1 | /* glpspm.c */ |
---|
2 | |
---|
3 | /*********************************************************************** |
---|
4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
5 | * |
---|
6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
9 | * E-mail: <mao@gnu.org>. |
---|
10 | * |
---|
11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
12 | * under the terms of the GNU General Public License as published by |
---|
13 | * the Free Software Foundation, either version 3 of the License, or |
---|
14 | * (at your option) any later version. |
---|
15 | * |
---|
16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
19 | * License for more details. |
---|
20 | * |
---|
21 | * You should have received a copy of the GNU General Public License |
---|
22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
23 | ***********************************************************************/ |
---|
24 | |
---|
25 | #include "glphbm.h" |
---|
26 | #include "glprgr.h" |
---|
27 | #include "glpspm.h" |
---|
28 | |
---|
29 | /*********************************************************************** |
---|
30 | * NAME |
---|
31 | * |
---|
32 | * spm_create_mat - create general sparse matrix |
---|
33 | * |
---|
34 | * SYNOPSIS |
---|
35 | * |
---|
36 | * #include "glpspm.h" |
---|
37 | * SPM *spm_create_mat(int m, int n); |
---|
38 | * |
---|
39 | * DESCRIPTION |
---|
40 | * |
---|
41 | * The routine spm_create_mat creates a general sparse matrix having |
---|
42 | * m rows and n columns. Being created the matrix is zero (empty), i.e. |
---|
43 | * has no elements. |
---|
44 | * |
---|
45 | * RETURNS |
---|
46 | * |
---|
47 | * The routine returns a pointer to the matrix created. */ |
---|
48 | |
---|
49 | SPM *spm_create_mat(int m, int n) |
---|
50 | { SPM *A; |
---|
51 | xassert(0 <= m && m < INT_MAX); |
---|
52 | xassert(0 <= n && n < INT_MAX); |
---|
53 | A = xmalloc(sizeof(SPM)); |
---|
54 | A->m = m; |
---|
55 | A->n = n; |
---|
56 | if (m == 0 || n == 0) |
---|
57 | { A->pool = NULL; |
---|
58 | A->row = NULL; |
---|
59 | A->col = NULL; |
---|
60 | } |
---|
61 | else |
---|
62 | { int i, j; |
---|
63 | A->pool = dmp_create_pool(); |
---|
64 | A->row = xcalloc(1+m, sizeof(SPME *)); |
---|
65 | for (i = 1; i <= m; i++) A->row[i] = NULL; |
---|
66 | A->col = xcalloc(1+n, sizeof(SPME *)); |
---|
67 | for (j = 1; j <= n; j++) A->col[j] = NULL; |
---|
68 | } |
---|
69 | return A; |
---|
70 | } |
---|
71 | |
---|
72 | /*********************************************************************** |
---|
73 | * NAME |
---|
74 | * |
---|
75 | * spm_new_elem - add new element to sparse matrix |
---|
76 | * |
---|
77 | * SYNOPSIS |
---|
78 | * |
---|
79 | * #include "glpspm.h" |
---|
80 | * SPME *spm_new_elem(SPM *A, int i, int j, double val); |
---|
81 | * |
---|
82 | * DESCRIPTION |
---|
83 | * |
---|
84 | * The routine spm_new_elem adds a new element to the specified sparse |
---|
85 | * matrix. Parameters i, j, and val specify the row number, the column |
---|
86 | * number, and a numerical value of the element, respectively. |
---|
87 | * |
---|
88 | * RETURNS |
---|
89 | * |
---|
90 | * The routine returns a pointer to the new element added. */ |
---|
91 | |
---|
92 | SPME *spm_new_elem(SPM *A, int i, int j, double val) |
---|
93 | { SPME *e; |
---|
94 | xassert(1 <= i && i <= A->m); |
---|
95 | xassert(1 <= j && j <= A->n); |
---|
96 | e = dmp_get_atom(A->pool, sizeof(SPME)); |
---|
97 | e->i = i; |
---|
98 | e->j = j; |
---|
99 | e->val = val; |
---|
100 | e->r_prev = NULL; |
---|
101 | e->r_next = A->row[i]; |
---|
102 | if (e->r_next != NULL) e->r_next->r_prev = e; |
---|
103 | e->c_prev = NULL; |
---|
104 | e->c_next = A->col[j]; |
---|
105 | if (e->c_next != NULL) e->c_next->c_prev = e; |
---|
106 | A->row[i] = A->col[j] = e; |
---|
107 | return e; |
---|
108 | } |
---|
109 | |
---|
110 | /*********************************************************************** |
---|
