[1] | 1 | /* glpscl.c */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpapi.h" |
---|
| 26 | |
---|
| 27 | /*********************************************************************** |
---|
| 28 | * min_row_aij - determine minimal |a[i,j]| in i-th row |
---|
| 29 | * |
---|
| 30 | * This routine returns minimal magnitude of (non-zero) constraint |
---|
| 31 | * coefficients in i-th row of the constraint matrix. |
---|
| 32 | * |
---|
| 33 | * If the parameter scaled is zero, the original constraint matrix A is |
---|
| 34 | * assumed. Otherwise, the scaled constraint matrix R*A*S is assumed. |
---|
| 35 | * |
---|
| 36 | * If i-th row of the matrix is empty, the routine returns 1. */ |
---|
| 37 | |
---|
| 38 | static double min_row_aij(glp_prob *lp, int i, int scaled) |
---|
| 39 | { GLPAIJ *aij; |
---|
| 40 | double min_aij, temp; |
---|
| 41 | xassert(1 <= i && i <= lp->m); |
---|
| 42 | min_aij = 1.0; |
---|
| 43 | for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next) |
---|
| 44 | { temp = fabs(aij->val); |
---|
| 45 | if (scaled) temp *= (aij->row->rii * aij->col->sjj); |
---|
| 46 | if (aij->r_prev == NULL || min_aij > temp) |
---|
| 47 | min_aij = temp; |
---|
| 48 | } |
---|
| 49 | return min_aij; |
---|
| 50 | } |
---|
| 51 | |
---|
| 52 | /*********************************************************************** |
---|
| 53 | * max_row_aij - determine maximal |a[i,j]| in i-th row |
---|
| 54 | * |
---|
| 55 | * This routine returns maximal magnitude of (non-zero) constraint |
---|
| 56 | * coefficients in i-th row of the constraint matrix. |
---|
| 57 | * |
---|
| 58 | * If the parameter scaled is zero, the original constraint matrix A is |
---|
| 59 | * assumed. Otherwise, the scaled constraint matrix R*A*S is assumed. |
---|
| 60 | * |
---|
| 61 | * If i-th row of the matrix is empty, the routine returns 1. */ |
---|
| 62 | |
---|
| 63 | static double max_row_aij(glp_prob *lp, int i, int scaled) |
---|
| 64 | { GLPAIJ *aij; |
---|
| 65 | double max_aij, temp; |
---|
| 66 | xassert(1 <= i && i <= lp->m); |
---|
| 67 | max_aij = 1.0; |
---|
| 68 | for (aij = lp->row[i]->ptr; aij != NULL; aij = aij->r_next) |
---|
| 69 | { temp = fabs(aij->val); |
---|
| 70 | if (scaled) temp *= (aij->row->rii * aij->col->sjj); |
---|
| 71 | if (aij->r_prev == NULL || max_aij < temp) |
---|
| 72 | max_aij = temp; |
---|
| 73 | } |
---|
| 74 | return max_aij; |
---|
| 75 | } |
---|
| 76 | |
---|
| 77 | /*********************************************************************** |
---|
| 78 | * min_col_aij - determine minimal |a[i,j]| in j-th column |
---|
| 79 | * |
---|
| 80 | * This routine returns minimal magnitude of (non-zero) constraint |
---|
| 81 | * coefficients in j-th column of the constraint matrix. |
---|
| 82 | * |
---|
| 83 | * If the parameter scaled is zero, the original constraint matrix A is |
---|
| 84 | * assumed. Otherwise, the scaled constraint matrix R*A*S is assumed. |
---|
| 85 | * |
---|
| 86 | * If j-th column of the matrix is empty, the routine returns 1. */ |
---|
| 87 | |
---|
| 88 | static double min_col_aij(glp_prob *lp, int j, int scaled) |
---|
| 89 | { GLPAIJ *aij; |
---|
| 90 | double min_aij, temp; |
---|
| 91 | xassert(1 <= j && j <= lp->n); |
---|
| 92 | min_aij = 1.0; |
---|
