[666] | 1 | /*! |
---|
| 2 | |
---|
| 3 | \page graphs How to use graphs |
---|
| 4 | |
---|
| 5 | The following program demonstrates the basic features of HugoLib's graph |
---|
| 6 | structures. |
---|
| 7 | |
---|
| 8 | \code |
---|
| 9 | #include <iostream> |
---|
| 10 | #include <hugo/list_graph.h> |
---|
| 11 | |
---|
| 12 | using namespace hugo; |
---|
| 13 | |
---|
| 14 | int main() |
---|
| 15 | { |
---|
| 16 | typedef ListGraph Graph; |
---|
| 17 | \endcode |
---|
| 18 | |
---|
| 19 | ListGraph is one of HugoLib's graph classes. It is based on linked lists, |
---|
| 20 | therefore iterating throuh its edges and nodes is fast. |
---|
| 21 | |
---|
| 22 | \code |
---|
| 23 | typedef Graph::Edge Edge; |
---|
| 24 | typedef Graph::InEdgeIt InEdgeIt; |
---|
| 25 | typedef Graph::OutEdgeIt OutEdgeIt; |
---|
| 26 | typedef Graph::EdgeIt EdgeIt; |
---|
| 27 | typedef Graph::Node Node; |
---|
| 28 | typedef Graph::NodeIt NodeIt; |
---|
| 29 | |
---|
| 30 | Graph g; |
---|
| 31 | |
---|
| 32 | for (int i = 0; i < 3; i++) |
---|
| 33 | g.addNode(); |
---|
| 34 | |
---|
| 35 | for (NodeIt i(g); g.valid(i); g.next(i)) |
---|
| 36 | for (NodeIt j(g); g.valid(j); g.next(j)) |
---|
| 37 | if (i != j) g.addEdge(i, j); |
---|
| 38 | \endcode |
---|
| 39 | |
---|
| 40 | After some convenience typedefs we create a graph and add three nodes to it. |
---|
| 41 | Then we add edges to it to form a full graph. |
---|
| 42 | |
---|
| 43 | \code |
---|
| 44 | std::cout << "Nodes:"; |
---|
| 45 | for (NodeIt i(g); g.valid(i); g.next(i)) |
---|
| 46 | std::cout << " " << g.id(i); |
---|
| 47 | std::cout << std::endl; |
---|
| 48 | \endcode |
---|
| 49 | |
---|
| 50 | Here we iterate through all nodes of the graph. We use a constructor of the |
---|
| 51 | node iterator to initialize it to the first node. The next member function is |
---|
| 52 | used to step to the next node, and valid is used to check if we have passed the |
---|
| 53 | last one. |
---|
| 54 | |
---|
| 55 | \code |
---|
| 56 | std::cout << "Nodes:"; |
---|
| 57 | NodeIt n; |
---|
| 58 | for (g.first(n); n != INVALID; g.next(n)) |
---|
| 59 | std::cout << " " << g.id(n); |
---|
| 60 | std::cout << std::endl; |
---|
| 61 | \endcode |
---|
| 62 | |
---|
| 63 | Here you can see an alternative way to iterate through all nodes. Here we use a |
---|
| 64 | member function of the graph to initialize the node iterator to the first node |
---|
| 65 | of the graph. Using next on the iterator pointing to the last node invalidates |
---|
| 66 | the iterator i.e. sets its value to INVALID. Checking for this value is |
---|
| 67 | equivalent to using the valid member function. |
---|
| 68 | |
---|
| 69 | Both of the previous code fragments print out the same: |
---|
| 70 | |
---|
| 71 | \code |
---|
| 72 | Nodes: 2 1 0 |
---|
| 73 | \endcode |
---|
| 74 | |
---|
| 75 | \code |
---|
| 76 | std::cout << "Edges:"; |
---|
| 77 | for (EdgeIt i(g); g.valid(i); g.next(i)) |
---|
