[1] | 1 | /* glpssx02.c */ |
---|
| 2 | |
---|
| 3 | /*********************************************************************** |
---|
| 4 | * This code is part of GLPK (GNU Linear Programming Kit). |
---|
| 5 | * |
---|
| 6 | * Copyright (C) 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
---|
| 7 | * 2009, 2010 Andrew Makhorin, Department for Applied Informatics, |
---|
| 8 | * Moscow Aviation Institute, Moscow, Russia. All rights reserved. |
---|
| 9 | * E-mail: <mao@gnu.org>. |
---|
| 10 | * |
---|
| 11 | * GLPK is free software: you can redistribute it and/or modify it |
---|
| 12 | * under the terms of the GNU General Public License as published by |
---|
| 13 | * the Free Software Foundation, either version 3 of the License, or |
---|
| 14 | * (at your option) any later version. |
---|
| 15 | * |
---|
| 16 | * GLPK is distributed in the hope that it will be useful, but WITHOUT |
---|
| 17 | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY |
---|
| 18 | * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public |
---|
| 19 | * License for more details. |
---|
| 20 | * |
---|
| 21 | * You should have received a copy of the GNU General Public License |
---|
| 22 | * along with GLPK. If not, see <http://www.gnu.org/licenses/>. |
---|
| 23 | ***********************************************************************/ |
---|
| 24 | |
---|
| 25 | #include "glpenv.h" |
---|
| 26 | #include "glpssx.h" |
---|
| 27 | |
---|
| 28 | static void show_progress(SSX *ssx, int phase) |
---|
| 29 | { /* this auxiliary routine displays information about progress of |
---|
| 30 | the search */ |
---|
| 31 | int i, def = 0; |
---|
| 32 | for (i = 1; i <= ssx->m; i++) |
---|
| 33 | if (ssx->type[ssx->Q_col[i]] == SSX_FX) def++; |
---|
| 34 | xprintf("%s%6d: %s = %22.15g (%d)\n", phase == 1 ? " " : "*", |
---|
| 35 | ssx->it_cnt, phase == 1 ? "infsum" : "objval", |
---|
| 36 | mpq_get_d(ssx->bbar[0]), def); |
---|
| 37 | #if 0 |
---|
| 38 | ssx->tm_lag = utime(); |
---|
| 39 | #else |
---|
| 40 | ssx->tm_lag = xtime(); |
---|
| 41 | #endif |
---|
| 42 | return; |
---|
| 43 | } |
---|
| 44 | |
---|
| 45 | /*---------------------------------------------------------------------- |
---|
| 46 | // ssx_phase_I - find primal feasible solution. |
---|
| 47 | // |
---|
| 48 | // This routine implements phase I of the primal simplex method. |
---|
| 49 | // |
---|
| 50 | // On exit the routine returns one of the following codes: |
---|
| 51 | // |
---|
| 52 | // 0 - feasible solution found; |
---|
| 53 | // 1 - problem has no feasible solution; |
---|
| 54 | // 2 - iterations limit exceeded; |
---|
| 55 | // 3 - time limit exceeded. |
---|
| 56 | ----------------------------------------------------------------------*/ |
---|
| 57 | |
---|
| 58 | int ssx_phase_I(SSX *ssx) |
---|
| 59 | { int m = ssx->m; |
---|
| 60 | int n = ssx->n; |
---|
| 61 | int *type = ssx->type; |
