1 | /** |
---|
2 | \page maps2 Maps II. |
---|
3 | |
---|
4 | Here we discuss some advanced map techniques. Like writing your own maps or how to |
---|
5 | extend/modify a maps functionality with adaptors. |
---|
6 | |
---|
7 | \section custom_maps Writing Custom ReadMap |
---|
8 | \subsection custom_read_maps Readable Maps |
---|
9 | |
---|
10 | Readable maps are very frequently used as the input of an |
---|
11 | algorithm. For this purpose the most straightforward way is the use of the |
---|
12 | default maps provided by LEMON's graph structures. |
---|
13 | Very often however, it is more |
---|
14 | convenient and/or more efficient to write your own readable map. |
---|
15 | |
---|
16 | You can find some examples below. In these examples \c Graph is the |
---|
17 | type of the particular graph structure you use. |
---|
18 | |
---|
19 | |
---|
20 | This simple map assigns \f$\pi\f$ to each edge. |
---|
21 | |
---|
22 | \code |
---|
23 | struct MyMap |
---|
24 | { |
---|
25 | typedef double Value; |
---|
26 | typedef Graph::Edge Key; |
---|
27 | double operator[](Key e) const { return M_PI;} |
---|
28 | }; |
---|
29 | \endcode |
---|
30 | |
---|
31 | An alternative way to define maps is to use MapBase |
---|
32 | |
---|
33 | \code |
---|
34 | struct MyMap : public MapBase<Graph::Edge,double> |
---|
35 | { |
---|
36 | Value operator[](Key e) const { return M_PI;} |
---|
37 | }; |
---|
38 | \endcode |
---|
39 | |
---|
40 | Here is a bit more complex example. |
---|
41 | It provides a length function obtained |
---|
42 | from a base length function shifted by a potential difference. |
---|
43 | |
---|
44 | \code |
---|
45 | class ReducedLengthMap : public MapBase<Graph::Edge,double> |
---|
46 | { |
---|
47 | const Graph &g; |
---|
48 | const Graph::EdgeMap<double> &orig_len; |
---|
49 | const Graph::NodeMap<double> &pot; |
---|
50 | |
---|
51 | public: |
---|
52 | Value operator[](Key e) const { |
---|
53 | return orig_len[e]-(pot[g.target(e)]-pot[g.source(e)]); |
---|
54 | } |
---|
55 | |
---|
56 | ReducedLengthMap(const Graph &_g, |
---|
57 | const Graph::EdgeMap &_o, |
---|
58 | const Graph::NodeMap &_p) |
---|
59 | : g(_g), orig_len(_o), pot(_p) {}; |
---|
60 | }; |
---|
61 | \endcode |
---|
62 | |
---|
63 | Then, you can call e.g. Dijkstra algoritm on this map like this: |
---|
64 | \code |
---|
65 | ... |
---|
66 | ReducedLengthMap rm(g,len,pot); |
---|
67 | Dijkstra<Graph,ReducedLengthMap> dij(g,rm); |
---|
68 | dij.run(s); |
---|
69 | ... |
---|
70 | \endcode |
---|
71 | |
---|
72 | */ |
---|