |
---|
| 93 | struct free_row *info = _info; |
---|
| 94 | if (npp->sol == GLP_SOL) |
---|
| 95 | npp->r_stat[info->p] = GLP_BS; |
---|
| 96 | if (npp->sol != GLP_MIP) |
---|
| 97 | npp->r_pi[info->p] = 0.0; |
---|
| 98 | return 0; |
---|
| 99 | } |
---|
| 100 | |
---|
| 101 | /*********************************************************************** |
---|
| 102 | * NAME |
---|
| 103 | * |
---|
| 104 | * npp_geq_row - process row of 'not less than' type |
---|
| 105 | * |
---|
| 106 | * SYNOPSIS |
---|
| 107 | * |
---|
| 108 | * #include "glpnpp.h" |
---|
| 109 | * void npp_geq_row(NPP *npp, NPPROW *p); |
---|
| 110 | * |
---|
| 111 | * DESCRIPTION |
---|
| 112 | * |
---|
| 113 | * The routine npp_geq_row processes row p, which is 'not less than' |
---|
| 114 | * inequality constraint: |
---|
| 115 | * |
---|
| 116 | * L[p] <= sum a[p,j] x[j] (<= U[p]), (1) |
---|
| 117 | * j |
---|
| 118 | * |
---|
| 119 | * where L[p] < U[p], and upper bound may not exist (U[p] = +oo). |
---|
| 120 | * |
---|
| 121 | * PROBLEM TRANSFORMATION |
---|
| 122 | * |
---|
| 123 | * Constraint (1) can be replaced by equality constraint: |
---|
| 124 | * |
---|
| 125 | * sum a[p,j] x[j] - s = L[p], (2) |
---|
| 126 | * j |
---|
| 127 | * |
---|
| 128 | * where |
---|
| 129 | * |
---|
| 130 | * 0 <= s (<= U[p] - L[p]) (3) |
---|
| 131 | * |
---|
| 132 | * is a non-negative surplus variable. |
---|
| 133 | * |
---|
| 134 | * Since in the primal system there appears column s having the only |
---|
| 135 | * non-zero coefficient in row p, in the dual system there appears a |
---|
| 136 | * new row: |
---|
| 137 | * |
---|
| 138 | * (-1) pi[p] + lambda = 0, (4) |
---|
| 139 | * |
---|
| 140 | * where (-1) is coefficient of column s in row p, pi[p] is multiplier |
---|
| 141 | * of row p, lambda is multiplier of column q, 0 is coefficient of |
---|
| 142 | * column s in the objective row. |
---|
| 143 | * |
---|
| 144 | * RECOVERING BASIC SOLUTION |
---|
| 145 | * |
---|
| 146 | * Status of row p in solution to the original problem is determined |
---|
| 147 | * by its status and status of column q in solution to the transformed |
---|
| 148 | * problem as follows: |
---|
| 149 | * |
---|
| 150 | * +--------------------------------------+------------------+ |
---|
| 151 | * | Transformed problem | Original problem | |
---|
| 152 | * +-----------------+--------------------+------------------+ |
---|
| 153 | * | Status of row p | Status of column s | Status of row p | |
---|
| 154 | * +-----------------+--------------------+------------------+ |
---|
| 155 | * | GLP_BS | GLP_BS | N/A | |
---|
| 156 | * | GLP_BS | GLP_NL | GLP_BS | |
---|
| 157 | * | GLP_BS | GLP_NU | GLP_BS | |
---|
| 158 | * | GLP_NS | GLP_BS | GLP_BS | |
---|
| 159 | * | GLP_NS | GLP_NL | GLP_NL | |
---|
| 160 | * | GLP_NS | GLP_NU | GLP_NU | |
---|
| 161 | * +-----------------+--------------------+------------------+ |
---|
| 162 | * |
---|
| 163 | * Value of row multiplier pi[p] in solution to the original problem |
---|
| 164 | * is the same as in solution to the transformed problem. |
---|
| 165 | * |
---|
| 166 | * 1. In solution to the transformed problem row p and column q cannot |
---|
| 167 | * be basic at the same time; otherwise the basis matrix would have |
---|
| 168 | * two linear dependent columns: unity column of auxiliary variable |
---|
| 169 | * of row p and unity column of variable s. |
---|
| 170 | * |
---|
| 171 | * 2. Though in the transformed problem row p is equality constraint, |
---|
| 172 | * it may be basic due to primal degenerate solution. |
---|
| 173 | * |
---|
| 174 | * RECOVERING INTERIOR-POINT SOLUTION |
---|
| 175 | * |
---|
| 176 | * Value of row multiplier pi[p] in solution to the original problem |
---|
| 177 | * is the same as in solution to the transformed problem. |
---|
| 178 | * |
---|
| 179 | * RECOVERING MIP SOLUTION |
---|
| 180 | * |
---|
| 181 | * None needed. */ |
---|
| 182 | |
---|
| 183 | struct ineq_row |
---|
| 184 | { /* inequality constraint row */ |
---|
| 185 | int p; |
---|
| 186 | /* row reference number */ |
---|
| 187 | int s; |
---|
| 188 | /* column reference number for slack/surplus variable */ |
---|
| 189 | }; |
---|
| 190 | |
---|
| 191 | static int rcv_geq_row(NPP *npp, void *info); |
---|
| 192 | |
---|
| 193 | void npp_geq_row(NPP *npp, NPPROW *p) |
---|
| 194 | { /* process row of 'not less than' type */ |
---|
| 195 | struct ineq_row *info; |
---|
| 196 | NPPCOL *s; |
---|
| 197 | /* the row must have lower bound */ |
---|
| 198 | xassert(p->lb != -DBL_MAX); |
---|
| 199 | xassert(p->lb < p->ub); |
---|
| 200 | /* create column for surplus variable */ |
---|
| 201 | s = npp_add_col(npp); |
---|
| 202 | s->lb = 0.0; |
---|
| 203 | s->ub = (p->ub == +DBL_MAX ? +DBL_MAX : p->ub - p->lb); |
---|
| 204 | /* and add it to the transformed problem */ |
---|
| 205 | npp_add_aij(npp, p, s, -1.0); |
---|
| 206 | /* create transformation stack entry */ |
---|
| 207 | info = npp_push_tse(npp, |
---|
| 208 | rcv_geq_row, sizeof(struct ineq_row)); |
---|
| 209 | info->p = p->i; |
---|
| 210 | info->s = s->j; |
---|
| 211 | /* replace the row by equality constraint */ |
---|
| 212 | p->ub = p->lb; |
---|
| 213 | return; |
---|
| 214 | } |
---|
| 215 | |
---|
| 216 | static int rcv_geq_row(NPP *npp, void *_info) |
---|
| 217 | { /* recover row of 'not less than' type */ |
---|
| 218 | struct ineq_row *info = _info; |
---|
| 219 | if (npp->sol == GLP_SOL) |
---|
| 220 | { if (npp->r_stat[info->p] == GLP_BS) |
---|
| 221 | { if (npp->c_stat[info->s] == GLP_BS) |
---|
| 222 | { npp_error(); |
---|
| 223 | return 1; |
---|
| 224 | } |
---|
| 225 | else if (npp->c_stat[info->s] == GLP_NL || |
---|
| 226 | npp->c_stat[info->s] == GLP_NU) |
---|
| 227 | npp->r_stat[info->p] = GLP_BS; |
---|
| 228 | else |
---|
| 229 | { npp_error(); |
---|
| 230 | return 1; |
---|
| 231 | } |
---|
| 232 | } |
---|
| 233 | else if (npp->r_stat[info->p] == GLP_NS) |
---|
| 234 | { if (npp->c_stat[info->s] == GLP_BS) |
---|
| 235 | npp->r_stat[info->p] = GLP_BS; |
---|
| 236 | else if (npp->c_stat[info->s] == GLP_NL) |
---|
| 237 | npp->r_stat[info->p] = GLP_NL; |
---|
| 238 | else if (npp->c_stat[info->s] == GLP_NU) |
---|
| 239 | npp->r_stat[info->p] = GLP_NU; |
---|
| 240 | else |
---|
| 241 | { npp_error(); |
---|
| 242 | return 1; |
---|
| 243 | } |
---|
| 244 | } |
---|
| 245 | else |
---|
| 246 | { npp_error(); |
---|
| 247 | return 1; |
---|
| 248 | } |
---|
| 249 | } |
---|
| 250 | return 0; |
---|
| 251 | } |
---|
| 252 | |
---|
| 253 | /*********************************************************************** |
---|
| 254 | * NAME |
---|
| 255 | * |
---|
| 256 | * npp_leq_row - process row of 'not greater than' type |
---|
| 257 | * |
---|
| 258 | * SYNOPSIS |
