1 | namespace lemon { |
---|
2 | /** |
---|
3 | |
---|
4 | \ingroup demos |
---|
5 | \file graph_orientation.cc |
---|
6 | \brief Graph orientation with lower bound requirement on the |
---|
7 | in-degree of the nodes. |
---|
8 | |
---|
9 | This demo shows an adaptation of the well-known "preflow push" algorithm to |
---|
10 | a simple graph orientation problem. |
---|
11 | |
---|
12 | The input of the problem is a(n undirected) graph and an integer value |
---|
13 | <i>f(n)</i> assigned to each node \e n. The task is to find an orientation |
---|
14 | of the edges for which the number of edge arriving at each node \e n is at |
---|
15 | least least <i>f(n)</i>. |
---|
16 | |
---|
17 | In fact, the algorithm reads a directed graph and computes a set of edges to |
---|
18 | be reversed in order to achieve the in-degree requirement. |
---|
19 | This input is given using |
---|
20 | \ref graph-io-page ".lgf (Lemon Graph Format)" file. It should contain |
---|
21 | three node maps. The one called "f" contains the in-degree requirements, while |
---|
22 | "coordinate_x" and "coordinate_y" indicate the position of the nodes. These |
---|
23 | latter ones are used to generate the output, which is a <tt>.eps</tt> file. |
---|
24 | |
---|
25 | |
---|
26 | \section go-alg-dec The C++ source file |
---|
27 | |
---|
28 | Here you find how to solve the problem above using lemon. |
---|
29 | |
---|
30 | \subsection go-alg-head Headers and convenience typedefs |
---|
31 | |
---|
32 | First we include some important headers. |
---|
33 | |
---|
34 | The first one defines \ref lemon::ListGraph "ListGraph", |
---|
35 | the "Swiss army knife" graph implementation. |
---|
36 | \dontinclude graph_orientation.cc |
---|
37 | \skipline list_graph |
---|
38 | |
---|
39 | The next is to read a \ref graph-io-page ".lgf" (Lemon Graph Format) file. |
---|
40 | \skipline reader |
---|
41 | |
---|
42 | This provides us with some special purpose graph \ref maps "maps". |
---|
43 | \skipline iterable |
---|
44 | |
---|
45 | The following header defines a simple data structure to store and manipulate |
---|
46 | planar coordinates. It will be used to draw the result. |
---|
47 | \skipline xy |
---|
48 | |
---|
49 | And finally, this header contains a simple graph drawing utility. |
---|
50 | \skipline eps |
---|
51 | |
---|
52 | As we don't want to type in \ref lemon "lemon::" million times, the |
---|
53 | following line seems to be useful. |
---|
54 | \skipline namespace |
---|
55 | |
---|
56 | The following macro will also save a lot of typing by defining some |
---|
57 | convenience <tt>typedef</tt>s. |
---|
58 | |
---|
59 | \skipline TYPEDEF |
---|
60 | |
---|
61 | Actually, the macro above would be equivalent with the following |
---|
62 | <tt>typedef</tt>s. |
---|
63 | |
---|
64 | \code |
---|
65 | typedef ListGraph::Node Node; |
---|
66 | typedef ListGraph::NodeIt NodeIt; |
---|
67 | typedef ListGraph::Edge Edge; |
---|
68 | typedef ListGraph::EdgeIt EdgeIt; |
---|
69 | typedef ListGraph::OutEdgeIt OutEdgeIt; |
---|
70 | typedef ListGraph::InEdgeIt InEdgeIt; |
---|
71 | \endcode |
---|
72 | |
---|
73 | \subsection go-alg-main The main() function |
---|
74 | |
---|
75 | Well, we are ready to start <tt>main()</tt>. |
---|
76 | \skip main |
---|
77 | \until { |
---|
78 | |
---|
79 | First we check whether the program is called with exactly one parameter. |
---|
80 | If it isn't, we print a short help message end exit. |
---|
81 | The vast majority of people would probably skip this block. |
---|
82 | \skip if |
---|
83 | \until } |
---|
84 | |
---|
85 | Now, we read a graph \c g, and a map \c f containing |
---|
86 | the in-deg requirements from a \ref graph-io-page ".lgf (Lemon Graph Format)" |
---|