---|
| 62 | mpq_t *lb = ssx->lb; |
---|
| 63 | mpq_t *ub = ssx->ub; |
---|
| 64 | mpq_t *coef = ssx->coef; |
---|
| 65 | int *A_ptr = ssx->A_ptr; |
---|
| 66 | int *A_ind = ssx->A_ind; |
---|
| 67 | mpq_t *A_val = ssx->A_val; |
---|
| 68 | int *Q_col = ssx->Q_col; |
---|
| 69 | mpq_t *bbar = ssx->bbar; |
---|
| 70 | mpq_t *pi = ssx->pi; |
---|
| 71 | mpq_t *cbar = ssx->cbar; |
---|
| 72 | int *orig_type, orig_dir; |
---|
| 73 | mpq_t *orig_lb, *orig_ub, *orig_coef; |
---|
| 74 | int i, k, ret; |
---|
| 75 | /* save components of the original LP problem, which are changed |
---|
| 76 | by the routine */ |
---|
| 77 | orig_type = xcalloc(1+m+n, sizeof(int)); |
---|
| 78 | orig_lb = xcalloc(1+m+n, sizeof(mpq_t)); |
---|
| 79 | orig_ub = xcalloc(1+m+n, sizeof(mpq_t)); |
---|
| 80 | orig_coef = xcalloc(1+m+n, sizeof(mpq_t)); |
---|
| 81 | for (k = 1; k <= m+n; k++) |
---|
| 82 | { orig_type[k] = type[k]; |
---|
| 83 | mpq_init(orig_lb[k]); |
---|
| 84 | mpq_set(orig_lb[k], lb[k]); |
---|
| 85 | mpq_init(orig_ub[k]); |
---|
| 86 | mpq_set(orig_ub[k], ub[k]); |
---|
| 87 | } |
---|
| 88 | orig_dir = ssx->dir; |
---|
| 89 | for (k = 0; k <= m+n; k++) |
---|
| 90 | { mpq_init(orig_coef[k]); |
---|
| 91 | mpq_set(orig_coef[k], coef[k]); |
---|
| 92 | } |
---|
| 93 | /* build an artificial basic solution, which is primal feasible, |
---|
| 94 | and also build an auxiliary objective function to minimize the |
---|
| 95 | sum of infeasibilities for the original problem */ |
---|
| 96 | ssx->dir = SSX_MIN; |
---|
| 97 | for (k = 0; k <= m+n; k++) mpq_set_si(coef[k], 0, 1); |
---|
| 98 | mpq_set_si(bbar[0], 0, 1); |
---|
| 99 | for (i = 1; i <= m; i++) |
---|
| 100 | { int t; |
---|
| 101 | k = Q_col[i]; /* x[k] = xB[i] */ |
---|
| 102 | t = type[k]; |
---|
| 103 | if (t == SSX_LO || t == SSX_DB || t == SSX_FX) |
---|
| 104 | { /* in the original problem x[k] has lower bound */ |
---|
| 105 | if (mpq_cmp(bbar[i], lb[k]) < 0) |
---|
| 106 | { /* which is violated */ |
---|
| 107 | type[k] = SSX_UP; |
---|
| 108 | mpq_set(ub[k], lb[k]); |
---|
| 109 | mpq_set_si(lb[k], 0, 1); |
---|
| 110 | mpq_set_si(coef[k], -1, 1); |
---|
| 111 | mpq_add(bbar[0], bbar[0], ub[k]); |
---|
| 112 | mpq_sub(bbar[0], bbar[0], bbar[i]); |
---|
| 113 | } |
---|
| 114 | } |
---|
| 115 | if (t == SSX_UP || t == SSX_DB || t == SSX_FX) |
---|
| 116 | { /* in the original problem x[k] has upper bound */ |
---|
| 117 | if (mpq_cmp(bbar[i], ub[k]) > 0) |
---|
| 118 | { /* which is violated */ |
---|
| 119 | type[k] = SSX_LO; |
---|
| 120 | mpq_set(lb[k], ub[k]); |
---|
| 121 | mpq_set_si(ub[k], 0, 1); |
---|
| 122 | mpq_set_si(coef[k], +1, 1); |
---|
| 123 | mpq_add(bbar[0], bbar[0], bbar[i]); |
---|
| 124 | mpq_sub(bbar[0], bbar[0], lb[k]); |
---|
| 125 | } |
---|
| 126 | } |
---|
| 127 | } |
---|
| 128 | /* now the initial basic solution should be primal feasible due |
---|