---|
| 259 | * |
---|
| 260 | * #include "glpnpp.h" |
---|
| 261 | * void npp_leq_row(NPP *npp, NPPROW *p); |
---|
| 262 | * |
---|
| 263 | * DESCRIPTION |
---|
| 264 | * |
---|
| 265 | * The routine npp_leq_row processes row p, which is 'not greater than' |
---|
| 266 | * inequality constraint: |
---|
| 267 | * |
---|
| 268 | * (L[p] <=) sum a[p,j] x[j] <= U[p], (1) |
---|
| 269 | * j |
---|
| 270 | * |
---|
| 271 | * where L[p] < U[p], and lower bound may not exist (L[p] = +oo). |
---|
| 272 | * |
---|
| 273 | * PROBLEM TRANSFORMATION |
---|
| 274 | * |
---|
| 275 | * Constraint (1) can be replaced by equality constraint: |
---|
| 276 | * |
---|
| 277 | * sum a[p,j] x[j] + s = L[p], (2) |
---|
| 278 | * j |
---|
| 279 | * |
---|
| 280 | * where |
---|
| 281 | * |
---|
| 282 | * 0 <= s (<= U[p] - L[p]) (3) |
---|
| 283 | * |
---|
| 284 | * is a non-negative slack variable. |
---|
| 285 | * |
---|
| 286 | * Since in the primal system there appears column s having the only |
---|
| 287 | * non-zero coefficient in row p, in the dual system there appears a |
---|
| 288 | * new row: |
---|
| 289 | * |
---|
| 290 | * (+1) pi[p] + lambda = 0, (4) |
---|
| 291 | * |
---|
| 292 | * where (+1) is coefficient of column s in row p, pi[p] is multiplier |
---|
| 293 | * of row p, lambda is multiplier of column q, 0 is coefficient of |
---|
| 294 | * column s in the objective row. |
---|
| 295 | * |
---|
| 296 | * RECOVERING BASIC SOLUTION |
---|
| 297 | * |
---|
| 298 | * Status of row p in solution to the original problem is determined |
---|
| 299 | * by its status and status of column q in solution to the transformed |
---|
| 300 | * problem as follows: |
---|
| 301 | * |
---|
| 302 | * +--------------------------------------+------------------+ |
---|
| 303 | * | Transformed problem | Original problem | |
---|
| 304 | * +-----------------+--------------------+------------------+ |
---|
| 305 | * | Status of row p | Status of column s | Status of row p | |
---|
| 306 | * +-----------------+--------------------+------------------+ |
---|
| 307 | * | GLP_BS | GLP_BS | N/A | |
---|
| 308 | * | GLP_BS | GLP_NL | GLP_BS | |
---|
| 309 | * | GLP_BS | GLP_NU | GLP_BS | |
---|
| 310 | * | GLP_NS | GLP_BS | GLP_BS | |
---|
| 311 | * | GLP_NS | GLP_NL | GLP_NU | |
---|
| 312 | * | GLP_NS | GLP_NU | GLP_NL | |
---|
| 313 | * +-----------------+--------------------+------------------+ |
---|
| 314 | * |
---|
| 315 | * Value of row multiplier pi[p] in solution to the original problem |
---|
| 316 | * is the same as in solution to the transformed problem. |
---|
| 317 | * |
---|
| 318 | * 1. In solution to the transformed problem row p and column q cannot |
---|
| 319 | * be basic at the same time; otherwise the basis matrix would have |
---|
| 320 | * two linear dependent columns: unity column of auxiliary variable |
---|
| 321 | * of row p and unity column of variable s. |
---|
| 322 | * |
---|
| 323 | * 2. Though in the transformed problem row p is equality constraint, |
---|
| 324 | * it may be basic due to primal degeneracy. |
---|
| 325 | * |
---|
| 326 | * RECOVERING INTERIOR-POINT SOLUTION |
---|
| 327 | * |
---|
| 328 | * Value of row multiplier pi[p] in solution to the original problem |
---|
| 329 | * is the same as in solution to the transformed problem. |
---|
| 330 | * |
---|
| 331 | * RECOVERING MIP SOLUTION |
---|
| 332 | * |
---|
| 333 | * None needed. */ |
---|
| 334 | |
---|
| 335 | static int rcv_leq_row(NPP *npp, void *info); |
---|
| 336 | |
---|
| 337 | void npp_leq_row(NPP *npp, NPPROW *p) |
---|
| 338 | { /* process row of 'not greater than' type */ |
---|
| 339 | struct ineq_row *info; |
---|
| 340 | NPPCOL *s; |
---|
| 341 | /* the row must have upper bound */ |
---|
| 342 | xassert(p->ub != +DBL_MAX); |
---|
| 343 | xassert(p->lb < p->ub); |
---|
| 344 | /* create column for slack variable */ |
---|
| 345 | s = npp_add_col(npp); |
---|
| 346 | s->lb = 0.0; |
---|
| 347 | s->ub = (p->lb == -DBL_MAX ? +DBL_MAX : p->ub - p->lb); |
---|
| 348 | /* and add it to the transformed problem */ |
---|
| 349 | npp_add_aij(npp, p, s, +1.0); |
---|
| 350 | /* create transformation stack entry */ |
---|
| 351 | info = npp_push_tse(npp, |
---|
| 352 | rcv_leq_row, sizeof(struct ineq_row)); |
---|
| 353 | info->p = p->i; |
---|
| 354 | info->s = s->j; |
---|
| 355 | /* replace the row by equality constraint */ |
---|
| 356 | p->lb = p->ub; |
---|
| 357 | return; |
---|
| 358 | } |
---|
| 359 | |
---|
| 360 | static int rcv_leq_row(NPP *npp, void *_info) |
---|
| 361 | { /* recover row of 'not greater than' type */ |
---|
| 362 | struct ineq_row *info = _info; |
---|
| 363 | if (npp->sol == GLP_SOL) |
---|
| 364 | { if (npp->r_stat[info->p] == GLP_BS) |
---|
| 365 | { if (npp->c_stat[info->s] == GLP_BS) |
---|
| 366 | { npp_error(); |
---|
| 367 | return 1; |
---|
| 368 | } |
---|
| 369 | else if (npp->c_stat[info->s] == GLP_NL || |
---|
| 370 | npp->c_stat[info->s] == GLP_NU) |
---|
| 371 | npp->r_stat[info->p] = GLP_BS; |
---|
| 372 | else |
---|
| 373 | { npp_error(); |
---|
| 374 | return 1; |
---|
| 375 | } |
---|
| 376 | } |
---|
| 377 | else if (npp->r_stat[info->p] == GLP_NS) |
---|
| 378 | { if (npp->c_stat[info->s] == GLP_BS) |
---|
| 379 | npp->r_stat[info->p] = GLP_BS; |
---|
| 380 | else if (npp->c_stat[info->s] == GLP_NL) |
---|
| 381 | npp->r_stat[info->p] = GLP_NU; |
---|
| 382 | else if (npp->c_stat[info->s] == GLP_NU) |
---|
| 383 | npp->r_stat[info->p] = GLP_NL; |
---|
| 384 | else |
---|
| 385 | { npp_error(); |
---|
| 386 | return 1; |
---|
| 387 | } |
---|
| 388 | } |
---|
| 389 | else |
---|
| 390 | { npp_error(); |
---|
| 391 | return 1; |
---|
| 392 | } |
---|
| 393 | } |
---|
| 394 | return 0; |
---|
| 395 | } |
---|
| 396 | |
---|
| 397 | /*********************************************************************** |
---|
| 398 | * NAME |
---|
| 399 | * |
---|
| 400 | * npp_free_col - process free (unbounded) column |
---|
| 401 | * |
---|
| 402 | * SYNOPSIS |
---|
| 403 | * |
---|
| 404 | * #include "glpnpp.h" |
---|
| 405 | * void npp_free_col(NPP *npp, NPPCOL *q); |
---|
| 406 | * |
---|
| 407 | * DESCRIPTION |
---|
| 408 | * |
---|
| 409 | * The routine npp_free_col processes column q, which is free (i.e. has |
---|
| 410 | * no finite bounds): |
---|
| 411 | * |
---|
| 412 | * -oo < x[q] < +oo. (1) |
---|
| 413 | * |
---|
| 414 | * PROBLEM TRANSFORMATION |
---|
| 415 | * |
---|
| 416 | * Free (unbounded) variable can be replaced by the difference of two |
---|
| 417 | * non-negative variables: |
---|
| 418 | * |
---|
| 419 | * x[q] = s' - s'', s', s'' >= 0. (2) |
---|
| 420 | * |
---|
| 421 | * Assuming that in the transformed problem x[q] becomes s', |
---|
| 422 | * transformation (2) causes new column s'' to appear, which differs |