87 | file. To generate the output picture, we also read the node titles (\c label) |
---|
88 | and |
---|
89 | coordinates (\c coords). |
---|
90 | So, first we create the graph |
---|
91 | \skipline ListGraph |
---|
92 | and the corresponding NodeMaps. |
---|
93 | \skipline NodeMap |
---|
94 | \until coords |
---|
95 | \note The graph must be given to the maps' constructor. |
---|
96 | |
---|
97 | Then, the following block will read these data from the file, or exit if |
---|
98 | the file is missing or corrupt. |
---|
99 | \skip try |
---|
100 | \until } |
---|
101 | \until } |
---|
102 | |
---|
103 | The algorithm needs an integer value assigned to each node. We call this "level" and the nodes are on level 0 at the |
---|
104 | beginning of the execution. |
---|
105 | |
---|
106 | \skipline level |
---|
107 | |
---|
108 | The deficiency (\c def) of a node is the in-degree requirement minus the |
---|
109 | actual in-degree. |
---|
110 | |
---|
111 | \skip def |
---|
112 | \until subMap |
---|
113 | |
---|
114 | A node is \e active if its deficiency is positive (i.e. if it doesn't meet |
---|
115 | the degree requirement). |
---|
116 | \skip active |
---|
117 | \until def |
---|
118 | |
---|
119 | We also store in a bool map indicating which edges are reverted. |
---|
120 | Actually this map called \c rev is only |
---|
121 | used to draw these edges with different color in the output picture. The |
---|
122 | algorithm updates this map, but will not use it otherwise. |
---|
123 | \skip rev |
---|
124 | \until reversed |
---|
125 | |
---|
126 | The variable \c nodeNum will refer to the number of nodes. |
---|
127 | \skipline nodeNum |
---|
128 | |
---|
129 | Here comes the algorithm itself. |
---|
130 | In each iteration we choose an active node (\c act will do it for us). |
---|
131 | If there is |
---|
132 | no such a node, then the orientation is feasible so we are done. |
---|
133 | \skip act |
---|
134 | \until while |
---|
135 | |
---|
136 | Then we check if there exists an edge leaving this node and |
---|
137 | stepping down exactly |
---|
138 | one level. |
---|
139 | \skip OutEdge |
---|
140 | \until while |
---|
141 | |
---|
142 | If there exists, we decrease the "activity" of the node \c act by reverting |
---|
143 | this egde. |
---|
144 | Fortunately, \ref lemon::ListGraph "ListGraph" |
---|
145 | has a special function \ref lemon::ListGraph::reverseEdge() "reverseEdge()" |
---|
146 | that makes this easy. |
---|
147 | We also have to update the maps \c def and |
---|
148 | \c rev. |
---|
149 | \skipline if |
---|
150 | \skip if |
---|
151 | \until } |
---|
152 | Otherwise (i.e. if there is no edge stepping down one level). We lift up the |
---|
153 | current active node \c act. If it reaches level \c nodeNum, then there |
---|
154 | exists no appropriate orientation so we stop. |
---|
155 | \skipline else |
---|
156 | \skipline if |
---|
157 | \skipline return |
---|
158 | \until } |
---|
159 | \until } |
---|
160 | \until } |
---|
161 | |
---|
162 | Believe it or not, this algorithm works and runs fast. |
---|
163 | |
---|
164 | Finally, we print the obtained orientation. Note, how the different |
---|
165 | \c bool values of |
---|
166 | \c rev are transformed into different \ref lemon::Color "RGB color"s |
---|
167 | using the class |
---|
168 | \ref lemon::Palette "Palette" |
---|
169 | and the \ref map_adaptors "map adaptor" called |
---|
170 | \ref lemon::ComposeMap "composeMap". |
---|
171 | |
---|
172 | \skip graphToEps |
---|
173 | \until run |
---|
174 | |
---|
175 | |
---|
176 | \until end of main |
---|
177 | |
---|
178 | Finally here are again the list of the used include files (because I can't turn |
---|
179 | this section off.) |
---|
180 | |
---|
181 | */ |
---|
182 | |
---|
183 | } |
---|