| 129 | to changes of bounds of some basic variables, which turned to |
---|
| 130 | implicit artifical variables */ |
---|
| 131 | /* compute simplex multipliers and reduced costs */ |
---|
| 132 | ssx_eval_pi(ssx); |
---|
| 133 | ssx_eval_cbar(ssx); |
---|
| 134 | /* display initial progress of the search */ |
---|
| 135 | show_progress(ssx, 1); |
---|
| 136 | /* main loop starts here */ |
---|
| 137 | for (;;) |
---|
| 138 | { /* display current progress of the search */ |
---|
| 139 | #if 0 |
---|
| 140 | if (utime() - ssx->tm_lag >= ssx->out_frq - 0.001) |
---|
| 141 | #else |
---|
| 142 | if (xdifftime(xtime(), ssx->tm_lag) >= ssx->out_frq - 0.001) |
---|
| 143 | #endif |
---|
| 144 | show_progress(ssx, 1); |
---|
| 145 | /* we do not need to wait until all artificial variables have |
---|
| 146 | left the basis */ |
---|
| 147 | if (mpq_sgn(bbar[0]) == 0) |
---|
| 148 | { /* the sum of infeasibilities is zero, therefore the current |
---|
| 149 | solution is primal feasible for the original problem */ |
---|
| 150 | ret = 0; |
---|
| 151 | break; |
---|
| 152 | } |
---|
| 153 | /* check if the iterations limit has been exhausted */ |
---|
| 154 | if (ssx->it_lim == 0) |
---|
| 155 | { ret = 2; |
---|
| 156 | break; |
---|
| 157 | } |
---|
| 158 | /* check if the time limit has been exhausted */ |
---|
| 159 | #if 0 |
---|
| 160 | if (ssx->tm_lim >= 0.0 && ssx->tm_lim <= utime() - ssx->tm_beg) |
---|
| 161 | #else |
---|
| 162 | if (ssx->tm_lim >= 0.0 && |
---|
| 163 | ssx->tm_lim <= xdifftime(xtime(), ssx->tm_beg)) |
---|
| 164 | #endif |
---|
| 165 | { ret = 3; |
---|
| 166 | break; |
---|
| 167 | } |
---|
| 168 | /* choose non-basic variable xN[q] */ |
---|
| 169 | ssx_chuzc(ssx); |
---|
| 170 | /* if xN[q] cannot be chosen, the sum of infeasibilities is |
---|
| 171 | minimal but non-zero; therefore the original problem has no |
---|
| 172 | primal feasible solution */ |
---|
| 173 | if (ssx->q == 0) |
---|
| 174 | { ret = 1; |
---|
| 175 | break; |
---|
| 176 | } |
---|
| 177 | /* compute q-th column of the simplex table */ |
---|
| 178 | ssx_eval_col(ssx); |
---|
| 179 | /* choose basic variable xB[p] */ |
---|
| 180 | ssx_chuzr(ssx); |
---|
| 181 | /* the sum of infeasibilities cannot be negative, therefore |
---|
| 182 | the auxiliary lp problem cannot have unbounded solution */ |
---|
| 183 | xassert(ssx->p != 0); |
---|
| 184 | /* update values of basic variables */ |
---|
| 185 | ssx_update_bbar(ssx); |
---|
| 186 | if (ssx->p > 0) |
---|
| 187 | { /* compute p-th row of the inverse inv(B) */ |
---|
| 188 | ssx_eval_rho(ssx); |
---|
| 189 | /* compute p-th row of the simplex table */ |
---|
| 190 | ssx_eval_row(ssx); |
---|
| 191 | xassert(mpq_cmp(ssx->aq[ssx->p], ssx->ap[ssx->q]) == 0); |
---|
| 192 | /* update simplex multipliers */ |
---|
| 193 | ssx_update_pi(ssx); |
---|
| 194 | /* update reduced costs of non-basic variables */ |