---|
| 423 | * from column s' only in the sign of coefficients in constraint and |
---|
| 424 | * objective rows. Thus, if in the dual system the following row |
---|
| 425 | * corresponds to column s': |
---|
| 426 | * |
---|
| 427 | * sum a[i,q] pi[i] + lambda' = c[q], (3) |
---|
| 428 | * i |
---|
| 429 | * |
---|
| 430 | * the row which corresponds to column s'' is the following: |
---|
| 431 | * |
---|
| 432 | * sum (-a[i,q]) pi[i] + lambda'' = -c[q]. (4) |
---|
| 433 | * i |
---|
| 434 | * |
---|
| 435 | * Then from (3) and (4) it follows that: |
---|
| 436 | * |
---|
| 437 | * lambda' + lambda'' = 0 => lambda' = lmabda'' = 0, (5) |
---|
| 438 | * |
---|
| 439 | * where lambda' and lambda'' are multipliers for columns s' and s'', |
---|
| 440 | * resp. |
---|
| 441 | * |
---|
| 442 | * RECOVERING BASIC SOLUTION |
---|
| 443 | * |
---|
| 444 | * With respect to (5) status of column q in solution to the original |
---|
| 445 | * problem is determined by statuses of columns s' and s'' in solution |
---|
| 446 | * to the transformed problem as follows: |
---|
| 447 | * |
---|
| 448 | * +--------------------------------------+------------------+ |
---|
| 449 | * | Transformed problem | Original problem | |
---|
| 450 | * +------------------+-------------------+------------------+ |
---|
| 451 | * | Status of col s' | Status of col s'' | Status of col q | |
---|
| 452 | * +------------------+-------------------+------------------+ |
---|
| 453 | * | GLP_BS | GLP_BS | N/A | |
---|
| 454 | * | GLP_BS | GLP_NL | GLP_BS | |
---|
| 455 | * | GLP_NL | GLP_BS | GLP_BS | |
---|
| 456 | * | GLP_NL | GLP_NL | GLP_NF | |
---|
| 457 | * +------------------+-------------------+------------------+ |
---|
| 458 | * |
---|
| 459 | * Value of column q is computed with formula (2). |
---|
| 460 | * |
---|
| 461 | * 1. In solution to the transformed problem columns s' and s'' cannot |
---|
| 462 | * be basic at the same time, because they differ only in the sign, |
---|
| 463 | * hence, are linear dependent. |
---|
| 464 | * |
---|
| 465 | * 2. Though column q is free, it can be non-basic due to dual |
---|
| 466 | * degeneracy. |
---|
| 467 | * |
---|
| 468 | * 3. If column q is integral, columns s' and s'' are also integral. |
---|
| 469 | * |
---|
| 470 | * RECOVERING INTERIOR-POINT SOLUTION |
---|
| 471 | * |
---|
| 472 | * Value of column q is computed with formula (2). |
---|
| 473 | * |
---|
| 474 | * RECOVERING MIP SOLUTION |
---|
| 475 | * |
---|
| 476 | * Value of column q is computed with formula (2). */ |
---|
| 477 | |
---|
| 478 | struct free_col |
---|
| 479 | { /* free (unbounded) column */ |
---|
| 480 | int q; |
---|
| 481 | /* column reference number for variables x[q] and s' */ |
---|
| 482 | int s; |
---|
| 483 | /* column reference number for variable s'' */ |
---|
| 484 | }; |
---|
| 485 | |
---|
| 486 | static int rcv_free_col(NPP *npp, void *info); |
---|
| 487 | |
---|
| 488 | void npp_free_col(NPP *npp, NPPCOL *q) |
---|
| 489 | { /* process free (unbounded) column */ |
---|
| 490 | struct free_col *info; |
---|
| 491 | NPPCOL *s; |
---|
| 492 | NPPAIJ *aij; |
---|
| 493 | /* the column must be free */ |
---|
| 494 | xassert(q->lb == -DBL_MAX && q->ub == +DBL_MAX); |
---|
| 495 | /* variable x[q] becomes s' */ |
---|
| 496 | q->lb = 0.0, q->ub = +DBL_MAX; |
---|
| 497 | /* create variable s'' */ |
---|
| 498 | s = npp_add_col(npp); |
---|
| 499 | s->is_int = q->is_int; |
---|
| 500 | s->lb = 0.0, s->ub = +DBL_MAX; |
---|
| 501 | /* duplicate objective coefficient */ |
---|
| 502 | s->coef = -q->coef; |
---|
| 503 | /* duplicate column of the constraint matrix */ |
---|
| 504 | for (aij = q->ptr; aij != NULL; aij = aij->c_next) |
---|
| 505 | npp_add_aij(npp, aij->row, s, -aij->val); |
---|
| 506 | /* create transformation stack entry */ |
---|
| 507 | info = npp_push_tse(npp, |
---|
| 508 | rcv_free_col, sizeof(struct free_col)); |
---|
| 509 | info->q = q->j; |
---|
| 510 | info->s = s->j; |
---|
| 511 | return; |
---|
| 512 | } |
---|
| 513 | |
---|
| 514 | static int rcv_free_col(NPP *npp, void *_info) |
---|
| 515 | { /* recover free (unbounded) column */ |
---|
| 516 | struct free_col *info = _info; |
---|
| 517 | if (npp->sol == GLP_SOL) |
---|
| 518 | { if (npp->c_stat[info->q] == GLP_BS) |
---|
| 519 | { if (npp->c_stat[info->s] == GLP_BS) |
---|
| 520 | { npp_error(); |
---|
| 521 | return 1; |
---|
| 522 | } |
---|
| 523 | else if (npp->c_stat[info->s] == GLP_NL) |
---|
| 524 | npp->c_stat[info->q] = GLP_BS; |
---|
| 525 | else |
---|
| 526 | { npp_error(); |
---|
| 527 | return -1; |
---|
| 528 | } |
---|
| 529 | } |
---|
| 530 | else if (npp->c_stat[info->q] == GLP_NL) |
---|
| 531 | { if (npp->c_stat[info->s] == GLP_BS) |
---|
| 532 | npp->c_stat[info->q] = GLP_BS; |
---|
| 533 | else if (npp->c_stat[info->s] == GLP_NL) |
---|
| 534 | npp->c_stat[info->q] = GLP_NF; |
---|
| 535 | else |
---|
| 536 | { npp_error(); |
---|
| 537 | return -1; |
---|
| 538 | } |
---|
| 539 | } |
---|
| 540 | else |
---|
| 541 | { npp_error(); |
---|
| 542 | return -1; |
---|
| 543 | } |
---|
| 544 | } |
---|
| 545 | /* compute value of x[q] with formula (2) */ |
---|
| 546 | npp->c_value[info->q] -= npp->c_value[info->s]; |
---|
| 547 | return 0; |
---|
| 548 | } |
---|
| 549 | |
---|
| 550 | /*********************************************************************** |
---|
| 551 | * NAME |
---|
| 552 | * |
---|
| 553 | * npp_lbnd_col - process column with (non-zero) lower bound |
---|
| 554 | * |
---|
| 555 | * SYNOPSIS |
---|
| 556 | * |
---|
| 557 | * #include "glpnpp.h" |
---|
| 558 | * void npp_lbnd_col(NPP *npp, NPPCOL *q); |
---|
| 559 | * |
---|
| 560 | * DESCRIPTION |
---|
| 561 | * |
---|
| 562 | * The routine npp_lbnd_col processes column q, which has (non-zero) |
---|
| 563 | * lower bound: |
---|
| 564 | * |
---|
| 565 | * l[q] <= x[q] (<= u[q]), (1) |
---|
| 566 | * |
---|
| 567 | * where l[q] < u[q], and upper bound may not exist (u[q] = +oo). |
---|
| 568 | * |
---|
| 569 | * PROBLEM TRANSFORMATION |
---|
| 570 | * |
---|
| 571 | * Column q can be replaced as follows: |
---|
| 572 | * |
---|
| 573 | * x[q] = l[q] + s, (2) |
---|
| 574 | * |
---|
| 575 | * where |
---|
| 576 | * |
---|
| 577 | * 0 <= s (<= u[q] - l[q]) (3) |
---|
| 578 | * |
---|
| 579 | * is a non-negative variable. |
---|
| 580 | * |
---|
| 581 | * Substituting x[q] from (2) into the objective row, we have: |
---|
| 582 | * |
---|
| 583 | * z = sum c[j] x[j] + c0 = |
---|
| 584 | * j |
---|
| 585 | * |
---|
| 586 | * = sum c[j] x[j] + c[q] x[q] + c0 = |
---|
| 587 | * j!=q |
---|
| 588 | * |
---|
| 589 | * = sum c[j] x[j] + c[q] (l[q] + s) + c0 = |
---|
| 590 | * j!=q |
---|
| 591 | * |
---|
| 592 | * = sum c[j] x[j] + c[q] s + c~0, |
---|
| 593 | * |