111 | * NAME |
---|
112 | * |
---|
113 | * spm_delete_mat - delete general sparse matrix |
---|
114 | * |
---|
115 | * SYNOPSIS |
---|
116 | * |
---|
117 | * #include "glpspm.h" |
---|
118 | * void spm_delete_mat(SPM *A); |
---|
119 | * |
---|
120 | * DESCRIPTION |
---|
121 | * |
---|
122 | * The routine deletes the specified general sparse matrix freeing all |
---|
123 | * the memory allocated to this object. */ |
---|
124 | |
---|
125 | void spm_delete_mat(SPM *A) |
---|
126 | { /* delete sparse matrix */ |
---|
127 | if (A->pool != NULL) dmp_delete_pool(A->pool); |
---|
128 | if (A->row != NULL) xfree(A->row); |
---|
129 | if (A->col != NULL) xfree(A->col); |
---|
130 | xfree(A); |
---|
131 | return; |
---|
132 | } |
---|
133 | |
---|
134 | /*********************************************************************** |
---|
135 | * NAME |
---|
136 | * |
---|
137 | * spm_test_mat_e - create test sparse matrix of E(n,c) class |
---|
138 | * |
---|
139 | * SYNOPSIS |
---|
140 | * |
---|
141 | * #include "glpspm.h" |
---|
142 | * SPM *spm_test_mat_e(int n, int c); |
---|
143 | * |
---|
144 | * DESCRIPTION |
---|
145 | * |
---|
146 | * The routine spm_test_mat_e creates a test sparse matrix of E(n,c) |
---|
147 | * class as described in the book: Ole 0sterby, Zahari Zlatev. Direct |
---|
148 | * Methods for Sparse Matrices. Springer-Verlag, 1983. |
---|
149 | * |
---|
150 | * Matrix of E(n,c) class is a symmetric positive definite matrix of |
---|
151 | * the order n. It has the number 4 on its main diagonal and the number |
---|
152 | * -1 on its four co-diagonals, two of which are neighbour to the main |
---|
153 | * diagonal and two others are shifted from the main diagonal on the |
---|
154 | * distance c. |
---|
155 | * |
---|
156 | * It is necessary that n >= 3 and 2 <= c <= n-1. |
---|
157 | * |
---|
158 | * RETURNS |
---|
159 | * |
---|
160 | * The routine returns a pointer to the matrix created. */ |
---|
161 | |
---|
162 | SPM *spm_test_mat_e(int n, int c) |
---|
163 | { SPM *A; |
---|
164 | int i; |
---|
165 | xassert(n >= 3 && 2 <= c && c <= n-1); |
---|
166 | A = spm_create_mat(n, n); |
---|
167 | for (i = 1; i <= n; i++) |
---|
168 | spm_new_elem(A, i, i, 4.0); |
---|
169 | for (i = 1; i <= n-1; i++) |
---|
170 | { spm_new_elem(A, i, i+1, -1.0); |
---|
171 | spm_new_elem(A, i+1, i, -1.0); |
---|
172 | } |
---|
173 | for (i = 1; i <= n-c; i++) |
---|
174 | { spm_new_elem(A, i, i+c, -1.0); |
---|
175 | spm_new_elem(A, i+c, i, -1.0); |
---|
176 | } |
---|
177 | return A; |
---|
178 | } |
---|
179 | |
---|
180 | /*********************************************************************** |
---|
181 | * NAME |
---|
182 | * |
---|
183 | * spm_test_mat_d - create test sparse matrix of D(n,c) class |
---|
184 | * |
---|
185 | * SYNOPSIS |
---|
186 | * |
---|
187 | * #include "glpspm.h" |
---|
188 | * SPM *spm_test_mat_d(int n, int c); |
---|
189 | * |
---|
190 | * DESCRIPTION |
---|
191 | * |
---|
192 | * The routine spm_test_mat_d creates a test sparse matrix of D(n,c) |
---|
193 | * class as described in the book: Ole 0sterby, Zahari Zlatev. Direct |
---|
194 | * Methods for Sparse Matrices. Springer-Verlag, 1983. |
---|
195 | * |
---|
196 | * Matrix of D(n,c) class is a non-singular matrix of the order n. It |
---|
197 | * has unity main diagonal, three co-diagonals above the main diagonal |
---|
198 | * on the distance c, which are cyclically continued below the main |
---|
199 | * diagonal, and a triangle block of the size 10x10 in the upper right |
---|
200 | * corner. |
---|
201 | * |
---|
202 | * It is necessary that n >= 14 and 1 <= c <= n-13. |
---|
203 | * |
---|
204 | * RETURNS |
---|
205 | * |
---|
206 | * The routine returns a pointer to the matrix created. */ |
---|
207 | |
---|
208 | SPM *spm_test_mat_d(int n, int c) |
---|
209 | { SPM *A; |
---|
210 | int i, j; |
---|
211 | xassert(n >= 14 && 1 <= c && c <= n-13); |
---|
212 | A = spm_create_mat(n, n); |