---|
| 195 | ssx_update_cbar(ssx); |
---|
| 196 | } |
---|
| 197 | /* xB[p] is leaving the basis; if it is implicit artificial |
---|
| 198 | variable, the corresponding residual vanishes; therefore |
---|
| 199 | bounds of this variable should be restored to the original |
---|
| 200 | values */ |
---|
| 201 | if (ssx->p > 0) |
---|
| 202 | { k = Q_col[ssx->p]; /* x[k] = xB[p] */ |
---|
| 203 | if (type[k] != orig_type[k]) |
---|
| 204 | { /* x[k] is implicit artificial variable */ |
---|
| 205 | type[k] = orig_type[k]; |
---|
| 206 | mpq_set(lb[k], orig_lb[k]); |
---|
| 207 | mpq_set(ub[k], orig_ub[k]); |
---|
| 208 | xassert(ssx->p_stat == SSX_NL || ssx->p_stat == SSX_NU); |
---|
| 209 | ssx->p_stat = (ssx->p_stat == SSX_NL ? SSX_NU : SSX_NL); |
---|
| 210 | if (type[k] == SSX_FX) ssx->p_stat = SSX_NS; |
---|
| 211 | /* nullify the objective coefficient at x[k] */ |
---|
| 212 | mpq_set_si(coef[k], 0, 1); |
---|
| 213 | /* since coef[k] has been changed, we need to compute |
---|
| 214 | new reduced cost of x[k], which it will have in the |
---|
| 215 | adjacent basis */ |
---|
| 216 | /* the formula d[j] = cN[j] - pi' * N[j] is used (note |
---|
| 217 | that the vector pi is not changed, because it depends |
---|
| 218 | on objective coefficients at basic variables, but in |
---|
| 219 | the adjacent basis, for which the vector pi has been |
---|
| 220 | just recomputed, x[k] is non-basic) */ |
---|
| 221 | if (k <= m) |
---|
| 222 | { /* x[k] is auxiliary variable */ |
---|
| 223 | mpq_neg(cbar[ssx->q], pi[k]); |
---|
| 224 | } |
---|
| 225 | else |
---|
| 226 | { /* x[k] is structural variable */ |
---|
| 227 | int ptr; |
---|
| 228 | mpq_t temp; |
---|
| 229 | mpq_init(temp); |
---|
| 230 | mpq_set_si(cbar[ssx->q], 0, 1); |
---|
| 231 | for (ptr = A_ptr[k-m]; ptr < A_ptr[k-m+1]; ptr++) |
---|
| 232 | { mpq_mul(temp, pi[A_ind[ptr]], A_val[ptr]); |
---|
| 233 | mpq_add(cbar[ssx->q], cbar[ssx->q], temp); |
---|
| 234 | } |
---|
| 235 | mpq_clear(temp); |
---|
| 236 | } |
---|
| 237 | } |
---|
| 238 | } |
---|
| 239 | /* jump to the adjacent vertex of the polyhedron */ |
---|
| 240 | ssx_change_basis(ssx); |
---|
| 241 | /* one simplex iteration has been performed */ |
---|
| 242 | if (ssx->it_lim > 0) ssx->it_lim--; |
---|
| 243 | ssx->it_cnt++; |
---|
| 244 | } |
---|
| 245 | /* display final progress of the search */ |
---|
| 246 | show_progress(ssx, 1); |
---|
| 247 | /* restore components of the original problem, which were changed |
---|
| 248 | by the routine */ |
---|
| 249 | for (k = 1; k <= m+n; k++) |
---|
| 250 | { type[k] = orig_type[k]; |
---|
| 251 | mpq_set(lb[k], orig_lb[k]); |
---|
| 252 | mpq_clear(orig_lb[k]); |
---|
| 253 | mpq_set(ub[k], orig_ub[k]); |
---|
| 254 | mpq_clear(orig_ub[k]); |
---|
| 255 | } |
---|
| 256 | ssx->dir = orig_dir; |
---|
| 257 | for (k = 0; k <= m+n; k++) |
---|
| 258 | { mpq_set(coef[k], orig_coef[k]); |