---|
| 594 | * where |
---|
| 595 | * |
---|
| 596 | * c~0 = c0 + c[q] l[q] (4) |
---|
| 597 | * |
---|
| 598 | * is the constant term of the objective in the transformed problem. |
---|
| 599 | * Similarly, substituting x[q] into constraint row i, we have: |
---|
| 600 | * |
---|
| 601 | * L[i] <= sum a[i,j] x[j] <= U[i] ==> |
---|
| 602 | * j |
---|
| 603 | * |
---|
| 604 | * L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==> |
---|
| 605 | * j!=q |
---|
| 606 | * |
---|
| 607 | * L[i] <= sum a[i,j] x[j] + a[i,q] (l[q] + s) <= U[i] ==> |
---|
| 608 | * j!=q |
---|
| 609 | * |
---|
| 610 | * L~[i] <= sum a[i,j] x[j] + a[i,q] s <= U~[i], |
---|
| 611 | * j!=q |
---|
| 612 | * |
---|
| 613 | * where |
---|
| 614 | * |
---|
| 615 | * L~[i] = L[i] - a[i,q] l[q], U~[i] = U[i] - a[i,q] l[q] (5) |
---|
| 616 | * |
---|
| 617 | * are lower and upper bounds of row i in the transformed problem, |
---|
| 618 | * resp. |
---|
| 619 | * |
---|
| 620 | * Transformation (2) does not affect the dual system. |
---|
| 621 | * |
---|
| 622 | * RECOVERING BASIC SOLUTION |
---|
| 623 | * |
---|
| 624 | * Status of column q in solution to the original problem is the same |
---|
| 625 | * as in solution to the transformed problem (GLP_BS, GLP_NL or GLP_NU). |
---|
| 626 | * Value of column q is computed with formula (2). |
---|
| 627 | * |
---|
| 628 | * RECOVERING INTERIOR-POINT SOLUTION |
---|
| 629 | * |
---|
| 630 | * Value of column q is computed with formula (2). |
---|
| 631 | * |
---|
| 632 | * RECOVERING MIP SOLUTION |
---|
| 633 | * |
---|
| 634 | * Value of column q is computed with formula (2). */ |
---|
| 635 | |
---|
| 636 | struct bnd_col |
---|
| 637 | { /* bounded column */ |
---|
| 638 | int q; |
---|
| 639 | /* column reference number for variables x[q] and s */ |
---|
| 640 | double bnd; |
---|
| 641 | /* lower/upper bound l[q] or u[q] */ |
---|
| 642 | }; |
---|
| 643 | |
---|
| 644 | static int rcv_lbnd_col(NPP *npp, void *info); |
---|
| 645 | |
---|
| 646 | void npp_lbnd_col(NPP *npp, NPPCOL *q) |
---|
| 647 | { /* process column with (non-zero) lower bound */ |
---|
| 648 | struct bnd_col *info; |
---|
| 649 | NPPROW *i; |
---|
| 650 | NPPAIJ *aij; |
---|
| 651 | /* the column must have non-zero lower bound */ |
---|
| 652 | xassert(q->lb != 0.0); |
---|
| 653 | xassert(q->lb != -DBL_MAX); |
---|
| 654 | xassert(q->lb < q->ub); |
---|
| 655 | /* create transformation stack entry */ |
---|
| 656 | info = npp_push_tse(npp, |
---|
| 657 | rcv_lbnd_col, sizeof(struct bnd_col)); |
---|
| 658 | info->q = q->j; |
---|
| 659 | info->bnd = q->lb; |
---|
| 660 | /* substitute x[q] into objective row */ |
---|
| 661 | npp->c0 += q->coef * q->lb; |
---|
| 662 | /* substitute x[q] into constraint rows */ |
---|
| 663 | for (aij = q->ptr; aij != NULL; aij = aij->c_next) |
---|
| 664 | { i = aij->row; |
---|
| 665 | if (i->lb == i->ub) |
---|
| 666 | i->ub = (i->lb -= aij->val * q->lb); |
---|
| 667 | else |
---|
| 668 | { if (i->lb != -DBL_MAX) |
---|
| 669 | i->lb -= aij->val * q->lb; |
---|
| 670 | if (i->ub != +DBL_MAX) |
---|
| 671 | i->ub -= aij->val * q->lb; |
---|
| 672 | } |
---|
| 673 | } |
---|
| 674 | /* column x[q] becomes column s */ |
---|
| 675 | if (q->ub != +DBL_MAX) |
---|
| 676 | q->ub -= q->lb; |
---|
| 677 | q->lb = 0.0; |
---|
| 678 | return; |
---|
| 679 | } |
---|
| 680 | |
---|
| 681 | static int rcv_lbnd_col(NPP *npp, void *_info) |
---|
| 682 | { /* recover column with (non-zero) lower bound */ |
---|
| 683 | struct bnd_col *info = _info; |
---|
| 684 | if (npp->sol == GLP_SOL) |
---|
| 685 | { if (npp->c_stat[info->q] == GLP_BS || |
---|
| 686 | npp->c_stat[info->q] == GLP_NL || |
---|
| 687 | npp->c_stat[info->q] == GLP_NU) |
---|
| 688 | npp->c_stat[info->q] = npp->c_stat[info->q]; |
---|
| 689 | else |
---|
| 690 | { npp_error(); |
---|
| 691 | return 1; |
---|
| 692 | } |
---|
| 693 | } |
---|
| 694 | /* compute value of x[q] with formula (2) */ |
---|
| 695 | npp->c_value[info->q] = info->bnd + npp->c_value[info->q]; |
---|
| 696 | return 0; |
---|
| 697 | } |
---|
| 698 | |
---|
| 699 | /*********************************************************************** |
---|
| 700 | * NAME |
---|
| 701 | * |
---|
| 702 | * npp_ubnd_col - process column with upper bound |
---|
| 703 | * |
---|
| 704 | * SYNOPSIS |
---|
| 705 | * |
---|
| 706 | * #include "glpnpp.h" |
---|
| 707 | * void npp_ubnd_col(NPP *npp, NPPCOL *q); |
---|
| 708 | * |
---|
| 709 | * DESCRIPTION |
---|
| 710 | * |
---|
| 711 | * The routine npp_ubnd_col processes column q, which has upper bound: |
---|
| 712 | * |
---|
| 713 | * (l[q] <=) x[q] <= u[q], (1) |
---|
| 714 | * |
---|
| 715 | * where l[q] < u[q], and lower bound may not exist (l[q] = -oo). |
---|
| 716 | * |
---|
| 717 | * PROBLEM TRANSFORMATION |
---|
| 718 | * |
---|
| 719 | * Column q can be replaced as follows: |
---|
| 720 | * |
---|
| 721 | * x[q] = u[q] - s, (2) |
---|
| 722 | * |
---|
| 723 | * where |
---|
| 724 | * |
---|
| 725 | * 0 <= s (<= u[q] - l[q]) (3) |
---|
| 726 | * |
---|
| 727 | * is a non-negative variable. |
---|
| 728 | * |
---|
| 729 | * Substituting x[q] from (2) into the objective row, we have: |
---|
| 730 | * |
---|
| 731 | * z = sum c[j] x[j] + c0 = |
---|
| 732 | * j |
---|
| 733 | * |
---|
| 734 | * = sum c[j] x[j] + c[q] x[q] + c0 = |
---|
| 735 | * j!=q |
---|
| 736 | * |
---|
| 737 | * = sum c[j] x[j] + c[q] (u[q] - s) + c0 = |
---|
| 738 | * j!=q |
---|
| 739 | * |
---|
| 740 | * = sum c[j] x[j] - c[q] s + c~0, |
---|
| 741 | * |
---|
| 742 | * where |
---|
| 743 | * |
---|
| 744 | * c~0 = c0 + c[q] u[q] (4) |
---|
| 745 | * |
---|
| 746 | * is the constant term of the objective in the transformed problem. |
---|
| 747 | * Similarly, substituting x[q] into constraint row i, we have: |
---|
| 748 | * |
---|
| 749 | * L[i] <= sum a[i,j] x[j] <= U[i] ==> |
---|
| 750 | * j |
---|
| 751 | * |
---|
| 752 | * L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==> |
---|
| 753 | * j!=q |
---|
| 754 | * |
---|
| 755 | * L[i] <= sum a[i,j] x[j] + a[i,q] (u[q] - s) <= U[i] ==> |
---|
| 756 | * j!=q |
---|
| 757 | * |
---|
| 758 | * L~[i] <= sum a[i,j] x[j] - a[i,q] s <= U~[i], |
---|
| 759 | * j!=q |
---|
| 760 | * |
---|
| 761 | * where |
---|
| 762 | * |
---|
| 763 | * L~[i] = L[i] - a[i,q] u[q], U~[i] = U[i] - a[i,q] u[q] (5) |
---|
| 764 | * |
---|
| 765 | * are lower and upper bounds of row i in the transformed problem, |
---|
| 766 | * resp. |
---|
| 767 | * |
---|
| 768 | * Note that in the transformed problem coefficients c[q] and a[i,q] |
---|
| 769 | * change their sign. Thus, the row of the dual system corresponding to |
---|
| 770 | * column q: |
---|
| 771 | * |
---|
| 772 | * sum a[i,q] pi[i] + lambda[q] = c[q] (6) |
---|
| 773 | * i |
---|