| 93 | for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next) |
---|
| 94 | { temp = fabs(aij->val); |
---|
| 95 | if (scaled) temp *= (aij->row->rii * aij->col->sjj); |
---|
| 96 | if (aij->c_prev == NULL || min_aij > temp) |
---|
| 97 | min_aij = temp; |
---|
| 98 | } |
---|
| 99 | return min_aij; |
---|
| 100 | } |
---|
| 101 | |
---|
| 102 | /*********************************************************************** |
---|
| 103 | * max_col_aij - determine maximal |a[i,j]| in j-th column |
---|
| 104 | * |
---|
| 105 | * This routine returns maximal magnitude of (non-zero) constraint |
---|
| 106 | * coefficients in j-th column of the constraint matrix. |
---|
| 107 | * |
---|
| 108 | * If the parameter scaled is zero, the original constraint matrix A is |
---|
| 109 | * assumed. Otherwise, the scaled constraint matrix R*A*S is assumed. |
---|
| 110 | * |
---|
| 111 | * If j-th column of the matrix is empty, the routine returns 1. */ |
---|
| 112 | |
---|
| 113 | static double max_col_aij(glp_prob *lp, int j, int scaled) |
---|
| 114 | { GLPAIJ *aij; |
---|
| 115 | double max_aij, temp; |
---|
| 116 | xassert(1 <= j && j <= lp->n); |
---|
| 117 | max_aij = 1.0; |
---|
| 118 | for (aij = lp->col[j]->ptr; aij != NULL; aij = aij->c_next) |
---|
| 119 | { temp = fabs(aij->val); |
---|
| 120 | if (scaled) temp *= (aij->row->rii * aij->col->sjj); |
---|
| 121 | if (aij->c_prev == NULL || max_aij < temp) |
---|
| 122 | max_aij = temp; |
---|
| 123 | } |
---|
| 124 | return max_aij; |
---|
| 125 | } |
---|
| 126 | |
---|
| 127 | /*********************************************************************** |
---|
| 128 | * min_mat_aij - determine minimal |a[i,j]| in constraint matrix |
---|
| 129 | * |
---|
| 130 | * This routine returns minimal magnitude of (non-zero) constraint |
---|
| 131 | * coefficients in the constraint matrix. |
---|
| 132 | * |
---|
| 133 | * If the parameter scaled is zero, the original constraint matrix A is |
---|
| 134 | * assumed. Otherwise, the scaled constraint matrix R*A*S is assumed. |
---|
| 135 | * |
---|
| 136 | * If the matrix is empty, the routine returns 1. */ |
---|
| 137 | |
---|
| 138 | static double min_mat_aij(glp_prob *lp, int scaled) |
---|
| 139 | { int i; |
---|
| 140 | double min_aij, temp; |
---|
| 141 | min_aij = 1.0; |
---|
| 142 | for (i = 1; i <= lp->m; i++) |
---|
| 143 | { temp = min_row_aij(lp, i, scaled); |
---|
| 144 | if (i == 1 || min_aij > temp) |
---|
| 145 | min_aij = temp; |
---|
| 146 | } |
---|
| 147 | return min_aij; |
---|
| 148 | } |
---|
| 149 | |
---|
| 150 | /*********************************************************************** |
---|
| 151 | * max_mat_aij - determine maximal |a[i,j]| in constraint matrix |
---|
| 152 | * |
---|
| 153 | * This routine returns maximal magnitude of (non-zero) constraint |
---|
| 154 | * coefficients in the constraint matrix. |
---|
| 155 | * |
---|
| 156 | * If the parameter scaled is zero, the original constraint matrix A is |
---|
| 157 | * assumed. Otherwise, the scaled constraint matrix R*A*S is assumed. |
---|
| 158 | * |
---|
| 159 | * If the matrix is empty, the routine returns 1. */ |
---|
| 160 | |
---|
| 161 | static double max_mat_aij(glp_prob *lp, int scaled) |
---|
| 162 | { int i; |
---|
| 163 | double max_aij, temp; |