---|
213 | for (i = 1; i <= n; i++) |
---|
214 | spm_new_elem(A, i, i, 1.0); |
---|
215 | for (i = 1; i <= n-c; i++) |
---|
216 | spm_new_elem(A, i, i+c, (double)(i+1)); |
---|
217 | for (i = n-c+1; i <= n; i++) |
---|
218 | spm_new_elem(A, i, i-n+c, (double)(i+1)); |
---|
219 | for (i = 1; i <= n-c-1; i++) |
---|
220 | spm_new_elem(A, i, i+c+1, (double)(-i)); |
---|
221 | for (i = n-c; i <= n; i++) |
---|
222 | spm_new_elem(A, i, i-n+c+1, (double)(-i)); |
---|
223 | for (i = 1; i <= n-c-2; i++) |
---|
224 | spm_new_elem(A, i, i+c+2, 16.0); |
---|
225 | for (i = n-c-1; i <= n; i++) |
---|
226 | spm_new_elem(A, i, i-n+c+2, 16.0); |
---|
227 | for (j = 1; j <= 10; j++) |
---|
228 | for (i = 1; i <= 11-j; i++) |
---|
229 | spm_new_elem(A, i, n-11+i+j, 100.0 * (double)j); |
---|
230 | return A; |
---|
231 | } |
---|
232 | |
---|
233 | /*********************************************************************** |
---|
234 | * NAME |
---|
235 | * |
---|
236 | * spm_show_mat - write sparse matrix pattern in BMP file format |
---|
237 | * |
---|
238 | * SYNOPSIS |
---|
239 | * |
---|
240 | * #include "glpspm.h" |
---|
241 | * int spm_show_mat(const SPM *A, const char *fname); |
---|
242 | * |
---|
243 | * DESCRIPTION |
---|
244 | * |
---|
245 | * The routine spm_show_mat writes pattern of the specified sparse |
---|
246 | * matrix in uncompressed BMP file format (Windows bitmap) to a binary |
---|
247 | * file whose name is specified by the character string fname. |
---|
248 | * |
---|
249 | * Each pixel corresponds to one matrix element. The pixel colors have |
---|
250 | * the following meaning: |
---|
251 | * |
---|
252 | * Black structurally zero element |
---|
253 | * White positive element |
---|
254 | * Cyan negative element |
---|
255 | * Green zero element |
---|
256 | * Red duplicate element |
---|
257 | * |
---|
258 | * RETURNS |
---|
259 | * |
---|
260 | * If no error occured, the routine returns zero. Otherwise, it prints |
---|
261 | * an appropriate error message and returns non-zero. */ |
---|
262 | |
---|
263 | int spm_show_mat(const SPM *A, const char *fname) |
---|
264 | { int m = A->m; |
---|
265 | int n = A->n; |
---|
266 | int i, j, k, ret; |
---|
267 | char *map; |
---|
268 | xprintf("spm_show_mat: writing matrix pattern to `%s'...\n", |
---|
269 | fname); |
---|
270 | xassert(1 <= m && m <= 32767); |
---|
271 | xassert(1 <= n && n <= 32767); |
---|
272 | map = xmalloc(m * n); |
---|
273 | memset(map, 0x08, m * n); |
---|
274 | for (i = 1; i <= m; i++) |
---|
275 | { SPME *e; |
---|
276 | for (e = A->row[i]; e != NULL; e = e->r_next) |
---|
277 | { j = e->j; |
---|
278 | xassert(1 <= j && j <= n); |
---|
279 | k = n * (i - 1) + (j - 1); |
---|
280 | if (map[k] != 0x08) |
---|
281 | map[k] = 0x0C; |
---|
282 | else if (e->val > 0.0) |
---|
283 | map[k] = 0x0F; |
---|
284 | else if (e->val < 0.0) |
---|
285 | map[k] = 0x0B; |
---|
286 | else |
---|
287 | map[k] = 0x0A; |
---|
288 | } |
---|
289 | } |
---|
290 | ret = rgr_write_bmp16(fname, m, n, map); |
---|
291 | xfree(map); |
---|
292 | return ret; |
---|
293 | } |
---|
294 | |
---|
295 | /*********************************************************************** |
---|
296 | * NAME |
---|
297 | * |
---|
298 | * spm_read_hbm - read sparse matrix in Harwell-Boeing format |
---|
299 | * |
---|
300 | * SYNOPSIS |
---|
301 | * |
---|
302 | * #include "glpspm.h" |
---|
303 | * SPM *spm_read_hbm(const char *fname); |
---|
304 | * |
---|
305 | * DESCRIPTION |
---|
306 | * |
---|
307 | * The routine spm_read_hbm reads a sparse matrix in the Harwell-Boeing |
---|
308 | * format from a text file whose name is the character string fname. |
---|
309 | * |
---|
310 | * Detailed description of the Harwell-Boeing format recognised by this |
---|
311 | * routine can be found in the following report: |
---|
312 | * |
---|
313 | * I.S.Duff, R.G.Grimes, J.G.Lewis. User's Guide for the Harwell-Boeing |
---|