| 774 | * |
---|
| 775 | * in the transformed problem becomes the following: |
---|
| 776 | * |
---|
| 777 | * sum (-a[i,q]) pi[i] + lambda[s] = -c[q]. (7) |
---|
| 778 | * i |
---|
| 779 | * |
---|
| 780 | * Therefore: |
---|
| 781 | * |
---|
| 782 | * lambda[q] = - lambda[s], (8) |
---|
| 783 | * |
---|
| 784 | * where lambda[q] is multiplier for column q, lambda[s] is multiplier |
---|
| 785 | * for column s. |
---|
| 786 | * |
---|
| 787 | * RECOVERING BASIC SOLUTION |
---|
| 788 | * |
---|
| 789 | * With respect to (8) status of column q in solution to the original |
---|
| 790 | * problem is determined by status of column s in solution to the |
---|
| 791 | * transformed problem as follows: |
---|
| 792 | * |
---|
| 793 | * +-----------------------+--------------------+ |
---|
| 794 | * | Status of column s | Status of column q | |
---|
| 795 | * | (transformed problem) | (original problem) | |
---|
| 796 | * +-----------------------+--------------------+ |
---|
| 797 | * | GLP_BS | GLP_BS | |
---|
| 798 | * | GLP_NL | GLP_NU | |
---|
| 799 | * | GLP_NU | GLP_NL | |
---|
| 800 | * +-----------------------+--------------------+ |
---|
| 801 | * |
---|
| 802 | * Value of column q is computed with formula (2). |
---|
| 803 | * |
---|
| 804 | * RECOVERING INTERIOR-POINT SOLUTION |
---|
| 805 | * |
---|
| 806 | * Value of column q is computed with formula (2). |
---|
| 807 | * |
---|
| 808 | * RECOVERING MIP SOLUTION |
---|
| 809 | * |
---|
| 810 | * Value of column q is computed with formula (2). */ |
---|
| 811 | |
---|
| 812 | static int rcv_ubnd_col(NPP *npp, void *info); |
---|
| 813 | |
---|
| 814 | void npp_ubnd_col(NPP *npp, NPPCOL *q) |
---|
| 815 | { /* process column with upper bound */ |
---|
| 816 | struct bnd_col *info; |
---|
| 817 | NPPROW *i; |
---|
| 818 | NPPAIJ *aij; |
---|
| 819 | /* the column must have upper bound */ |
---|
| 820 | xassert(q->ub != +DBL_MAX); |
---|
| 821 | xassert(q->lb < q->ub); |
---|
| 822 | /* create transformation stack entry */ |
---|
| 823 | info = npp_push_tse(npp, |
---|
| 824 | rcv_ubnd_col, sizeof(struct bnd_col)); |
---|
| 825 | info->q = q->j; |
---|
| 826 | info->bnd = q->ub; |
---|
| 827 | /* substitute x[q] into objective row */ |
---|
| 828 | npp->c0 += q->coef * q->ub; |
---|
| 829 | q->coef = -q->coef; |
---|
| 830 | /* substitute x[q] into constraint rows */ |
---|
| 831 | for (aij = q->ptr; aij != NULL; aij = aij->c_next) |
---|
| 832 | { i = aij->row; |
---|
| 833 | if (i->lb == i->ub) |
---|
| 834 | i->ub = (i->lb -= aij->val * q->ub); |
---|
| 835 | else |
---|
| 836 | { if (i->lb != -DBL_MAX) |
---|
| 837 | i->lb -= aij->val * q->ub; |
---|
| 838 | if (i->ub != +DBL_MAX) |
---|
| 839 | i->ub -= aij->val * q->ub; |
---|
| 840 | } |
---|
| 841 | aij->val = -aij->val; |
---|
| 842 | } |
---|
| 843 | /* column x[q] becomes column s */ |
---|
| 844 | if (q->lb != -DBL_MAX) |
---|
| 845 | q->ub -= q->lb; |
---|
| 846 | else |
---|
| 847 | q->ub = +DBL_MAX; |
---|
| 848 | q->lb = 0.0; |
---|
| 849 | return; |
---|
| 850 | } |
---|
| 851 | |
---|
| 852 | static int rcv_ubnd_col(NPP *npp, void *_info) |
---|
| 853 | { /* recover column with upper bound */ |
---|
| 854 | struct bnd_col *info = _info; |
---|
| 855 | if (npp->sol == GLP_BS) |
---|
| 856 | { if (npp->c_stat[info->q] == GLP_BS) |
---|
| 857 | npp->c_stat[info->q] = GLP_BS; |
---|
| 858 | else if (npp->c_stat[info->q] == GLP_NL) |
---|
| 859 | npp->c_stat[info->q] = GLP_NU; |
---|
| 860 | else if (npp->c_stat[info->q] == GLP_NU) |
---|
| 861 | npp->c_stat[info->q] = GLP_NL; |
---|
| 862 | else |
---|
| 863 | { npp_error(); |
---|
| 864 | return 1; |
---|
| 865 | } |
---|
| 866 | } |
---|
| 867 | /* compute value of x[q] with formula (2) */ |
---|
| 868 | npp->c_value[info->q] = info->bnd - npp->c_value[info->q]; |
---|
| 869 | return 0; |
---|
| 870 | } |
---|
| 871 | |
---|
| 872 | /*********************************************************************** |
---|
| 873 | * NAME |
---|
| 874 | * |
---|
| 875 | * npp_dbnd_col - process non-negative column with upper bound |
---|
| 876 | * |
---|
| 877 | * SYNOPSIS |
---|
| 878 | * |
---|
| 879 | * #include "glpnpp.h" |
---|
| 880 | * void npp_dbnd_col(NPP *npp, NPPCOL *q); |
---|
| 881 | * |
---|
| 882 | * DESCRIPTION |
---|
| 883 | * |
---|
| 884 | * The routine npp_dbnd_col processes column q, which is non-negative |
---|
| 885 | * and has upper bound: |
---|
| 886 | * |
---|
| 887 | * 0 <= x[q] <= u[q], (1) |
---|
| 888 | * |
---|
| 889 | * where u[q] > 0. |
---|
| 890 | * |
---|
| 891 | * PROBLEM TRANSFORMATION |
---|
| 892 | * |
---|
| 893 | * Upper bound of column q can be replaced by the following equality |
---|
| 894 | * constraint: |
---|
| 895 | * |
---|
| 896 | * x[q] + s = u[q], (2) |
---|
| 897 | * |
---|
| 898 | * where s >= 0 is a non-negative complement variable. |
---|
| 899 | * |
---|
| 900 | * Since in the primal system along with new row (2) there appears a |
---|
| 901 | * new column s having the only non-zero coefficient in this row, in |
---|
| 902 | * the dual system there appears a new row: |
---|
| 903 | * |
---|
| 904 | * (+1)pi + lambda[s] = 0, (3) |
---|
| 905 | * |
---|
| 906 | * where (+1) is coefficient at column s in row (2), pi is multiplier |
---|
| 907 | * for row (2), lambda[s] is multiplier for column s, 0 is coefficient |
---|
| 908 | * at column s in the objective row. |
---|
| 909 | * |
---|
| 910 | * RECOVERING BASIC SOLUTION |
---|
| 911 | * |
---|
| 912 | * Status of column q in solution to the original problem is determined |
---|
| 913 | * by its status and status of column s in solution to the transformed |
---|
| 914 | * problem as follows: |
---|
| 915 | * |
---|
| 916 | * +-----------------------------------+------------------+ |
---|
| 917 | * | Transformed problem | Original problem | |
---|
| 918 | * +-----------------+-----------------+------------------+ |
---|
| 919 | * | Status of col q | Status of col s | Status of col q | |
---|
| 920 | * +-----------------+-----------------+------------------+ |
---|
| 921 | * | GLP_BS | GLP_BS | GLP_BS | |
---|
| 922 | * | GLP_BS | GLP_NL | GLP_NU | |
---|
| 923 | * | GLP_NL | GLP_BS | GLP_NL | |
---|
| 924 | * | GLP_NL | GLP_NL | GLP_NL (*) | |
---|
| 925 | * +-----------------+-----------------+------------------+ |
---|
| 926 | * |
---|
| 927 | * Value of column q in solution to the original problem is the same as |
---|
| 928 | * in solution to the transformed problem. |
---|
| 929 | * |
---|
| 930 | * 1. Formally, in solution to the transformed problem columns q and s |
---|
| 931 | * cannot be non-basic at the same time, since the constraint (2) |
---|
| 932 | * would be violated. However, if u[q] is close to zero, violation |
---|
| 933 | * may be less than a working precision even if both columns q and s |