---|
| 164 | max_aij = 1.0; |
---|
| 165 | for (i = 1; i <= lp->m; i++) |
---|
| 166 | { temp = max_row_aij(lp, i, scaled); |
---|
| 167 | if (i == 1 || max_aij < temp) |
---|
| 168 | max_aij = temp; |
---|
| 169 | } |
---|
| 170 | return max_aij; |
---|
| 171 | } |
---|
| 172 | |
---|
| 173 | /*********************************************************************** |
---|
| 174 | * eq_scaling - perform equilibration scaling |
---|
| 175 | * |
---|
| 176 | * This routine performs equilibration scaling of rows and columns of |
---|
| 177 | * the constraint matrix. |
---|
| 178 | * |
---|
| 179 | * If the parameter flag is zero, the routine scales rows at first and |
---|
| 180 | * then columns. Otherwise, the routine scales columns and then rows. |
---|
| 181 | * |
---|
| 182 | * Rows are scaled as follows: |
---|
| 183 | * |
---|
| 184 | * n |
---|
| 185 | * a'[i,j] = a[i,j] / max |a[i,j]|, i = 1,...,m. |
---|
| 186 | * j=1 |
---|
| 187 | * |
---|
| 188 | * This makes the infinity (maximum) norm of each row of the matrix |
---|
| 189 | * equal to 1. |
---|
| 190 | * |
---|
| 191 | * Columns are scaled as follows: |
---|
| 192 | * |
---|
| 193 | * n |
---|
| 194 | * a'[i,j] = a[i,j] / max |a[i,j]|, j = 1,...,n. |
---|
| 195 | * i=1 |
---|
| 196 | * |
---|
| 197 | * This makes the infinity (maximum) norm of each column of the matrix |
---|
| 198 | * equal to 1. */ |
---|
| 199 | |
---|
| 200 | static void eq_scaling(glp_prob *lp, int flag) |
---|
| 201 | { int i, j, pass; |
---|
| 202 | double temp; |
---|
| 203 | xassert(flag == 0 || flag == 1); |
---|
| 204 | for (pass = 0; pass <= 1; pass++) |
---|
| 205 | { if (pass == flag) |
---|
| 206 | { /* scale rows */ |
---|
| 207 | for (i = 1; i <= lp->m; i++) |
---|
| 208 | { temp = max_row_aij(lp, i, 1); |
---|
| 209 | glp_set_rii(lp, i, glp_get_rii(lp, i) / temp); |
---|
| 210 | } |
---|
| 211 | } |
---|
| 212 | else |
---|
| 213 | { /* scale columns */ |
---|
| 214 | for (j = 1; j <= lp->n; j++) |
---|
| 215 | { temp = max_col_aij(lp, j, 1); |
---|
| 216 | glp_set_sjj(lp, j, glp_get_sjj(lp, j) / temp); |
---|
| 217 | } |
---|
| 218 | } |
---|
| 219 | } |
---|
| 220 | return; |
---|
| 221 | } |
---|
| 222 | |
---|
| 223 | /*********************************************************************** |
---|
| 224 | * gm_scaling - perform geometric mean scaling |
---|
| 225 | * |
---|
| 226 | * This routine performs geometric mean scaling of rows and columns of |
---|
| 227 | * the constraint matrix. |
---|
| 228 | * |
---|
| 229 | * If the parameter flag is zero, the routine scales rows at first and |
---|
| 230 | * then columns. Otherwise, the routine scales columns and then rows. |
---|
| 231 | * |
---|
| 232 | * Rows are scaled as follows: |
---|
| 233 | * |
---|
| 234 | * a'[i,j] = a[i,j] / sqrt(alfa[i] * beta[i]), i = 1,...,m, |
---|
| 235 | * |
---|
| 236 | * where: |
---|
| 237 | * n n |
---|
| 238 | * alfa[i] = min |a[i,j]|, beta[i] = max |a[i,j]|. |
---|
| 239 | * j=1 j=1 |
---|
| 240 | * |
---|
| 241 | * This allows decreasing the ratio beta[i] / alfa[i] for each row of |
---|
| 242 | * the matrix. |
---|
| 243 | * |
---|
| 244 | * Columns are scaled as follows: |
---|
| 245 | * |
---|
| 246 | * a'[i,j] = a[i,j] / sqrt(alfa[j] * beta[j]), j = 1,...,n, |
