#ifdef HAVE_CONFIG_H #include #endif #include #include #ifdef HAVE_GLPK #include #elif HAVE_CPLEX #include #endif using namespace lemon; #ifdef HAVE_GLPK typedef LpGlpk LpDefault; #elif HAVE_CPLEX typedef LpCplex LpDefault; #endif template double maxFlow(const G &g,const C &cap,typename G::Node s,typename G::Node t) { LpDefault lp; typedef G Graph; typedef typename G::Node Node; typedef typename G::NodeIt NodeIt; typedef typename G::Edge Edge; typedef typename G::EdgeIt EdgeIt; typedef typename G::OutEdgeIt OutEdgeIt; typedef typename G::InEdgeIt InEdgeIt; //Define a map on the edges for the variables of the LP problem typename G::template EdgeMap x(g); lp.addColSet(x); //Nonnegativity and capacity constraints for(EdgeIt e(g);e!=INVALID;++e) { lp.colUpperBound(x[e],cap[e]); lp.colLowerBound(x[e],0); } //Flow conservation constraints for the nodes (except for 's' and 't') for(NodeIt n(g);n!=INVALID;++n) if(n!=s&&n!=t) { LpDefault::Expr ex; for(InEdgeIt e(g,n);e!=INVALID;++e) ex+=x[e]; for(OutEdgeIt e(g,n);e!=INVALID;++e) ex-=x[e]; lp.addRow(ex==0); } //Objective function: the flow value entering 't' { LpDefault::Expr ex; for(InEdgeIt e(g,t);e!=INVALID;++e) ex+=x[e]; for(OutEdgeIt e(g,t);e!=INVALID;++e) ex-=x[e]; lp.setObj(ex); } //Maximization lp.max(); #ifdef HAVE_GLPK lp.presolver(true); lp.messageLevel(3); #endif //Solve with the underlying solver lp.solve(); return lp.primalValue(); } int main() { ListGraph g; ListGraph::Node s; ListGraph::Node t; ListGraph::EdgeMap cap(g); GraphReader reader(std::cin,g); reader.readNode("source",s).readNode("target",t) .readEdgeMap("capacity",cap).run(); // std::ifstream file("../test/preflow_"); // readDimacs(file, g, cap, s, t); std::cout << "Max flow value = " << maxFlow(g,cap,s,t) << std::endl; }