---|
| 934 | * are non-basic. In this degenerate case row (2) can be only basic, |
---|
| 935 | * i.e. non-active constraint (otherwise corresponding row of the |
---|
| 936 | * basis matrix would be zero). This allows to pivot out auxiliary |
---|
| 937 | * variable and pivot in column s, in which case the row becomes |
---|
| 938 | * active while column s becomes basic. |
---|
| 939 | * |
---|
| 940 | * 2. If column q is integral, column s is also integral. |
---|
| 941 | * |
---|
| 942 | * RECOVERING INTERIOR-POINT SOLUTION |
---|
| 943 | * |
---|
| 944 | * Value of column q in solution to the original problem is the same as |
---|
| 945 | * in solution to the transformed problem. |
---|
| 946 | * |
---|
| 947 | * RECOVERING MIP SOLUTION |
---|
| 948 | * |
---|
| 949 | * Value of column q in solution to the original problem is the same as |
---|
| 950 | * in solution to the transformed problem. */ |
---|
| 951 | |
---|
| 952 | struct dbnd_col |
---|
| 953 | { /* double-bounded column */ |
---|
| 954 | int q; |
---|
| 955 | /* column reference number for variable x[q] */ |
---|
| 956 | int s; |
---|
| 957 | /* column reference number for complement variable s */ |
---|
| 958 | }; |
---|
| 959 | |
---|
| 960 | static int rcv_dbnd_col(NPP *npp, void *info); |
---|
| 961 | |
---|
| 962 | void npp_dbnd_col(NPP *npp, NPPCOL *q) |
---|
| 963 | { /* process non-negative column with upper bound */ |
---|
| 964 | struct dbnd_col *info; |
---|
| 965 | NPPROW *p; |
---|
| 966 | NPPCOL *s; |
---|
| 967 | /* the column must be non-negative with upper bound */ |
---|
| 968 | xassert(q->lb == 0.0); |
---|
| 969 | xassert(q->ub > 0.0); |
---|
| 970 | xassert(q->ub != +DBL_MAX); |
---|
| 971 | /* create variable s */ |
---|
| 972 | s = npp_add_col(npp); |
---|
| 973 | s->is_int = q->is_int; |
---|
| 974 | s->lb = 0.0, s->ub = +DBL_MAX; |
---|
| 975 | /* create equality constraint (2) */ |
---|
| 976 | p = npp_add_row(npp); |
---|
| 977 | p->lb = p->ub = q->ub; |
---|
| 978 | npp_add_aij(npp, p, q, +1.0); |
---|
| 979 | npp_add_aij(npp, p, s, +1.0); |
---|
| 980 | /* create transformation stack entry */ |
---|
| 981 | info = npp_push_tse(npp, |
---|
| 982 | rcv_dbnd_col, sizeof(struct dbnd_col)); |
---|
| 983 | info->q = q->j; |
---|
| 984 | info->s = s->j; |
---|
| 985 | /* remove upper bound of x[q] */ |
---|
| 986 | q->ub = +DBL_MAX; |
---|
| 987 | return; |
---|
| 988 | } |
---|
| 989 | |
---|
| 990 | static int rcv_dbnd_col(NPP *npp, void *_info) |
---|
| 991 | { /* recover non-negative column with upper bound */ |
---|
| 992 | struct dbnd_col *info = _info; |
---|
| 993 | if (npp->sol == GLP_BS) |
---|
| 994 | { if (npp->c_stat[info->q] == GLP_BS) |
---|
| 995 | { if (npp->c_stat[info->s] == GLP_BS) |
---|
| 996 | npp->c_stat[info->q] = GLP_BS; |
---|
| 997 | else if (npp->c_stat[info->s] == GLP_NL) |
---|
| 998 | npp->c_stat[info->q] = GLP_NU; |
---|
| 999 | else |
---|
| 1000 | { npp_error(); |
---|
| 1001 | return 1; |
---|
| 1002 | } |
---|
| 1003 | } |
---|
| 1004 | else if (npp->c_stat[info->q] == GLP_NL) |
---|
| 1005 | { if (npp->c_stat[info->s] == GLP_BS || |
---|
| 1006 | npp->c_stat[info->s] == GLP_NL) |
---|
| 1007 | npp->c_stat[info->q] = GLP_NL; |
---|
| 1008 | else |
---|
| 1009 | { npp_error(); |
---|
| 1010 | return 1; |
---|
| 1011 | } |
---|
| 1012 | } |
---|
| 1013 | else |
---|
| 1014 | { npp_error(); |
---|
| 1015 | return 1; |
---|
| 1016 | } |
---|
| 1017 | } |
---|
| 1018 | return 0; |
---|
| 1019 | } |
---|
| 1020 | |
---|
| 1021 | /*********************************************************************** |
---|
| 1022 | * NAME |
---|
| 1023 | * |
---|
| 1024 | * npp_fixed_col - process fixed column |
---|
| 1025 | * |
---|
| 1026 | * SYNOPSIS |
---|
| 1027 | * |
---|
| 1028 | * #include "glpnpp.h" |
---|
| 1029 | * void npp_fixed_col(NPP *npp, NPPCOL *q); |
---|
| 1030 | * |
---|
| 1031 | * DESCRIPTION |
---|
| 1032 | * |
---|
| 1033 | * The routine npp_fixed_col processes column q, which is fixed: |
---|
| 1034 | * |
---|
| 1035 | * x[q] = s[q], (1) |
---|
| 1036 | * |
---|
| 1037 | * where s[q] is a fixed column value. |
---|
| 1038 | * |
---|
| 1039 | * PROBLEM TRANSFORMATION |
---|
| 1040 | * |
---|
| 1041 | * The value of a fixed column can be substituted into the objective |
---|
| 1042 | * and constraint rows that allows removing the column from the problem. |
---|
| 1043 | * |
---|
| 1044 | * Substituting x[q] = s[q] into the objective row, we have: |
---|
| 1045 | * |
---|
| 1046 | * z = sum c[j] x[j] + c0 = |
---|
| 1047 | * j |
---|
| 1048 | * |
---|
| 1049 | * = sum c[j] x[j] + c[q] x[q] + c0 = |
---|
| 1050 | * j!=q |
---|
| 1051 | * |
---|
| 1052 | * = sum c[j] x[j] + c[q] s[q] + c0 = |
---|
| 1053 | * j!=q |
---|
| 1054 | * |
---|
| 1055 | * = sum c[j] x[j] + c~0, |
---|
| 1056 | * j!=q |
---|
| 1057 | * |
---|
| 1058 | * where |
---|
| 1059 | * |
---|
| 1060 | * c~0 = c0 + c[q] s[q] (2) |
---|
| 1061 | * |
---|
| 1062 | * is the constant term of the objective in the transformed problem. |
---|
| 1063 | * Similarly, substituting x[q] = s[q] into constraint row i, we have: |
---|
| 1064 | * |
---|
| 1065 | * L[i] <= sum a[i,j] x[j] <= U[i] ==> |
---|
| 1066 | * j |
---|
| 1067 | * |
---|
| 1068 | * L[i] <= sum a[i,j] x[j] + a[i,q] x[q] <= U[i] ==> |
---|
| 1069 | * j!=q |
---|
| 1070 | * |
---|
| 1071 | * L[i] <= sum a[i,j] x[j] + a[i,q] s[q] <= U[i] ==> |
---|
| 1072 | * j!=q |
---|
| 1073 | * |
---|
| 1074 | * L~[i] <= sum a[i,j] x[j] + a[i,q] s <= U~[i], |
---|
| 1075 | * j!=q |
---|
| 1076 | * |
---|
| 1077 | * where |
---|
| 1078 | * |
---|
| 1079 | * L~[i] = L[i] - a[i,q] s[q], U~[i] = U[i] - a[i,q] s[q] (3) |
---|
| 1080 | * |
---|
| 1081 | * are lower and upper bounds of row i in the transformed problem, |
---|
| 1082 | * resp. |
---|
| 1083 | * |
---|
| 1084 | * RECOVERING BASIC SOLUTION |
---|
| 1085 | * |
---|
| 1086 | * Column q is assigned status GLP_NS and its value is assigned s[q]. |
---|
| 1087 | * |
---|
| 1088 | * RECOVERING INTERIOR-POINT SOLUTION |
---|
| 1089 | * |
---|
| 1090 | * Value of column q is assigned s[q]. |
---|
| 1091 | * |
---|
| 1092 | * RECOVERING MIP SOLUTION |
---|
| 1093 | * |
---|
| 1094 | * Value of column q is assigned s[q]. */ |
---|
| 1095 | |
---|
| 1096 | struct fixed_col |
---|
| 1097 | { /* fixed column */ |
---|
| 1098 | int q; |
---|
| 1099 | /* column reference number for variable x[q] */ |
---|
| 1100 | double s; |
---|
| 1101 | /* value, at which x[q] is fixed */ |
---|
| 1102 | }; |
---|
| 1103 | |
---|
| 1104 | static int rcv_fixed_col(NPP *npp, void *info); |
---|
| 1105 | |
---|
| 1106 | void npp_fixed_col(NPP *npp, NPPCOL *q) |
---|
| 1107 | { /* process fixed column */ |
---|
| 1108 | struct fixed_col *info; |
---|
