1 | namespace lemon{ |
---|
2 | /*! |
---|
3 | |
---|
4 | \page maps-page Maps |
---|
5 | |
---|
6 | Maps play a central role in LEMON. As their name suggests, they map a |
---|
7 | certain range of \e keys to certain \e values. Each map has two |
---|
8 | <tt>typedef</tt>'s to determine the types of keys and values, like this: |
---|
9 | |
---|
10 | \code |
---|
11 | typedef Edge Key; |
---|
12 | typedef double Value; |
---|
13 | \endcode |
---|
14 | |
---|
15 | A map can be |
---|
16 | \e readable (\ref lemon::concepts::ReadMap "ReadMap", for short), |
---|
17 | \e writable (\ref lemon::concepts::WriteMap "WriteMap") or both |
---|
18 | (\ref lemon::concepts::ReadWriteMap "ReadWriteMap"). |
---|
19 | There also exists a special type of |
---|
20 | ReadWrite map called \ref lemon::concepts::ReferenceMap "reference map". |
---|
21 | In addition that you can |
---|
22 | read and write the values of a key, a reference map |
---|
23 | can also give you a reference to the |
---|
24 | value belonging to a key, so you have a direct access to the memory address |
---|
25 | where it is stored. |
---|
26 | |
---|
27 | Each graph structure in LEMON provides two standard map templates called |
---|
28 | \c EdgeMap and \c NodeMap. Both are reference maps and you can easily |
---|
29 | assign data to the nodes and to the edges of the graph. For example if you |
---|
30 | have a graph \c g defined as |
---|
31 | \code |
---|
32 | ListGraph g; |
---|
33 | \endcode |
---|
34 | and you want to assign a floating point value to each edge, you can do |
---|
35 | it like this. |
---|
36 | \code |
---|
37 | ListGraph::EdgeMap<double> length(g); |
---|
38 | \endcode |
---|
39 | Note that you must give the underlying graph to the constructor. |
---|
40 | |
---|
41 | The value of a readable map can be obtained by <tt>operator[]</tt>. |
---|
42 | \code |
---|
43 | d=length[e]; |
---|
44 | \endcode |
---|
45 | where \c e is an instance of \c ListGraph::Edge. |
---|
46 | (Or anything else |
---|
47 | that converts to \c ListGraph::Edge, like \c ListGraph::EdgeIt or |
---|
48 | \c ListGraph::OutEdgeIt etc.) |
---|
49 | |
---|
50 | There are two ways to assign a new value to a key |
---|
51 | |
---|
52 | - In case of a <em>reference map</em> <tt>operator[]</tt> |
---|
53 | gives you a reference to the |
---|
54 | value, thus you can use this. |
---|
55 | \code |
---|
56 | length[e]=3.5; |
---|
57 | \endcode |
---|
58 | - <em>Writable maps</em> have |
---|
59 | a member function \c set(Key,const Value &) |
---|
60 | for this purpose. |
---|
61 | \code |
---|
62 | length.set(e,3.5); |
---|
63 | \endcode |
---|
64 | |
---|
65 | The first case is more comfortable and if you store complex structures in your |
---|
66 | map, it might be more efficient. However, there are writable but |
---|
67 | not reference maps, so if you want to write a generic algorithm, you should |
---|
68 | insist on the second way. |
---|
69 | |
---|
70 | \section how-to-write-your-own-map How to Write Your Own Maps |
---|
71 | |
---|
72 | \subsection read-maps Readable Maps |
---|
73 | |
---|
74 | Readable maps are very frequently used as the input of an |
---|
75 | algorithm. For this purpose the most straightforward way is the use of the |
---|
76 | default maps provided by LEMON's graph structures. |
---|
77 | Very often however, it is more |
---|
78 | convenient and/or more efficient to write your own readable map. |
---|
79 | |
---|
80 | You can find some examples below. In these examples \c Graph is the |
---|
81 | type of the particular graph structure you use. |
---|
82 | |
---|
83 | |
---|
84 | This simple map assigns \f$\pi\f$ to each edge. |
---|
85 | |
---|
86 | \code |
---|
87 | struct MyMap |
---|
88 | { |
---|
89 | typedef double Value; |
---|
90 | typedef Graph::Edge Key; |
---|
91 | double operator[](Key e) const { return M_PI;} |
---|
92 | }; |
---|
93 | \endcode |
---|
94 | |
---|
95 | An alternative way to define maps is to use \c MapBase |
---|
96 | |
---|
97 | \code |
---|
98 | struct MyMap : public MapBase<Graph::Edge,double> |
---|
99 | { |
---|
100 | Value operator[](Key e) const { return M_PI;} |
---|
101 | }; |
---|
102 | \endcode |
---|
103 | |
---|
104 | Here is a bit more complex example. |
---|
105 | It provides a length function obtained |
---|
106 | from a base length function shifted by a potential difference. |
---|
107 | |
---|
108 | \code |
---|
109 | class ReducedLengthMap : public MapBase<Graph::Edge,double> |
---|
110 | { |
---|
111 | const Graph &g; |
---|
112 | const Graph::EdgeMap<double> &orig_len; |
---|
113 | const Graph::NodeMap<double> &pot; |
---|
114 | |
---|
115 | public: |
---|
116 | Value operator[](Key e) const { |
---|
117 | return orig_len[e]-(pot[g.target(e)]-pot[g.source(e)]); |
---|
118 | } |
---|
119 | |
---|
120 | ReducedLengthMap(const Graph &_g, |
---|
121 | const Graph::EdgeMap &_o, |
---|
122 | const Graph::NodeMap &_p) |
---|
123 | : g(_g), orig_len(_o), pot(_p) {}; |
---|
124 | }; |
---|
125 | \endcode |
---|
126 | |
---|
127 | Then, you can call e.g. Dijkstra algoritm on this map like this: |
---|
128 | \code |
---|
129 | ... |
---|
130 | ReducedLengthMap rm(g,len,pot); |
---|
131 | Dijkstra<Graph,ReducedLengthMap> dij(g,rm); |
---|
132 | dij.run(s); |
---|
133 | ... |
---|
134 | \endcode |
---|
135 | |
---|
136 | |
---|
137 | \subsection write-maps Writable Maps |
---|
138 | |
---|
139 | To be written... |
---|
140 | |
---|
141 | \subsection side-effect-maps Maps with Side Effect |
---|
142 | |
---|
143 | To be written... |
---|
144 | |
---|
145 | */ |
---|
146 | } |
---|