314 | * Sparse Matrix Collection (Release I), TR/PA/92/86, October 1992. |
---|
315 | * |
---|
316 | * NOTE |
---|
317 | * |
---|
318 | * The routine spm_read_hbm reads the matrix "as is", due to which zero |
---|
319 | * and/or duplicate elements can appear in the matrix. |
---|
320 | * |
---|
321 | * RETURNS |
---|
322 | * |
---|
323 | * If no error occured, the routine returns a pointer to the matrix |
---|
324 | * created. Otherwise, the routine prints an appropriate error message |
---|
325 | * and returns NULL. */ |
---|
326 | |
---|
327 | SPM *spm_read_hbm(const char *fname) |
---|
328 | { SPM *A = NULL; |
---|
329 | HBM *hbm; |
---|
330 | int nrow, ncol, nnzero, i, j, beg, end, ptr, *colptr, *rowind; |
---|
331 | double val, *values; |
---|
332 | char *mxtype; |
---|
333 | hbm = hbm_read_mat(fname); |
---|
334 | if (hbm == NULL) |
---|
335 | { xprintf("spm_read_hbm: unable to read matrix\n"); |
---|
336 | goto fini; |
---|
337 | } |
---|
338 | mxtype = hbm->mxtype; |
---|
339 | nrow = hbm->nrow; |
---|
340 | ncol = hbm->ncol; |
---|
341 | nnzero = hbm->nnzero; |
---|
342 | colptr = hbm->colptr; |
---|
343 | rowind = hbm->rowind; |
---|
344 | values = hbm->values; |
---|
345 | if (!(strcmp(mxtype, "RSA") == 0 || strcmp(mxtype, "PSA") == 0 || |
---|
346 | strcmp(mxtype, "RUA") == 0 || strcmp(mxtype, "PUA") == 0 || |
---|
347 | strcmp(mxtype, "RRA") == 0 || strcmp(mxtype, "PRA") == 0)) |
---|
348 | { xprintf("spm_read_hbm: matrix type `%s' not supported\n", |
---|
349 | mxtype); |
---|
350 | goto fini; |
---|
351 | } |
---|
352 | A = spm_create_mat(nrow, ncol); |
---|
353 | if (mxtype[1] == 'S' || mxtype[1] == 'U') |
---|
354 | xassert(nrow == ncol); |
---|
355 | for (j = 1; j <= ncol; j++) |
---|
356 | { beg = colptr[j]; |
---|
357 | end = colptr[j+1]; |
---|
358 | xassert(1 <= beg && beg <= end && end <= nnzero + 1); |
---|
359 | for (ptr = beg; ptr < end; ptr++) |
---|
360 | { i = rowind[ptr]; |
---|
361 | xassert(1 <= i && i <= nrow); |
---|
362 | if (mxtype[0] == 'R') |
---|
363 | val = values[ptr]; |
---|
364 | else |
---|
365 | val = 1.0; |
---|
366 | spm_new_elem(A, i, j, val); |
---|
367 | if (mxtype[1] == 'S' && i != j) |
---|
368 | spm_new_elem(A, j, i, val); |
---|
369 | } |
---|
370 | } |
---|
371 | fini: if (hbm != NULL) hbm_free_mat(hbm); |
---|
372 | return A; |
---|
373 | } |
---|
374 | |
---|
375 | /*********************************************************************** |
---|
376 | * NAME |
---|
377 | * |
---|
378 | * spm_count_nnz - determine number of non-zeros in sparse matrix |
---|
379 | * |
---|
380 | * SYNOPSIS |
---|
381 | * |
---|
382 | * #include "glpspm.h" |
---|
383 | * int spm_count_nnz(const SPM *A); |
---|
384 | * |
---|
385 | * RETURNS |
---|
386 | * |
---|
387 | * The routine spm_count_nnz returns the number of structural non-zero |
---|
388 | * elements in the specified sparse matrix. */ |
---|
389 | |
---|
390 | int spm_count_nnz(const SPM *A) |
---|
391 | { SPME *e; |
---|
392 | int i, nnz = 0; |
---|
393 | for (i = 1; i <= A->m; i++) |
---|
394 | for (e = A->row[i]; e != NULL; e = e->r_next) nnz++; |
---|
395 | return nnz; |
---|
396 | } |
---|
397 | |
---|
398 | /*********************************************************************** |
---|
399 | * NAME |
---|
400 | * |
---|
401 | * spm_drop_zeros - remove zero elements from sparse matrix |
---|
402 | * |
---|
403 | * SYNOPSIS |
---|
404 | * |
---|
405 | * #include "glpspm.h" |
---|
406 | * int spm_drop_zeros(SPM *A, double eps); |
---|
407 | * |
---|
408 | * DESCRIPTION |
---|
409 | * |
---|
410 | * The routine spm_drop_zeros removes all elements from the specified |
---|
411 | * sparse matrix, whose absolute value is less than eps. |
---|
412 | * |
---|
413 | * If the parameter eps is 0, only zero elements are removed from the |
---|
414 | * matrix. |
---|
415 | * |
---|
416 | * RETURNS |
---|
417 | * |
---|
418 | * The routine returns the number of elements removed. */ |