| 1109 | NPPROW *i; |
---|
| 1110 | NPPAIJ *aij; |
---|
| 1111 | /* the column must be fixed */ |
---|
| 1112 | xassert(q->lb == q->ub); |
---|
| 1113 | /* create transformation stack entry */ |
---|
| 1114 | info = npp_push_tse(npp, |
---|
| 1115 | rcv_fixed_col, sizeof(struct fixed_col)); |
---|
| 1116 | info->q = q->j; |
---|
| 1117 | info->s = q->lb; |
---|
| 1118 | /* substitute x[q] = s[q] into objective row */ |
---|
| 1119 | npp->c0 += q->coef * q->lb; |
---|
| 1120 | /* substitute x[q] = s[q] into constraint rows */ |
---|
| 1121 | for (aij = q->ptr; aij != NULL; aij = aij->c_next) |
---|
| 1122 | { i = aij->row; |
---|
| 1123 | if (i->lb == i->ub) |
---|
| 1124 | i->ub = (i->lb -= aij->val * q->lb); |
---|
| 1125 | else |
---|
| 1126 | { if (i->lb != -DBL_MAX) |
---|
| 1127 | i->lb -= aij->val * q->lb; |
---|
| 1128 | if (i->ub != +DBL_MAX) |
---|
| 1129 | i->ub -= aij->val * q->lb; |
---|
| 1130 | } |
---|
| 1131 | } |
---|
| 1132 | /* remove the column from the problem */ |
---|
| 1133 | npp_del_col(npp, q); |
---|
| 1134 | return; |
---|
| 1135 | } |
---|
| 1136 | |
---|
| 1137 | static int rcv_fixed_col(NPP *npp, void *_info) |
---|
| 1138 | { /* recover fixed column */ |
---|
| 1139 | struct fixed_col *info = _info; |
---|
| 1140 | if (npp->sol == GLP_SOL) |
---|
| 1141 | npp->c_stat[info->q] = GLP_NS; |
---|
| 1142 | npp->c_value[info->q] = info->s; |
---|
| 1143 | return 0; |
---|
| 1144 | } |
---|
| 1145 | |
---|
| 1146 | /*********************************************************************** |
---|
| 1147 | * NAME |
---|
| 1148 | * |
---|
| 1149 | * npp_make_equality - process row with almost identical bounds |
---|
| 1150 | * |
---|
| 1151 | * SYNOPSIS |
---|
| 1152 | * |
---|
| 1153 | * #include "glpnpp.h" |
---|
| 1154 | * int npp_make_equality(NPP *npp, NPPROW *p); |
---|
| 1155 | * |
---|
| 1156 | * DESCRIPTION |
---|
| 1157 | * |
---|
| 1158 | * The routine npp_make_equality processes row p: |
---|
| 1159 | * |
---|
| 1160 | * L[p] <= sum a[p,j] x[j] <= U[p], (1) |
---|
| 1161 | * j |
---|
| 1162 | * |
---|
| 1163 | * where -oo < L[p] < U[p] < +oo, i.e. which is double-sided inequality |
---|
| 1164 | * constraint. |
---|
| 1165 | * |
---|
| 1166 | * RETURNS |
---|
| 1167 | * |
---|
| 1168 | * 0 - row bounds have not been changed; |
---|
| 1169 | * |
---|
| 1170 | * 1 - row has been replaced by equality constraint. |
---|
| 1171 | * |
---|
| 1172 | * PROBLEM TRANSFORMATION |
---|
| 1173 | * |
---|
| 1174 | * If bounds of row (1) are very close to each other: |
---|
| 1175 | * |
---|
| 1176 | * U[p] - L[p] <= eps, (2) |
---|
| 1177 | * |
---|
| 1178 | * where eps is an absolute tolerance for row value, the row can be |
---|
| 1179 | * replaced by the following almost equivalent equiality constraint: |
---|
| 1180 | * |
---|
| 1181 | * sum a[p,j] x[j] = b, (3) |
---|
| 1182 | * j |
---|
| 1183 | * |
---|
| 1184 | * where b = (L[p] + U[p]) / 2. If the right-hand side in (3) happens |
---|
| 1185 | * to be very close to its nearest integer: |
---|
| 1186 | * |
---|
| 1187 | * |b - floor(b + 0.5)| <= eps, (4) |
---|
| 1188 | * |
---|
| 1189 | * it is reasonable to use this nearest integer as the right-hand side. |
---|
| 1190 | * |
---|
| 1191 | * RECOVERING BASIC SOLUTION |
---|
| 1192 | * |
---|
| 1193 | * Status of row p in solution to the original problem is determined |
---|
| 1194 | * by its status and the sign of its multiplier pi[p] in solution to |
---|
| 1195 | * the transformed problem as follows: |
---|
| 1196 | * |
---|
| 1197 | * +-----------------------+---------+--------------------+ |
---|
| 1198 | * | Status of row p | Sign of | Status of row p | |
---|
| 1199 | * | (transformed problem) | pi[p] | (original problem) | |
---|
| 1200 | * +-----------------------+---------+--------------------+ |
---|
| 1201 | * | GLP_BS | + / - | GLP_BS | |
---|
| 1202 | * | GLP_NS | + | GLP_NL | |
---|
| 1203 | * | GLP_NS | - | GLP_NU | |
---|
| 1204 | * +-----------------------+---------+--------------------+ |
---|
| 1205 | * |
---|
| 1206 | * Value of row multiplier pi[p] in solution to the original problem is |
---|
| 1207 | * the same as in solution to the transformed problem. |
---|
| 1208 | * |
---|
| 1209 | * RECOVERING INTERIOR POINT SOLUTION |
---|
| 1210 | * |
---|
| 1211 | * Value of row multiplier pi[p] in solution to the original problem is |
---|
| 1212 | * the same as in solution to the transformed problem. |
---|
| 1213 | * |
---|
| 1214 | * RECOVERING MIP SOLUTION |
---|
| 1215 | * |
---|
| 1216 | * None needed. */ |
---|
| 1217 | |
---|
| 1218 | struct make_equality |
---|
| 1219 | { /* row with almost identical bounds */ |
---|
| 1220 | int p; |
---|
| 1221 | /* row reference number */ |
---|
| 1222 | }; |
---|
| 1223 | |
---|
| 1224 | static int rcv_make_equality(NPP *npp, void *info); |
---|
| 1225 | |
---|
| 1226 | int npp_make_equality(NPP *npp, NPPROW *p) |
---|
| 1227 | { /* process row with almost identical bounds */ |
---|
| 1228 | struct make_equality *info; |
---|
| 1229 | double b, eps, nint; |
---|
| 1230 | /* the row must be double-sided inequality */ |
---|
| 1231 | xassert(p->lb != -DBL_MAX); |
---|
| 1232 | xassert(p->ub != +DBL_MAX); |
---|
| 1233 | xassert(p->lb < p->ub); |
---|
| 1234 | /* check row bounds */ |
---|
| 1235 | eps = 1e-9 + 1e-12 * fabs(p->lb); |
---|
| 1236 | if (p->ub - p->lb > eps) return 0; |
---|
| 1237 | /* row bounds are very close to each other */ |
---|
| 1238 | /* create transformation stack entry */ |
---|
| 1239 | info = npp_push_tse(npp, |
---|
| 1240 | rcv_make_equality, sizeof(struct make_equality)); |
---|
| 1241 | info->p = p->i; |
---|
| 1242 | /* compute right-hand side */ |
---|
| 1243 | b = 0.5 * (p->ub + p->lb); |
---|
| 1244 | nint = floor(b + 0.5); |
---|
| 1245 | if (fabs(b - nint) <= eps) b = nint; |
---|
| 1246 | /* replace row p by almost equivalent equality constraint */ |
---|
| 1247 | p->lb = p->ub = b; |
---|
| 1248 | return 1; |
---|
| 1249 | } |
---|
| 1250 | |
---|
| 1251 | int rcv_make_equality(NPP *npp, void *_info) |
---|
| 1252 | { /* recover row with almost identical bounds */ |
---|
| 1253 | struct make_equality *info = _info; |
---|
| 1254 | if (npp->sol == GLP_SOL) |
---|
| 1255 | { if (npp->r_stat[info->p] == GLP_BS) |
---|
| 1256 | npp->r_stat[info->p] = GLP_BS; |
---|
| 1257 | else if (npp->r_stat[info->p] == GLP_NS) |
---|
| 1258 | { if (npp->r_pi[info->p] >= 0.0) |
---|
| 1259 | npp->r_stat[info->p] = GLP_NL; |
---|
| 1260 | else |
---|
| 1261 | npp->r_stat[info->p] = GLP_NU; |
---|
| 1262 | } |
---|
| 1263 | else |
---|
| 1264 | { npp_error(); |
---|
| 1265 | return 1; |
---|
| 1266 | } |
---|
| 1267 | } |
---|
| 1268 | return 0; |
---|
| 1269 | } |
---|
| 1270 | |
---|
| 1271 | /*********************************************************************** |