---|
| 259 | mpq_clear(orig_coef[k]); |
---|
| 260 | } |
---|
| 261 | xfree(orig_type); |
---|
| 262 | xfree(orig_lb); |
---|
| 263 | xfree(orig_ub); |
---|
| 264 | xfree(orig_coef); |
---|
| 265 | /* return to the calling program */ |
---|
| 266 | return ret; |
---|
| 267 | } |
---|
| 268 | |
---|
| 269 | /*---------------------------------------------------------------------- |
---|
| 270 | // ssx_phase_II - find optimal solution. |
---|
| 271 | // |
---|
| 272 | // This routine implements phase II of the primal simplex method. |
---|
| 273 | // |
---|
| 274 | // On exit the routine returns one of the following codes: |
---|
| 275 | // |
---|
| 276 | // 0 - optimal solution found; |
---|
| 277 | // 1 - problem has unbounded solution; |
---|
| 278 | // 2 - iterations limit exceeded; |
---|
| 279 | // 3 - time limit exceeded. |
---|
| 280 | ----------------------------------------------------------------------*/ |
---|
| 281 | |
---|
| 282 | int ssx_phase_II(SSX *ssx) |
---|
| 283 | { int ret; |
---|
| 284 | /* display initial progress of the search */ |
---|
| 285 | show_progress(ssx, 2); |
---|
| 286 | /* main loop starts here */ |
---|
| 287 | for (;;) |
---|
| 288 | { /* display current progress of the search */ |
---|
| 289 | #if 0 |
---|
| 290 | if (utime() - ssx->tm_lag >= ssx->out_frq - 0.001) |
---|
| 291 | #else |
---|
| 292 | if (xdifftime(xtime(), ssx->tm_lag) >= ssx->out_frq - 0.001) |
---|
| 293 | #endif |
---|
| 294 | show_progress(ssx, 2); |
---|
| 295 | /* check if the iterations limit has been exhausted */ |
---|
| 296 | if (ssx->it_lim == 0) |
---|
| 297 | { ret = 2; |
---|
| 298 | break; |
---|
| 299 | } |
---|
| 300 | /* check if the time limit has been exhausted */ |
---|
| 301 | #if 0 |
---|
| 302 | if (ssx->tm_lim >= 0.0 && ssx->tm_lim <= utime() - ssx->tm_beg) |
---|
| 303 | #else |
---|
| 304 | if (ssx->tm_lim >= 0.0 && |
---|
| 305 | ssx->tm_lim <= xdifftime(xtime(), ssx->tm_beg)) |
---|
| 306 | #endif |
---|
| 307 | { ret = 3; |
---|
| 308 | break; |
---|
| 309 | } |
---|
| 310 | /* choose non-basic variable xN[q] */ |
---|
| 311 | ssx_chuzc(ssx); |
---|
| 312 | /* if xN[q] cannot be chosen, the current basic solution is |
---|
| 313 | dual feasible and therefore optimal */ |
---|
| 314 | if (ssx->q == 0) |
---|
| 315 | { ret = 0; |
---|
| 316 | break; |
---|
| 317 | } |
---|
| 318 | /* compute q-th column of the simplex table */ |
---|
| 319 | ssx_eval_col(ssx); |
---|
| 320 | /* choose basic variable xB[p] */ |
---|
| 321 | ssx_chuzr(ssx); |
---|
| 322 | /* if xB[p] cannot be chosen, the problem has no dual feasible |
---|
| 323 | solution (i.e. unbounded) */ |
---|
| 324 | if (ssx->p == 0) |
---|
| 325 | { ret = 1; |
---|
| 326 | break; |
---|
| 327 | } |
---|
| 328 | /* update values of basic variables */ |
---|
| 329 | ssx_update_bbar(ssx); |
---|
| 330 | if (ssx->p > 0) |
---|
