1 | namespace lemon { |
---|
2 | /*! |
---|
3 | \page read_write_bg Background of Reading and Writing |
---|
4 | |
---|
5 | To read a map (on the nodes or edges) |
---|
6 | the \ref lemon::GraphReader "GraphReader" |
---|
7 | should know how to read a Value from the given map. |
---|
8 | By the default implementation the input operator reads a value from |
---|
9 | the stream and the type of the read value is the value type of the given map. |
---|
10 | When the reader should skip a value in the stream, because you do not |
---|
11 | want to store it in a map, the reader skips a character sequence without |
---|
12 | whitespaces. |
---|
13 | |
---|
14 | If you want to change the functionality of the reader, you can use |
---|
15 | template parameters to specialize it. When you give a reading |
---|
16 | command for a map you can give a Reader type as template parameter. |
---|
17 | With this template parameter you can control how the Reader reads |
---|
18 | a value from the stream. |
---|
19 | |
---|
20 | The reader has the next structure: |
---|
21 | \code |
---|
22 | struct TypeReader { |
---|
23 | typedef TypeName Value; |
---|
24 | |
---|
25 | void read(std::istream& is, Value& value); |
---|
26 | }; |
---|
27 | \endcode |
---|
28 | |
---|
29 | For example, the \c "strings" nodemap contains strings and you do not need |
---|
30 | the value of the string just the length. Then you can implement an own Reader |
---|
31 | struct. |
---|
32 | |
---|
33 | \code |
---|
34 | struct LengthReader { |
---|
35 | typedef int Value; |
---|
36 | |
---|
37 | void read(std::istream& is, Value& value) { |
---|
38 | std::string tmp; |
---|
39 | is >> tmp; |
---|
40 | value = tmp.length(); |
---|
41 | } |
---|
42 | }; |
---|
43 | ... |
---|
44 | reader.readNodeMap<LengthReader>("strings", lengthMap); |
---|
45 | \endcode |
---|
46 | |
---|
47 | The global functionality of the reader class can be changed by giving a |
---|
48 | special template parameter to the GraphReader class. By default, the |
---|
49 | template parameter is \c DefaultReaderTraits. A reader traits class |
---|
50 | should provide a nested template class Reader for each type, and a |
---|
51 | DefaultReader for skipping a value. |
---|
52 | |
---|
53 | The specialization of writing is very similar to that of reading. |
---|
54 | |
---|
55 | \section u Undirected graphs |
---|
56 | |
---|
57 | In a file describing an undirected graph (ugraph, for short) you find an |
---|
58 | \c uedgeset section instead of the \c edgeset section. The first line of |
---|
59 | the section describes the names of the maps on the undirected egdes and all |
---|
60 | next lines describe one undirected edge with the the incident nodes and the |
---|
61 | values of the map. |
---|
62 | |
---|
63 | The format handles directed edge maps as a syntactical sugar???, if there |
---|
64 | are two maps with names being the same with a \c '+' and a \c '-' prefix |
---|
65 | then this will be read as a directed map. |
---|
66 | |
---|
67 | \code |
---|
68 | @uedgeset |
---|
69 | label capacity +flow -flow |
---|
70 | 32 2 1 4.3 2.0 0.0 |
---|
71 | 21 21 5 2.6 0.0 2.6 |
---|
72 | 21 12 8 3.4 0.0 0.0 |
---|
73 | \endcode |
---|
74 | |
---|
75 | The \c edges section is changed to \c uedges section. This section |
---|
76 | describes labeled edges and undirected edges. The directed edge label |
---|
77 | should start with a \c '+' or a \c '-' prefix to decide the direction |
---|
78 | of the edge. |
---|
79 | |
---|
80 | \code |
---|
81 | @uedges |
---|
82 | uedge 1 |
---|
83 | +edge 5 |
---|
84 | -back 5 |
---|
85 | \endcode |
---|
86 | |
---|
87 | There are similar classes to the \ref lemon::GraphReader "GraphReader" and |
---|
88 | \ref lemon::GraphWriter "GraphWriter" which |
---|
89 | handle the undirected graphs. These classes are |
---|
90 | the \ref lemon::UGraphReader "UGraphReader" |
---|
91 | and \ref lemon::UGraphWriter "UGraphWriter". |
---|
92 | |
---|
93 | The \ref lemon::UGraphReader::readUEdgeMap() "readUEdgeMap()" |
---|
94 | function reads an undirected map and the |
---|
95 | \ref lemon::UGraphReader::readUEdge() "readUEdge()" |
---|
96 | reads an undirected edge from the file, |
---|
97 | |
---|
98 | \code |
---|
99 | reader.readUEdgeMap("capacity", capacityMap); |
---|
100 | reader.readEdgeMap("flow", flowMap); |
---|
101 | ... |
---|
102 | reader.readUEdge("u_edge", u_edge); |
---|
103 | reader.readEdge("edge", edge); |
---|
104 | \endcode |
---|
105 | |
---|
106 | \section advanced Advanced features |
---|
107 | |
---|
108 | The graph reader and writer classes give an easy way to read and write |
---|
109 | graphs. But sometimes we want more advanced features. In this case we can |
---|
110 | use the more general <tt>lemon reader and writer</tt> interface. |
---|
111 | |
---|