---|
| 1272 | * NAME |
---|
| 1273 | * |
---|
| 1274 | * npp_make_fixed - process column with almost identical bounds |
---|
| 1275 | * |
---|
| 1276 | * SYNOPSIS |
---|
| 1277 | * |
---|
| 1278 | * #include "glpnpp.h" |
---|
| 1279 | * int npp_make_fixed(NPP *npp, NPPCOL *q); |
---|
| 1280 | * |
---|
| 1281 | * DESCRIPTION |
---|
| 1282 | * |
---|
| 1283 | * The routine npp_make_fixed processes column q: |
---|
| 1284 | * |
---|
| 1285 | * l[q] <= x[q] <= u[q], (1) |
---|
| 1286 | * |
---|
| 1287 | * where -oo < l[q] < u[q] < +oo, i.e. which has both lower and upper |
---|
| 1288 | * bounds. |
---|
| 1289 | * |
---|
| 1290 | * RETURNS |
---|
| 1291 | * |
---|
| 1292 | * 0 - column bounds have not been changed; |
---|
| 1293 | * |
---|
| 1294 | * 1 - column has been fixed. |
---|
| 1295 | * |
---|
| 1296 | * PROBLEM TRANSFORMATION |
---|
| 1297 | * |
---|
| 1298 | * If bounds of column (1) are very close to each other: |
---|
| 1299 | * |
---|
| 1300 | * u[q] - l[q] <= eps, (2) |
---|
| 1301 | * |
---|
| 1302 | * where eps is an absolute tolerance for column value, the column can |
---|
| 1303 | * be fixed: |
---|
| 1304 | * |
---|
| 1305 | * x[q] = s[q], (3) |
---|
| 1306 | * |
---|
| 1307 | * where s[q] = (l[q] + u[q]) / 2. And if the fixed column value s[q] |
---|
| 1308 | * happens to be very close to its nearest integer: |
---|
| 1309 | * |
---|
| 1310 | * |s[q] - floor(s[q] + 0.5)| <= eps, (4) |
---|
| 1311 | * |
---|
| 1312 | * it is reasonable to use this nearest integer as the fixed value. |
---|
| 1313 | * |
---|
| 1314 | * RECOVERING BASIC SOLUTION |
---|
| 1315 | * |
---|
| 1316 | * In the dual system of the original (as well as transformed) problem |
---|
| 1317 | * column q corresponds to the following row: |
---|
| 1318 | * |
---|
| 1319 | * sum a[i,q] pi[i] + lambda[q] = c[q]. (5) |
---|
| 1320 | * i |
---|
| 1321 | * |
---|
| 1322 | * Since multipliers pi[i] are known for all rows from solution to the |
---|
| 1323 | * transformed problem, formula (5) allows computing value of multiplier |
---|
| 1324 | * (reduced cost) for column q: |
---|
| 1325 | * |
---|
| 1326 | * lambda[q] = c[q] - sum a[i,q] pi[i]. (6) |
---|
| 1327 | * i |
---|
| 1328 | * |
---|
| 1329 | * Status of column q in solution to the original problem is determined |
---|
| 1330 | * by its status and the sign of its multiplier lambda[q] in solution to |
---|
| 1331 | * the transformed problem as follows: |
---|
| 1332 | * |
---|
| 1333 | * +-----------------------+-----------+--------------------+ |
---|
| 1334 | * | Status of column q | Sign of | Status of column q | |
---|
| 1335 | * | (transformed problem) | lambda[q] | (original problem) | |
---|
| 1336 | * +-----------------------+-----------+--------------------+ |
---|
| 1337 | * | GLP_BS | + / - | GLP_BS | |
---|
| 1338 | * | GLP_NS | + | GLP_NL | |
---|
| 1339 | * | GLP_NS | - | GLP_NU | |
---|
| 1340 | * +-----------------------+-----------+--------------------+ |
---|
| 1341 | * |
---|
| 1342 | * Value of column q in solution to the original problem is the same as |
---|
| 1343 | * in solution to the transformed problem. |
---|
| 1344 | * |
---|
| 1345 | * RECOVERING INTERIOR POINT SOLUTION |
---|
| 1346 | * |
---|
| 1347 | * Value of column q in solution to the original problem is the same as |
---|
| 1348 | * in solution to the transformed problem. |
---|
| 1349 | * |
---|
| 1350 | * RECOVERING MIP SOLUTION |
---|
| 1351 | * |
---|
| 1352 | * None needed. */ |
---|
| 1353 | |
---|
| 1354 | struct make_fixed |
---|
| 1355 | { /* column with almost identical bounds */ |
---|
| 1356 | int q; |
---|
| 1357 | /* column reference number */ |
---|
| 1358 | double c; |
---|
| 1359 | /* objective coefficient at x[q] */ |
---|
| 1360 | NPPLFE *ptr; |
---|
| 1361 | /* list of non-zero coefficients a[i,q] */ |
---|
| 1362 | }; |
---|
| 1363 | |
---|
| 1364 | static int rcv_make_fixed(NPP *npp, void *info); |
---|
| 1365 | |
---|
| 1366 | int npp_make_fixed(NPP *npp, NPPCOL *q) |
---|
| 1367 | { /* process column with almost identical bounds */ |
---|
| 1368 | struct make_fixed *info; |
---|
| 1369 | NPPAIJ *aij; |
---|
| 1370 | NPPLFE *lfe; |
---|
| 1371 | double s, eps, nint; |
---|
| 1372 | /* the column must be double-bounded */ |
---|
| 1373 | xassert(q->lb != -DBL_MAX); |
---|
| 1374 | xassert(q->ub != +DBL_MAX); |
---|
| 1375 | xassert(q->lb < q->ub); |
---|
| 1376 | /* check column bounds */ |
---|
| 1377 | eps = 1e-9 + 1e-12 * fabs(q->lb); |
---|
| 1378 | if (q->ub - q->lb > eps) return 0; |
---|
| 1379 | /* column bounds are very close to each other */ |
---|
| 1380 | /* create transformation stack entry */ |
---|
| 1381 | info = npp_push_tse(npp, |
---|
| 1382 | rcv_make_fixed, sizeof(struct make_fixed)); |
---|
| 1383 | info->q = q->j; |
---|
| 1384 | info->c = q->coef; |
---|
| 1385 | info->ptr = NULL; |
---|
| 1386 | /* save column coefficients a[i,q] (needed for basic solution |
---|
| 1387 | only) */ |
---|
| 1388 | if (npp->sol == GLP_SOL) |
---|
| 1389 | { for (aij = q->ptr; aij != NULL; aij = aij->c_next) |
---|
| 1390 | { lfe = dmp_get_atom(npp->stack, sizeof(NPPLFE)); |
---|
| 1391 | lfe->ref = aij->row->i; |
---|
| 1392 | lfe->val = aij->val; |
---|
| 1393 | lfe->next = info->ptr; |
---|
| 1394 | info->ptr = lfe; |
---|
| 1395 | } |
---|
| 1396 | } |
---|
| 1397 | /* compute column fixed value */ |
---|
| 1398 | s = 0.5 * (q->ub + q->lb); |
---|
| 1399 | nint = floor(s + 0.5); |
---|
| 1400 | if (fabs(s - nint) <= eps) s = nint; |
---|
| 1401 | /* make column q fixed */ |
---|
| 1402 | q->lb = q->ub = s; |
---|
| 1403 | return 1; |
---|
| 1404 | } |
---|
| 1405 | |
---|
| 1406 | static int rcv_make_fixed(NPP *npp, void *_info) |
---|
| 1407 | { /* recover column with almost identical bounds */ |
---|
| 1408 | struct make_fixed *info = _info; |
---|
| 1409 | NPPLFE *lfe; |
---|
| 1410 | double lambda; |
---|
| 1411 | if (npp->sol == GLP_SOL) |
---|
| 1412 | { if (npp->c_stat[info->q] == GLP_BS) |
---|
| 1413 | npp->c_stat[info->q] = GLP_BS; |
---|
| 1414 | else if (npp->c_stat[info->q] == GLP_NS) |
---|
| 1415 | { /* compute multiplier for column q with formula (6) */ |
---|
| 1416 | lambda = info->c; |
---|
| 1417 | for (lfe = info->ptr; lfe != NULL; lfe = lfe->next) |
---|
| 1418 | lambda -= lfe->val * npp->r_pi[lfe->ref]; |
---|
| 1419 | /* assign status to non-basic column */ |
---|
| 1420 | if (lambda >= 0.0) |
---|
| 1421 | npp->c_stat[info->q] = GLP_NL; |
---|
| 1422 | else |
---|
| 1423 | npp->c_stat[info->q] = GLP_NU; |
---|
| 1424 | } |
---|
| 1425 | else |
---|
| 1426 | { npp_error(); |
---|
| 1427 | return 1; |
---|
| 1428 | } |
---|
| 1429 | } |
---|
| 1430 | return 0; |
---|
| 1431 | } |
---|
| 1432 | |
---|
| 1433 | /* eof */ |
---|