---|
| 247 | * |
---|
| 248 | * where: |
---|
| 249 | * m m |
---|
| 250 | * alfa[j] = min |a[i,j]|, beta[j] = max |a[i,j]|. |
---|
| 251 | * i=1 i=1 |
---|
| 252 | * |
---|
| 253 | * This allows decreasing the ratio beta[j] / alfa[j] for each column |
---|
| 254 | * of the matrix. */ |
---|
| 255 | |
---|
| 256 | static void gm_scaling(glp_prob *lp, int flag) |
---|
| 257 | { int i, j, pass; |
---|
| 258 | double temp; |
---|
| 259 | xassert(flag == 0 || flag == 1); |
---|
| 260 | for (pass = 0; pass <= 1; pass++) |
---|
| 261 | { if (pass == flag) |
---|
| 262 | { /* scale rows */ |
---|
| 263 | for (i = 1; i <= lp->m; i++) |
---|
| 264 | { temp = min_row_aij(lp, i, 1) * max_row_aij(lp, i, 1); |
---|
| 265 | glp_set_rii(lp, i, glp_get_rii(lp, i) / sqrt(temp)); |
---|
| 266 | } |
---|
| 267 | } |
---|
| 268 | else |
---|
| 269 | { /* scale columns */ |
---|
| 270 | for (j = 1; j <= lp->n; j++) |
---|
| 271 | { temp = min_col_aij(lp, j, 1) * max_col_aij(lp, j, 1); |
---|
| 272 | glp_set_sjj(lp, j, glp_get_sjj(lp, j) / sqrt(temp)); |
---|
| 273 | } |
---|
| 274 | } |
---|
| 275 | } |
---|
| 276 | return; |
---|
| 277 | } |
---|
| 278 | |
---|
| 279 | /*********************************************************************** |
---|
| 280 | * max_row_ratio - determine worst scaling "quality" for rows |
---|
| 281 | * |
---|
| 282 | * This routine returns the worst scaling "quality" for rows of the |
---|
| 283 | * currently scaled constraint matrix: |
---|
| 284 | * |
---|
| 285 | * m |
---|
| 286 | * ratio = max ratio[i], |
---|
| 287 | * i=1 |
---|
| 288 | * where: |
---|
| 289 | * n n |
---|
| 290 | * ratio[i] = max |a[i,j]| / min |a[i,j]|, 1 <= i <= m, |
---|
| 291 | * j=1 j=1 |
---|
| 292 | * |
---|
| 293 | * is the scaling "quality" of i-th row. */ |
---|
| 294 | |
---|
| 295 | static double max_row_ratio(glp_prob *lp) |
---|
| 296 | { int i; |
---|
| 297 | double ratio, temp; |
---|
| 298 | ratio = 1.0; |
---|
| 299 | for (i = 1; i <= lp->m; i++) |
---|
| 300 | { temp = max_row_aij(lp, i, 1) / min_row_aij(lp, i, 1); |
---|
| 301 | if (i == 1 || ratio < temp) ratio = temp; |
---|
| 302 | } |
---|
| 303 | return ratio; |
---|
| 304 | } |
---|
| 305 | |
---|
| 306 | /*********************************************************************** |
---|
| 307 | * max_col_ratio - determine worst scaling "quality" for columns |
---|
| 308 | * |
---|
| 309 | * This routine returns the worst scaling "quality" for columns of the |
---|
| 310 | * currently scaled constraint matrix: |
---|
| 311 | * |
---|
| 312 | * n |
---|
| 313 | * ratio = max ratio[j], |
---|
| 314 | * j=1 |
---|
| 315 | * where: |
---|
| 316 | * m m |
---|
| 317 | * ratio[j] = max |a[i,j]| / min |a[i,j]|, 1 <= j <= n, |
---|
| 318 | * i=1 i=1 |
---|
| 319 | * |
---|
| 320 | * is the scaling "quality" of j-th column. */ |
---|
| 321 | |
---|
| 322 | static double max_col_ratio(glp_prob *lp) |
---|
| 323 | { int j; |
---|
| 324 | double ratio, temp; |
---|
| 325 | ratio = 1.0; |
---|
| 326 | for (j = 1; j <= lp->n; j++) |
---|
| 327 | { temp = max_col_aij(lp, j, 1) / min_col_aij(lp, j, 1); |
---|
| 328 | if (j == 1 || ratio < temp) ratio = temp; |
---|
| 329 | } |
---|
| 330 | return ratio; |
---|
| 331 | } |
---|
| 332 | |
---|