| 331 | { /* compute p-th row of the inverse inv(B) */ |
---|
| 332 | ssx_eval_rho(ssx); |
---|
| 333 | /* compute p-th row of the simplex table */ |
---|
| 334 | ssx_eval_row(ssx); |
---|
| 335 | xassert(mpq_cmp(ssx->aq[ssx->p], ssx->ap[ssx->q]) == 0); |
---|
| 336 | #if 0 |
---|
| 337 | /* update simplex multipliers */ |
---|
| 338 | ssx_update_pi(ssx); |
---|
| 339 | #endif |
---|
| 340 | /* update reduced costs of non-basic variables */ |
---|
| 341 | ssx_update_cbar(ssx); |
---|
| 342 | } |
---|
| 343 | /* jump to the adjacent vertex of the polyhedron */ |
---|
| 344 | ssx_change_basis(ssx); |
---|
| 345 | /* one simplex iteration has been performed */ |
---|
| 346 | if (ssx->it_lim > 0) ssx->it_lim--; |
---|
| 347 | ssx->it_cnt++; |
---|
| 348 | } |
---|
| 349 | /* display final progress of the search */ |
---|
| 350 | show_progress(ssx, 2); |
---|
| 351 | /* return to the calling program */ |
---|
| 352 | return ret; |
---|
| 353 | } |
---|
| 354 | |
---|
| 355 | /*---------------------------------------------------------------------- |
---|
| 356 | // ssx_driver - base driver to exact simplex method. |
---|
| 357 | // |
---|
| 358 | // This routine is a base driver to a version of the primal simplex |
---|
| 359 | // method using exact (bignum) arithmetic. |
---|
| 360 | // |
---|
| 361 | // On exit the routine returns one of the following codes: |
---|
| 362 | // |
---|
| 363 | // 0 - optimal solution found; |
---|
| 364 | // 1 - problem has no feasible solution; |
---|
| 365 | // 2 - problem has unbounded solution; |
---|
| 366 | // 3 - iterations limit exceeded (phase I); |
---|
| 367 | // 4 - iterations limit exceeded (phase II); |
---|
| 368 | // 5 - time limit exceeded (phase I); |
---|
| 369 | // 6 - time limit exceeded (phase II); |
---|
| 370 | // 7 - initial basis matrix is exactly singular. |
---|
| 371 | ----------------------------------------------------------------------*/ |
---|
| 372 | |
---|
| 373 | int ssx_driver(SSX *ssx) |
---|
| 374 | { int m = ssx->m; |
---|
| 375 | int *type = ssx->type; |
---|
| 376 | mpq_t *lb = ssx->lb; |
---|
| 377 | mpq_t *ub = ssx->ub; |
---|
| 378 | int *Q_col = ssx->Q_col; |
---|
| 379 | mpq_t *bbar = ssx->bbar; |
---|
| 380 | int i, k, ret; |
---|
| 381 | ssx->tm_beg = xtime(); |
---|
| 382 | /* factorize the initial basis matrix */ |
---|
| 383 | if (ssx_factorize(ssx)) |
---|
| 384 | { xprintf("Initial basis matrix is singular\n"); |
---|
| 385 | ret = 7; |
---|
| 386 | goto done; |
---|
| 387 | } |
---|
| 388 | /* compute values of basic variables */ |
---|
| 389 | ssx_eval_bbar(ssx); |
---|
| 390 | /* check if the initial basic solution is primal feasible */ |
---|
| 391 | for (i = 1; i <= m; i++) |
---|
| 392 | { int t; |
---|
| 393 | k = Q_col[i]; /* x[k] = xB[i] */ |
---|
| 394 | t = type[k]; |
---|
| 395 | if (t == SSX_LO || t == SSX_DB || t == SSX_FX) |
---|
| 396 | { /* x[k] has lower bound */ |
---|