112 | The LEMON file format is a section oriented file format. It contains one or |
---|
113 | more sections, each starting with a line identifying its type |
---|
114 | (the word starting with the \c \@ character). |
---|
115 | The content of the section this way cannot contain line with \c \@ first |
---|
116 | character. The file may contains comment lines with \c # first character. |
---|
117 | |
---|
118 | The \ref lemon::LemonReader "LemonReader" |
---|
119 | and \ref lemon::LemonWriter "LemonWriter" |
---|
120 | gives a framework to read and |
---|
121 | write sections. There are various section reader and section writer |
---|
122 | classes which can be attached to a \ref lemon::LemonReader "LemonReader" |
---|
123 | or a \ref lemon::LemonWriter "LemonWriter". |
---|
124 | |
---|
125 | There are default section readers and writers for reading and writing |
---|
126 | item sets, and labeled items in the graph. These read and write |
---|
127 | the format described above. Other type of data can be handled with own |
---|
128 | section reader and writer classes which are inherited from the |
---|
129 | \c LemonReader::SectionReader or the |
---|
130 | \ref lemon::LemonWriter::SectionWriter "LemonWriter::SectionWriter" |
---|
131 | classes. |
---|
132 | |
---|
133 | The next example defines a special section reader which reads the |
---|
134 | \c \@description sections into a string: |
---|
135 | |
---|
136 | \code |
---|
137 | class DescriptionReader : LemonReader::SectionReader { |
---|
138 | protected: |
---|
139 | virtual bool header(const std::string& line) { |
---|
140 | std::istringstream ls(line); |
---|
141 | std::string head; |
---|
142 | ls >> head; |
---|
143 | return head == "@description"; |
---|
144 | } |
---|
145 | |
---|
146 | virtual void read(std::istream& is) { |
---|
147 | std::string line; |
---|
148 | while (getline(is, line)) { |
---|
149 | desc += line; |
---|
150 | } |
---|
151 | } |
---|
152 | public: |
---|
153 | |
---|
154 | typedef LemonReader::SectionReader Parent; |
---|
155 | |
---|
156 | DescriptionReader(LemonReader& reader) : Parent(reader) {} |
---|
157 | |
---|
158 | const std::string& description() const { |
---|
159 | return description; |
---|
160 | } |
---|
161 | |
---|
162 | private: |
---|
163 | std::string desc; |
---|
164 | }; |
---|
165 | \endcode |
---|
166 | |
---|
167 | The other advanced stuff of the generalized file format is that |
---|
168 | multiple edgesets can be stored to the same nodeset. It can be used |
---|
169 | for example as a network traffic matrix. |
---|
170 | |
---|
171 | In our example there is a network with symmetric links and there are assymetric |
---|
172 | traffic request on the network. This construction can be stored in an |
---|
173 | undirected graph and in a directed \c ListEdgeSet class. The example |
---|
174 | shows the input with the \ref lemon::LemonReader "LemonReader" class: |
---|
175 | |
---|
176 | \code |
---|
177 | ListUGraph network; |
---|
178 | ListUGraph::UEdgeMap<double> capacity; |
---|
179 | ListEdgeSet<ListUGraph> traffic(network); |
---|
180 | ListEdgeSet<ListUGraph>::EdgeMap<double> request(network); |
---|
181 | |
---|
182 | LemonReader reader(std::cin); |
---|
183 | NodeSetReader<ListUGraph> nodesetReader(reader, network); |
---|
184 | UEdgeSetReader<ListUGraph> |
---|
185 | uEdgesetReader(reader, network, nodesetReader); |
---|
186 | uEdgesetReader.readEdgeMap("capacity", capacity); |
---|
187 | EdgeSetReader<ListEdgeSet<ListUGraph> > |
---|
188 | edgesetReader(reader, traffic, nodesetReader, "traffic"); |
---|
189 | edgesetReader.readEdgeMap("request", request); |
---|
190 | |
---|
191 | reader.run(); |
---|
192 | \endcode |
---|
193 | |
---|
194 | Because both the \ref lemon::GraphReader "GraphReader" |
---|
195 | and the \ref lemon::UGraphReader "UGraphReader" can be converted |
---|
196 | to \ref lemon::LemonReader "LemonReader" |
---|
197 | and it can resolve the label's of the items, the previous |
---|
198 | result can be achived with the \ref lemon::UGraphReader "UGraphReader" |
---|
199 | class, too. |
---|
200 | |
---|
201 | |
---|
202 | \code |
---|
203 | ListUGraph network; |
---|
204 | ListUGraph::UEdgeSet<double> capacity; |
---|
205 | ListEdgeSet<ListUGraph> traffic(network); |
---|
206 | ListEdgeSet<ListUGraph>::EdgeMap<double> request(network); |
---|
207 | |
---|
208 | UGraphReader<ListUGraph> reader(std::cin, network); |
---|
209 | reader.readEdgeMap("capacity", capacity); |
---|
210 | EdgeSetReader<ListEdgeSet<ListUGraph> > |
---|
211 | edgesetReader(reader, traffic, reader, "traffic"); |
---|
212 | edgesetReader.readEdgeMap("request", request); |
---|
213 | |
---|
214 | reader.run(); |
---|
215 | \endcode |
---|
216 | |
---|
217 | \author Balazs Dezso |
---|
218 | */ |
---|
219 | } |
---|