[921] | 1 | #include<lemon/list_graph.h> |
---|
[711] | 2 | |
---|
| 3 | #include"bench_tools.h" |
---|
[699] | 4 | |
---|
[921] | 5 | using namespace lemon; |
---|
[699] | 6 | |
---|
| 7 | ///Makes a full graph by adding and deleting a lot of edges; |
---|
| 8 | |
---|
| 9 | ///\param n Number of nodes. |
---|
| 10 | ///\param rat The funcion will make \f$rat\timesn^2\f$ edge addition and |
---|
| 11 | ///\f$(rat-1)\timesn^2\f$ deletion. |
---|
| 12 | ///\param p Tuning parameters. |
---|
| 13 | ///\warning \c rat, \c p, and \c n must be pairwise relative primes. |
---|
| 14 | template <class Graph> |
---|
| 15 | void makeFullGraph(int n, int rat, int p) |
---|
| 16 | { |
---|
| 17 | GRAPH_TYPEDEF_FACTORY(Graph); |
---|
| 18 | |
---|
| 19 | Graph G; |
---|
| 20 | |
---|
[708] | 21 | // Node nodes[n]; |
---|
| 22 | std::vector<Node> nodes(n); |
---|
[699] | 23 | for(int i=0;i<n;i++) nodes[i]=G.addNode(); |
---|
| 24 | |
---|
[708] | 25 | //Edge equ[rat]; |
---|
| 26 | std::vector<Edge> equ(rat); |
---|
[699] | 27 | |
---|
[718] | 28 | long long int count; |
---|
[699] | 29 | |
---|
| 30 | for(count=0;count<rat;count++) { |
---|
| 31 | equ[count%rat]=G.addEdge(nodes[(count*p)%n],nodes[(count*p/n)%n]); |
---|
| 32 | } |
---|
| 33 | for(;(count%rat)||((count*p)%n)||((count*p/n)%n);count++) { |
---|
| 34 | // if(!(count%1000000)) fprintf(stderr,"%d\r",count); |
---|
| 35 | if(count%rat) G.erase(equ[count%rat]); |
---|
| 36 | equ[count%rat]=G.addEdge(nodes[(count*p)%n],nodes[(count*p/n)%n]); |
---|
| 37 | } |
---|
[718] | 38 | // std::cout << "Added " << count |
---|
| 39 | // << " ( " << n << "^2 * " << rat << " ) edges\n"; |
---|
| 40 | |
---|
| 41 | |
---|
[699] | 42 | // for(int i=0;1;i++) ; |
---|
| 43 | } |
---|
| 44 | |
---|
| 45 | int main() |
---|
| 46 | { |
---|
[921] | 47 | lemon::Timer T; |
---|
[699] | 48 | makeFullGraph<ListGraph>(nextPrim(1000),nextPrim(300),nextPrim(100)); |
---|
[718] | 49 | |
---|
| 50 | PrintTime("BIG",T); |
---|
[699] | 51 | T.reset(); |
---|
| 52 | makeFullGraph<ListGraph>(nextPrim(100),nextPrim(30000),nextPrim(150)); |
---|
[718] | 53 | |
---|
| 54 | PrintTime("SMALL",T); |
---|
[699] | 55 | } |
---|