---|
419 | |
---|
420 | int spm_drop_zeros(SPM *A, double eps) |
---|
421 | { SPME *e, *next; |
---|
422 | int i, count = 0; |
---|
423 | for (i = 1; i <= A->m; i++) |
---|
424 | { for (e = A->row[i]; e != NULL; e = next) |
---|
425 | { next = e->r_next; |
---|
426 | if (e->val == 0.0 || fabs(e->val) < eps) |
---|
427 | { /* remove element from the row list */ |
---|
428 | if (e->r_prev == NULL) |
---|
429 | A->row[e->i] = e->r_next; |
---|
430 | else |
---|
431 | e->r_prev->r_next = e->r_next; |
---|
432 | if (e->r_next == NULL) |
---|
433 | ; |
---|
434 | else |
---|
435 | e->r_next->r_prev = e->r_prev; |
---|
436 | /* remove element from the column list */ |
---|
437 | if (e->c_prev == NULL) |
---|
438 | A->col[e->j] = e->c_next; |
---|
439 | else |
---|
440 | e->c_prev->c_next = e->c_next; |
---|
441 | if (e->c_next == NULL) |
---|
442 | ; |
---|
443 | else |
---|
444 | e->c_next->c_prev = e->c_prev; |
---|
445 | /* return element to the memory pool */ |
---|
446 | dmp_free_atom(A->pool, e, sizeof(SPME)); |
---|
447 | count++; |
---|
448 | } |
---|
449 | } |
---|
450 | } |
---|
451 | return count; |
---|
452 | } |
---|
453 | |
---|
454 | /*********************************************************************** |
---|
455 | * NAME |
---|
456 | * |
---|
457 | * spm_read_mat - read sparse matrix from text file |
---|
458 | * |
---|
459 | * SYNOPSIS |
---|
460 | * |
---|
461 | * #include "glpspm.h" |
---|
462 | * SPM *spm_read_mat(const char *fname); |
---|
463 | * |
---|
464 | * DESCRIPTION |
---|
465 | * |
---|
466 | * The routine reads a sparse matrix from a text file whose name is |
---|
467 | * specified by the parameter fname. |
---|
468 | * |
---|
469 | * For the file format see description of the routine spm_write_mat. |
---|
470 | * |
---|
471 | * RETURNS |
---|
472 | * |
---|
473 | * On success the routine returns a pointer to the matrix created, |
---|
474 | * otherwise NULL. */ |
---|
475 | |
---|
476 | #if 1 |
---|
477 | SPM *spm_read_mat(const char *fname) |
---|
478 | { xassert(fname != fname); |
---|
479 | return NULL; |
---|
480 | } |
---|
481 | #else |
---|
482 | SPM *spm_read_mat(const char *fname) |
---|
483 | { SPM *A = NULL; |
---|
484 | PDS *pds; |
---|
485 | jmp_buf jump; |
---|
486 | int i, j, k, m, n, nnz, fail = 0; |
---|
487 | double val; |
---|
488 | xprintf("spm_read_mat: reading matrix from `%s'...\n", fname); |
---|
489 | pds = pds_open_file(fname); |
---|
490 | if (pds == NULL) |
---|
491 | { xprintf("spm_read_mat: unable to open `%s' - %s\n", fname, |
---|
492 | strerror(errno)); |
---|
493 | fail = 1; |
---|
494 | goto done; |
---|
495 | } |
---|
496 | if (setjmp(jump)) |
---|
497 | { fail = 1; |
---|
498 | goto done; |
---|
499 | } |
---|
500 | pds_set_jump(pds, jump); |
---|
501 | /* number of rows, number of columns, number of non-zeros */ |
---|
502 | m = pds_scan_int(pds); |
---|
503 | if (m < 0) |
---|
504 | pds_error(pds, "invalid number of rows\n"); |
---|
505 | n = pds_scan_int(pds); |
---|
506 | if (n < 0) |
---|
507 | pds_error(pds, "invalid number of columns\n"); |
---|
508 | nnz = pds_scan_int(pds); |
---|
509 | if (nnz < 0) |
---|
510 | pds_error(pds, "invalid number of non-zeros\n"); |
---|
511 | /* create matrix */ |
---|
512 | xprintf("spm_read_mat: %d rows, %d columns, %d non-zeros\n", |
---|
513 | m, n, nnz); |
---|
514 | A = spm_create_mat(m, n); |
---|
515 | /* read matrix elements */ |
---|
516 | for (k = 1; k <= nnz; k++) |
---|
517 | { /* row index, column index, element value */ |
---|
518 | i = pds_scan_int(pds); |
---|
519 | if (!(1 <= i && i <= m)) |
---|
520 | pds_error(pds, "row index out of range\n"); |
---|
521 | j = pds_scan_int(pds); |
---|
522 | if (!(1 <= j && j <= n)) |
---|
523 | pds_error(pds, "column index out of range\n"); |
---|
524 | val = pds_scan_num(pds); |
---|
525 | /* add new element to the matrix */ |
---|
526 | spm_new_elem(A, i, j, val); |
---|
527 | } |
---|