| 333 | /*********************************************************************** |
---|
| 334 | * gm_iterate - perform iterative geometric mean scaling |
---|
| 335 | * |
---|
| 336 | * This routine performs iterative geometric mean scaling of rows and |
---|
| 337 | * columns of the constraint matrix. |
---|
| 338 | * |
---|
| 339 | * The parameter it_max specifies the maximal number of iterations. |
---|
| 340 | * Recommended value of it_max is 15. |
---|
| 341 | * |
---|
| 342 | * The parameter tau specifies a minimal improvement of the scaling |
---|
| 343 | * "quality" on each iteration, 0 < tau < 1. It means than the scaling |
---|
| 344 | * process continues while the following condition is satisfied: |
---|
| 345 | * |
---|
| 346 | * ratio[k] <= tau * ratio[k-1], |
---|
| 347 | * |
---|
| 348 | * where ratio = max |a[i,j]| / min |a[i,j]| is the scaling "quality" |
---|
| 349 | * to be minimized, k is the iteration number. Recommended value of tau |
---|
| 350 | * is 0.90. */ |
---|
| 351 | |
---|
| 352 | static void gm_iterate(glp_prob *lp, int it_max, double tau) |
---|
| 353 | { int k, flag; |
---|
| 354 | double ratio = 0.0, r_old; |
---|
| 355 | /* if the scaling "quality" for rows is better than for columns, |
---|
| 356 | the rows are scaled first; otherwise, the columns are scaled |
---|
| 357 | first */ |
---|
| 358 | flag = (max_row_ratio(lp) > max_col_ratio(lp)); |
---|
| 359 | for (k = 1; k <= it_max; k++) |
---|
| 360 | { /* save the scaling "quality" from previous iteration */ |
---|
| 361 | r_old = ratio; |
---|
| 362 | /* determine the current scaling "quality" */ |
---|
| 363 | ratio = max_mat_aij(lp, 1) / min_mat_aij(lp, 1); |
---|
| 364 | #if 0 |
---|
| 365 | xprintf("k = %d; ratio = %g\n", k, ratio); |
---|
| 366 | #endif |
---|
| 367 | /* if improvement is not enough, terminate scaling */ |
---|
| 368 | if (k > 1 && ratio > tau * r_old) break; |
---|
| 369 | /* otherwise, perform another iteration */ |
---|
| 370 | gm_scaling(lp, flag); |
---|
| 371 | } |
---|
| 372 | return; |
---|
| 373 | } |
---|
| 374 | |
---|
| 375 | /*********************************************************************** |
---|
| 376 | * NAME |
---|
| 377 | * |
---|
| 378 | * scale_prob - scale problem data |
---|
| 379 | * |
---|
| 380 | * SYNOPSIS |
---|
| 381 | * |
---|
| 382 | * #include "glpscl.h" |
---|
| 383 | * void scale_prob(glp_prob *lp, int flags); |
---|
| 384 | * |
---|
| 385 | * DESCRIPTION |
---|
| 386 | * |
---|
| 387 | * The routine scale_prob performs automatic scaling of problem data |
---|
| 388 | * for the specified problem object. */ |
---|
| 389 | |
---|
| 390 | static void scale_prob(glp_prob *lp, int flags) |
---|
| 391 | { static const char *fmt = |
---|
| 392 | "%s: min|aij| = %10.3e max|aij| = %10.3e ratio = %10.3e\n"; |
---|
| 393 | double min_aij, max_aij, ratio; |
---|
| 394 | xprintf("Scaling...\n"); |
---|
| 395 | /* cancel the current scaling effect */ |
---|
| 396 | glp_unscale_prob(lp); |
---|
| 397 | /* report original scaling "quality" */ |
---|
| 398 | min_aij = min_mat_aij(lp, 1); |
---|
| 399 | max_aij = max_mat_aij(lp, 1); |
---|
| 400 | ratio = max_aij / min_aij; |
---|
| 401 | xprintf(fmt, " A", min_aij, max_aij, ratio); |
---|
| 402 | /* check if the problem is well scaled */ |
---|