| 397 | if (mpq_cmp(bbar[i], lb[k]) < 0) |
---|
| 398 | { /* which is violated */ |
---|
| 399 | break; |
---|
| 400 | } |
---|
| 401 | } |
---|
| 402 | if (t == SSX_UP || t == SSX_DB || t == SSX_FX) |
---|
| 403 | { /* x[k] has upper bound */ |
---|
| 404 | if (mpq_cmp(bbar[i], ub[k]) > 0) |
---|
| 405 | { /* which is violated */ |
---|
| 406 | break; |
---|
| 407 | } |
---|
| 408 | } |
---|
| 409 | } |
---|
| 410 | if (i > m) |
---|
| 411 | { /* no basic variable violates its bounds */ |
---|
| 412 | ret = 0; |
---|
| 413 | goto skip; |
---|
| 414 | } |
---|
| 415 | /* phase I: find primal feasible solution */ |
---|
| 416 | ret = ssx_phase_I(ssx); |
---|
| 417 | switch (ret) |
---|
| 418 | { case 0: |
---|
| 419 | ret = 0; |
---|
| 420 | break; |
---|
| 421 | case 1: |
---|
| 422 | xprintf("PROBLEM HAS NO FEASIBLE SOLUTION\n"); |
---|
| 423 | ret = 1; |
---|
| 424 | break; |
---|
| 425 | case 2: |
---|
| 426 | xprintf("ITERATIONS LIMIT EXCEEDED; SEARCH TERMINATED\n"); |
---|
| 427 | ret = 3; |
---|
| 428 | break; |
---|
| 429 | case 3: |
---|
| 430 | xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n"); |
---|
| 431 | ret = 5; |
---|
| 432 | break; |
---|
| 433 | default: |
---|
| 434 | xassert(ret != ret); |
---|
| 435 | } |
---|
| 436 | /* compute values of basic variables (actually only the objective |
---|
| 437 | value needs to be computed) */ |
---|
| 438 | ssx_eval_bbar(ssx); |
---|
| 439 | skip: /* compute simplex multipliers */ |
---|
| 440 | ssx_eval_pi(ssx); |
---|
| 441 | /* compute reduced costs of non-basic variables */ |
---|
| 442 | ssx_eval_cbar(ssx); |
---|
| 443 | /* if phase I failed, do not start phase II */ |
---|
| 444 | if (ret != 0) goto done; |
---|
| 445 | /* phase II: find optimal solution */ |
---|
| 446 | ret = ssx_phase_II(ssx); |
---|
| 447 | switch (ret) |
---|
| 448 | { case 0: |
---|
| 449 | xprintf("OPTIMAL SOLUTION FOUND\n"); |
---|
| 450 | ret = 0; |
---|
| 451 | break; |
---|
| 452 | case 1: |
---|
| 453 | xprintf("PROBLEM HAS UNBOUNDED SOLUTION\n"); |
---|
| 454 | ret = 2; |
---|
| 455 | break; |
---|
| 456 | case 2: |
---|
| 457 | xprintf("ITERATIONS LIMIT EXCEEDED; SEARCH TERMINATED\n"); |
---|
| 458 | ret = 4; |
---|
| 459 | break; |
---|
| 460 | case 3: |
---|
| 461 | xprintf("TIME LIMIT EXCEEDED; SEARCH TERMINATED\n"); |
---|
| 462 | ret = 6; |
---|
| 463 | break; |
---|
| 464 | default: |
---|
| 465 | xassert(ret != ret); |
---|
| 466 | } |
---|
| 467 | done: /* decrease the time limit by the spent amount of time */ |
---|
| 468 | if (ssx->tm_lim >= 0.0) |
---|
| 469 | #if 0 |
---|
| 470 | { ssx->tm_lim -= utime() - ssx->tm_beg; |
---|
| 471 | #else |
---|
| 472 | { ssx->tm_lim -= xdifftime(xtime(), ssx->tm_beg); |
---|
| 473 | #endif |
---|
| 474 | if (ssx->tm_lim < 0.0) ssx->tm_lim = 0.0; |
---|
| 475 | } |
---|
| 476 | return ret; |
---|
| 477 | } |
---|
| 478 | |
---|
| 479 | /* eof */ |
---|