528 | xprintf("spm_read_mat: %d lines were read\n", pds->count); |
---|
529 | done: if (pds != NULL) pds_close_file(pds); |
---|
530 | if (fail && A != NULL) spm_delete_mat(A), A = NULL; |
---|
531 | return A; |
---|
532 | } |
---|
533 | #endif |
---|
534 | |
---|
535 | /*********************************************************************** |
---|
536 | * NAME |
---|
537 | * |
---|
538 | * spm_write_mat - write sparse matrix to text file |
---|
539 | * |
---|
540 | * SYNOPSIS |
---|
541 | * |
---|
542 | * #include "glpspm.h" |
---|
543 | * int spm_write_mat(const SPM *A, const char *fname); |
---|
544 | * |
---|
545 | * DESCRIPTION |
---|
546 | * |
---|
547 | * The routine spm_write_mat writes the specified sparse matrix to a |
---|
548 | * text file whose name is specified by the parameter fname. This file |
---|
549 | * can be read back with the routine spm_read_mat. |
---|
550 | * |
---|
551 | * RETURNS |
---|
552 | * |
---|
553 | * On success the routine returns zero, otherwise non-zero. |
---|
554 | * |
---|
555 | * FILE FORMAT |
---|
556 | * |
---|
557 | * The file created by the routine spm_write_mat is a plain text file, |
---|
558 | * which contains the following information: |
---|
559 | * |
---|
560 | * m n nnz |
---|
561 | * row[1] col[1] val[1] |
---|
562 | * row[2] col[2] val[2] |
---|
563 | * . . . |
---|
564 | * row[nnz] col[nnz] val[nnz] |
---|
565 | * |
---|
566 | * where: |
---|
567 | * m is the number of rows; |
---|
568 | * n is the number of columns; |
---|
569 | * nnz is the number of non-zeros; |
---|
570 | * row[k], k = 1,...,nnz, are row indices; |
---|
571 | * col[k], k = 1,...,nnz, are column indices; |
---|
572 | * val[k], k = 1,...,nnz, are element values. */ |
---|
573 | |
---|
574 | #if 1 |
---|
575 | int spm_write_mat(const SPM *A, const char *fname) |
---|
576 | { xassert(A != A); |
---|
577 | xassert(fname != fname); |
---|
578 | return 0; |
---|
579 | } |
---|
580 | #else |
---|
581 | int spm_write_mat(const SPM *A, const char *fname) |
---|
582 | { FILE *fp; |
---|
583 | int i, nnz, ret = 0; |
---|
584 | xprintf("spm_write_mat: writing matrix to `%s'...\n", fname); |
---|
585 | fp = fopen(fname, "w"); |
---|
586 | if (fp == NULL) |
---|
587 | { xprintf("spm_write_mat: unable to create `%s' - %s\n", fname, |
---|
588 | strerror(errno)); |
---|
589 | ret = 1; |
---|
590 | goto done; |
---|
591 | } |
---|
592 | /* number of rows, number of columns, number of non-zeros */ |
---|
593 | nnz = spm_count_nnz(A); |
---|
594 | fprintf(fp, "%d %d %d\n", A->m, A->n, nnz); |
---|
595 | /* walk through rows of the matrix */ |
---|
596 | for (i = 1; i <= A->m; i++) |
---|
597 | { SPME *e; |
---|
598 | /* walk through elements of i-th row */ |
---|
599 | for (e = A->row[i]; e != NULL; e = e->r_next) |
---|
600 | { /* row index, column index, element value */ |
---|
601 | fprintf(fp, "%d %d %.*g\n", e->i, e->j, DBL_DIG, e->val); |
---|
602 | } |
---|
603 | } |
---|
604 | fflush(fp); |
---|
605 | if (ferror(fp)) |
---|
606 | { xprintf("spm_write_mat: writing error on `%s' - %s\n", fname, |
---|
607 | strerror(errno)); |
---|
608 | ret = 1; |
---|
609 | goto done; |
---|
610 | } |
---|
611 | xprintf("spm_write_mat: %d lines were written\n", 1 + nnz); |
---|
612 | done: if (fp != NULL) fclose(fp); |
---|
613 | return ret; |
---|
614 | } |
---|
615 | #endif |
---|
616 | |
---|
617 | /*********************************************************************** |
---|
618 | * NAME |
---|
619 | * |
---|
620 | * spm_transpose - transpose sparse matrix |
---|
621 | * |
---|
622 | * SYNOPSIS |
---|
623 | * |
---|
624 | * #include "glpspm.h" |
---|
625 | * SPM *spm_transpose(const SPM *A); |
---|
626 | * |
---|
627 | * RETURNS |
---|
628 | * |
---|
629 | * The routine computes and returns sparse matrix B, which is a matrix |
---|
630 | * transposed to sparse matrix A. */ |
---|
631 | |
---|
632 | SPM *spm_transpose(const SPM *A) |
---|
633 | { SPM *B; |
---|