| 403 | if (min_aij >= 0.10 && max_aij <= 10.0) |
---|
| 404 | { xprintf("Problem data seem to be well scaled\n"); |
---|
| 405 | /* skip scaling, if required */ |
---|
| 406 | if (flags & GLP_SF_SKIP) goto done; |
---|
| 407 | } |
---|
| 408 | /* perform iterative geometric mean scaling, if required */ |
---|
| 409 | if (flags & GLP_SF_GM) |
---|
| 410 | { gm_iterate(lp, 15, 0.90); |
---|
| 411 | min_aij = min_mat_aij(lp, 1); |
---|
| 412 | max_aij = max_mat_aij(lp, 1); |
---|
| 413 | ratio = max_aij / min_aij; |
---|
| 414 | xprintf(fmt, "GM", min_aij, max_aij, ratio); |
---|
| 415 | } |
---|
| 416 | /* perform equilibration scaling, if required */ |
---|
| 417 | if (flags & GLP_SF_EQ) |
---|
| 418 | { eq_scaling(lp, max_row_ratio(lp) > max_col_ratio(lp)); |
---|
| 419 | min_aij = min_mat_aij(lp, 1); |
---|
| 420 | max_aij = max_mat_aij(lp, 1); |
---|
| 421 | ratio = max_aij / min_aij; |
---|
| 422 | xprintf(fmt, "EQ", min_aij, max_aij, ratio); |
---|
| 423 | } |
---|
| 424 | /* round scale factors to nearest power of two, if required */ |
---|
| 425 | if (flags & GLP_SF_2N) |
---|
| 426 | { int i, j; |
---|
| 427 | for (i = 1; i <= lp->m; i++) |
---|
| 428 | glp_set_rii(lp, i, round2n(glp_get_rii(lp, i))); |
---|
| 429 | for (j = 1; j <= lp->n; j++) |
---|
| 430 | glp_set_sjj(lp, j, round2n(glp_get_sjj(lp, j))); |
---|
| 431 | min_aij = min_mat_aij(lp, 1); |
---|
| 432 | max_aij = max_mat_aij(lp, 1); |
---|
| 433 | ratio = max_aij / min_aij; |
---|
| 434 | xprintf(fmt, "2N", min_aij, max_aij, ratio); |
---|
| 435 | } |
---|
| 436 | done: return; |
---|
| 437 | } |
---|
| 438 | |
---|
| 439 | /*********************************************************************** |
---|
| 440 | * NAME |
---|
| 441 | * |
---|
| 442 | * glp_scale_prob - scale problem data |
---|
| 443 | * |
---|
| 444 | * SYNOPSIS |
---|
| 445 | * |
---|
| 446 | * void glp_scale_prob(glp_prob *lp, int flags); |
---|
| 447 | * |
---|
| 448 | * DESCRIPTION |
---|
| 449 | * |
---|
| 450 | * The routine glp_scale_prob performs automatic scaling of problem |
---|
| 451 | * data for the specified problem object. |
---|
| 452 | * |
---|
| 453 | * The parameter flags specifies scaling options used by the routine. |
---|
| 454 | * Options can be combined with the bitwise OR operator and may be the |
---|
| 455 | * following: |
---|
| 456 | * |
---|
| 457 | * GLP_SF_GM perform geometric mean scaling; |
---|
| 458 | * GLP_SF_EQ perform equilibration scaling; |
---|
| 459 | * GLP_SF_2N round scale factors to nearest power of two; |
---|
| 460 | * GLP_SF_SKIP skip scaling, if the problem is well scaled. |
---|
| 461 | * |
---|
| 462 | * The parameter flags may be specified as GLP_SF_AUTO, in which case |
---|
| 463 | * the routine chooses scaling options automatically. */ |
---|
| 464 | |
---|
| 465 | void glp_scale_prob(glp_prob *lp, int flags) |
---|
| 466 | { if (flags & ~(GLP_SF_GM | GLP_SF_EQ | GLP_SF_2N | GLP_SF_SKIP | |
---|
| 467 | GLP_SF_AUTO)) |
---|
| 468 | xerror("glp_scale_prob: flags = 0x%02X; invalid scaling option" |
---|
| 469 | "s\n", flags); |
---|
| 470 | if (flags & GLP_SF_AUTO) |
---|
| 471 | flags = (GLP_SF_GM | GLP_SF_EQ | GLP_SF_SKIP); |
---|
| 472 | scale_prob(lp, flags); |
---|
| 473 | return; |
---|
| 474 | } |
---|
| 475 | |
---|
| 476 | /* eof */ |
---|