| 78 | std::cout << " (" << g.id(g.tail(i)) << "," << g.id(g.head(i)) << ")"; |
---|
| 79 | std::cout << std::endl; |
---|
| 80 | \endcode |
---|
| 81 | |
---|
| 82 | \code |
---|
| 83 | Edges: (0,2) (1,2) (0,1) (2,1) (1,0) (2,0) |
---|
| 84 | \endcode |
---|
| 85 | |
---|
| 86 | We can also iterate through all edges of the graph very similarly. The head and |
---|
| 87 | tail member functions can be used to access the endpoints of an edge. |
---|
| 88 | |
---|
| 89 | \code |
---|
| 90 | NodeIt first_node(g); |
---|
| 91 | |
---|
| 92 | std::cout << "Out-edges of node " << g.id(first_node) << ":"; |
---|
| 93 | for (OutEdgeIt i(g, first_node); g.valid(i); g.next(i)) |
---|
| 94 | std::cout << " (" << g.id(g.tail(i)) << "," << g.id(g.head(i)) << ")"; |
---|
| 95 | std::cout << std::endl; |
---|
| 96 | |
---|
| 97 | std::cout << "In-edges of node " << g.id(first_node) << ":"; |
---|
| 98 | for (InEdgeIt i(g, first_node); g.valid(i); g.next(i)) |
---|
| 99 | std::cout << " (" << g.id(g.tail(i)) << "," << g.id(g.head(i)) << ")"; |
---|
| 100 | std::cout << std::endl; |
---|
| 101 | \endcode |
---|
| 102 | |
---|
| 103 | \code |
---|
| 104 | Out-edges of node 2: (2,0) (2,1) |
---|
| 105 | In-edges of node 2: (0,2) (1,2) |
---|
| 106 | \endcode |
---|
| 107 | |
---|
| 108 | We can also iterate through the in and out-edges of a node. In the above |
---|
| 109 | example we print out the in and out-edges of the first node of the graph. |
---|
| 110 | |
---|
| 111 | \code |
---|
| 112 | Graph::EdgeMap<int> m(g); |
---|
| 113 | |
---|
| 114 | for (EdgeIt e(g); g.valid(e); g.next(e)) |
---|
| 115 | m.set(e, 10 - g.id(e)); |
---|
| 116 | |
---|
| 117 | std::cout << "Id Edge Value" << std::endl; |
---|
| 118 | for (EdgeIt e(g); g.valid(e); g.next(e)) |
---|
| 119 | std::cout << g.id(e) << " (" << g.id(g.tail(e)) << "," << g.id(g.head(e)) |
---|
| 120 | << ") " << m[e] << std::endl; |
---|
| 121 | \endcode |
---|
| 122 | |
---|
| 123 | \code |
---|
| 124 | Id Edge Value |
---|
| 125 | 4 (0,2) 6 |
---|
| 126 | 2 (1,2) 8 |
---|
| 127 | 5 (0,1) 5 |
---|
| 128 | 0 (2,1) 10 |
---|
| 129 | 3 (1,0) 7 |
---|
| 130 | 1 (2,0) 9 |
---|
| 131 | \endcode |
---|
| 132 | |
---|
| 133 | In generic graph optimization programming graphs are not containers rather |
---|
| 134 | incidence structures which are iterable in many ways. HugoLib introduces |
---|
| 135 | concepts that allow us to attach containers to graphs. These containers are |
---|
| 136 | called maps. |
---|
| 137 | |
---|
| 138 | In the example above we create an EdgeMap which assigns an int value to all |
---|
| 139 | edges of the graph. We use the set member function of the map to write values |
---|
| 140 | into the map and the operator[] to retrieve them. |
---|
| 141 | |
---|
| 142 | Here we used the maps provided by the ListGraph class, but you can also write |
---|
| 143 | your own maps. You can read more about using maps \ref maps "here". |
---|
| 144 | |
---|
| 145 | */ |
---|