634 | int i; |
---|
635 | B = spm_create_mat(A->n, A->m); |
---|
636 | for (i = 1; i <= A->m; i++) |
---|
637 | { SPME *e; |
---|
638 | for (e = A->row[i]; e != NULL; e = e->r_next) |
---|
639 | spm_new_elem(B, e->j, i, e->val); |
---|
640 | } |
---|
641 | return B; |
---|
642 | } |
---|
643 | |
---|
644 | SPM *spm_add_sym(const SPM *A, const SPM *B) |
---|
645 | { /* add two sparse matrices (symbolic phase) */ |
---|
646 | SPM *C; |
---|
647 | int i, j, *flag; |
---|
648 | xassert(A->m == B->m); |
---|
649 | xassert(A->n == B->n); |
---|
650 | /* create resultant matrix */ |
---|
651 | C = spm_create_mat(A->m, A->n); |
---|
652 | /* allocate and clear the flag array */ |
---|
653 | flag = xcalloc(1+C->n, sizeof(int)); |
---|
654 | for (j = 1; j <= C->n; j++) |
---|
655 | flag[j] = 0; |
---|
656 | /* compute pattern of C = A + B */ |
---|
657 | for (i = 1; i <= C->m; i++) |
---|
658 | { SPME *e; |
---|
659 | /* at the beginning i-th row of C is empty */ |
---|
660 | /* (i-th row of C) := (i-th row of C) union (i-th row of A) */ |
---|
661 | for (e = A->row[i]; e != NULL; e = e->r_next) |
---|
662 | { /* (note that i-th row of A may have duplicate elements) */ |
---|
663 | j = e->j; |
---|
664 | if (!flag[j]) |
---|
665 | { spm_new_elem(C, i, j, 0.0); |
---|
666 | flag[j] = 1; |
---|
667 | } |
---|
668 | } |
---|
669 | /* (i-th row of C) := (i-th row of C) union (i-th row of B) */ |
---|
670 | for (e = B->row[i]; e != NULL; e = e->r_next) |
---|
671 | { /* (note that i-th row of B may have duplicate elements) */ |
---|
672 | j = e->j; |
---|
673 | if (!flag[j]) |
---|
674 | { spm_new_elem(C, i, j, 0.0); |
---|
675 | flag[j] = 1; |
---|
676 | } |
---|
677 | } |
---|
678 | /* reset the flag array */ |
---|
679 | for (e = C->row[i]; e != NULL; e = e->r_next) |
---|
680 | flag[e->j] = 0; |
---|
681 | } |
---|
682 | /* check and deallocate the flag array */ |
---|
683 | for (j = 1; j <= C->n; j++) |
---|
684 | xassert(!flag[j]); |
---|
685 | xfree(flag); |
---|
686 | return C; |
---|
687 | } |
---|
688 | |
---|
689 | void spm_add_num(SPM *C, double alfa, const SPM *A, double beta, |
---|
690 | const SPM *B) |
---|
691 | { /* add two sparse matrices (numeric phase) */ |
---|
692 | int i, j; |
---|
693 | double *work; |
---|
694 | /* allocate and clear the working array */ |
---|
695 | work = xcalloc(1+C->n, sizeof(double)); |
---|
696 | for (j = 1; j <= C->n; j++) |
---|
697 | work[j] = 0.0; |
---|
698 | /* compute matrix C = alfa * A + beta * B */ |
---|
699 | for (i = 1; i <= C->n; i++) |
---|
700 | { SPME *e; |
---|
701 | /* work := alfa * (i-th row of A) + beta * (i-th row of B) */ |
---|
702 | /* (note that A and/or B may have duplicate elements) */ |
---|
703 | for (e = A->row[i]; e != NULL; e = e->r_next) |
---|
704 | work[e->j] += alfa * e->val; |
---|
705 | for (e = B->row[i]; e != NULL; e = e->r_next) |
---|
706 | work[e->j] += beta * e->val; |
---|
707 | /* (i-th row of C) := work, work := 0 */ |
---|
708 | for (e = C->row[i]; e != NULL; e = e->r_next) |
---|
709 | { j = e->j; |
---|
710 | e->val = work[j]; |
---|
711 | work[j] = 0.0; |
---|
712 | } |
---|
713 | } |
---|
714 | /* check and deallocate the working array */ |
---|
715 | for (j = 1; j <= C->n; j++) |
---|
716 | xassert(work[j] == 0.0); |
---|
717 | xfree(work); |
---|
718 | return; |
---|
719 | } |
---|
720 | |
---|
721 | SPM *spm_add_mat(double alfa, const SPM *A, double beta, const SPM *B) |
---|
722 | { /* add two sparse matrices (driver routine) */ |
---|
723 | SPM *C; |
---|
724 | C = spm_add_sym(A, B); |
---|
725 | spm_add_num(C, alfa, A, beta, B); |
---|
726 | return C; |
---|
727 | } |
---|
728 | |
---|
729 | SPM *spm_mul_sym(const SPM *A, const SPM *B) |
---|
730 | { /* multiply two sparse matrices (symbolic phase) */ |
---|
731 | int i, j, k, *flag; |
---|
732 | SPM *C; |
---|
733 | xassert(A->n == B->m); |
---|
734 | /* create resultant matrix */ |
---|
735 | C = spm_create_mat(A->m, B->n); |
---|
736 | /* allocate and clear the flag array */ |
---|
737 | flag = xcalloc(1+C->n, sizeof(int)); |
---|
738 | for (j = 1; j <= C->n; j++) |
---|
739 | flag[j] = 0; |
---|
740 | /* compute pattern of C = A * B */ |
---|
741 | for (i = 1; i <= C->m; i++) |
---|
742 | { SPME *e, *ee; |
---|
743 | /* compute pattern of i-th row of C */ |
---|
744 | for (e = A->row[i]; e != NULL; e = e->r_next) |
---|
745 | { k = e->j; |
---|
746 | for (ee = B->row[k]; ee != NULL; ee = ee->r_next) |
---|
747 | { j = ee->j; |
---|
748 | /* if a[i,k] != 0 and b[k,j] != 0 then c[i,j] != 0 */ |
---|
749 | if (!flag[j]) |
---|
750 | { /* c[i,j] does not exist, so create it */ |
---|
751 | spm_new_elem(C, i, j, 0.0); |
---|
752 | flag[j] = 1; |
---|
753 | } |
---|
754 | } |
---|
755 | } |
---|
756 | /* reset the flag array */ |
---|
757 | for (e = C->row[i]; e != NULL; e = e->r_next) |
---|
758 | flag[e->j] = 0; |
---|
759 | } |
---|
760 | /* check and deallocate the flag array */ |
---|
761 | for (j = 1; j <= C->n; j++) |
---|
762 | xassert(!flag[j]); |
---|
763 | xfree(flag); |
---|
764 | return C; |
---|
765 | } |
---|
766 | |
---|
767 | void spm_mul_num(SPM *C, const SPM *A, const SPM *B) |
---|
768 | { /* multiply two sparse matrices (numeric phase) */ |
---|
769 | int i, j; |
---|
770 | double *work; |
---|
771 | /* allocate and clear the working array */ |
---|
772 | work = xcalloc(1+A->n, sizeof(double)); |
---|
773 | for (j = 1; j <= A->n; j++) |
---|
774 | work[j] = 0.0; |
---|
775 | /* compute matrix C = A * B */ |
---|
776 | for (i = 1; i <= C->m; i++) |
---|
777 | { SPME *e, *ee; |
---|
778 | double temp; |
---|
779 | /* work := (i-th row of A) */ |
---|
780 | /* (note that A may have duplicate elements) */ |
---|
781 | for (e = A->row[i]; e != NULL; e = e->r_next) |
---|
782 | work[e->j] += e->val; |
---|
783 | /* compute i-th row of C */ |
---|
784 | for (e = C->row[i]; e != NULL; e = e->r_next) |
---|
785 | { j = e->j; |
---|
786 | /* c[i,j] := work * (j-th column of B) */ |
---|
787 | temp = 0.0; |
---|
788 | for (ee = B->col[j]; ee != NULL; ee = ee->c_next) |
---|
789 | temp += work[ee->i] * ee->val; |
---|
790 | e->val = temp; |
---|
791 | } |
---|
792 | /* reset the working array */ |
---|
793 | for (e = A->row[i]; e != NULL; e = e->r_next) |
---|
794 | work[e->j] = 0.0; |
---|
795 | } |
---|
796 | /* check and deallocate the working array */ |
---|
797 | for (j = 1; j <= A->n; j++) |
---|
798 | xassert(work[j] == 0.0); |
---|
799 | xfree(work); |
---|
800 | return; |
---|
801 | } |
---|
802 | |
---|
803 | SPM *spm_mul_mat(const SPM *A, const SPM *B) |
---|
804 | { /* multiply two sparse matrices (driver routine) */ |
---|
805 | SPM *C; |
---|
806 | C = spm_mul_sym(A, B); |
---|
807 | spm_mul_num(C, A, B); |
---|
808 | return C; |
---|
809 | } |
---|
810 | |
---|
811 | PER *spm_create_per(int n) |
---|
812 | { /* create permutation matrix */ |
---|
813 | PER *P; |
---|
814 | int k; |
---|
815 | xassert(n >= 0); |
---|
816 | P = xmalloc(sizeof(PER)); |
---|
817 | P->n = n; |
---|
818 | P->row = xcalloc(1+n, sizeof(int)); |
---|
819 | P->col = xcalloc(1+n, sizeof(int)); |
---|
820 | /* initially it is identity matrix */ |
---|
821 | for (k = 1; k <= n; k++) |
---|
822 | P->row[k] = P->col[k] = k; |
---|
823 | return P; |
---|
824 | } |
---|
825 | |
---|
826 | void spm_check_per(PER *P) |
---|
827 | { /* check permutation matrix for correctness */ |
---|
828 | int i, j; |
---|
829 | xassert(P->n >= 0); |
---|
830 | for (i = 1; i <= P->n; i++) |
---|
831 | { j = P->row[i]; |
---|
832 | xassert(1 <= j && j <= P->n); |
---|
833 | xassert(P->col[j] == i); |
---|
834 | } |
---|
835 | return; |
---|
836 | } |
---|
837 | |
---|
838 | void spm_delete_per(PER *P) |
---|
839 | { /* delete permutation matrix */ |
---|
840 | xfree(P->row); |
---|
841 | xfree(P->col); |
---|
842 | xfree(P); |
---|
843 | return; |
---|
844 | } |
---|
845 | |
---|
846 | /* eof */ |
---|