#include #include BrokenEdge::BrokenEdge(Gnome::Canvas::Group & g, Gnome::Canvas::Points p, GraphDisplayerCanvas & gc) : Line(g), gdc(gc), isbutton(false) { my_points=new Gnome::Art::Point[3]; arrow=new Gnome::Canvas::Polygon(g); *arrow << Gnome::Canvas::Properties::fill_color("red"); arrow->signal_event().connect(sigc::mem_fun(*this, &BrokenEdge::edgeFormerEventHandler)); setPoints(p); } BrokenEdge::~BrokenEdge() { if(arrow)delete(arrow); } void BrokenEdge::setPoints(Gnome::Canvas::Points p, bool move) { bool set_arrow=false; //red arrow losts its position-right button if(!move) { if(p.size()==2) { set_arrow=true; Gnome::Canvas::Points points_with_center; points_with_center.push_back(my_points[0]=p[0]); points_with_center.push_back(my_points[1]=Gnome::Art::Point( (p[0].get_x()+p[1].get_x())/2+0 , (p[0].get_y()+p[1].get_y())/2 )+0 ); points_with_center.push_back(my_points[2]=p[1]); property_points().set_value(points_with_center); } if(p.size()==3) { set_arrow=true; property_points().set_value(p); for(int i=0;i<3;i++) { my_points[i]=p[i]; } } } else { //arrow keeps its position-left button if(p.size()==2) { Gnome::Canvas::Points points; my_points[0]=p[0]; my_points[2]=p[1]; for(int i=0;i<3;i++) { points.push_back(my_points[i]); } property_points().set_value(points); } set_arrow=true; ////////////////////////////////////////////////////////////////////////////////////////////////////// /////////// kepps shape-with angles ////////////////////////////////////////////////////////////////////////////////////////////////////// // //old vector from one to the other node // xy o_p2p(my_points[2].get_x()-my_points[0].get_x(),my_points[2].get_y()-my_points[0].get_y()); // //projection of the old vector to positive x axis // xy o_x_p2p(fabs(o_p2p.x),0); // //length of p2p vector // double o_l_p2p=sqrt( o_p2p.normSquare() ); // if(o_p2p.x<0) // { // o_l_p2p*=-1; // } // //length of projection of p2p vector // double o_l_x_p2p=sqrt( o_x_p2p.normSquare() ); // //old angle of p2p vector to the x axis // double o_a_p2p=acos(o_l_x_p2p/o_l_p2p); // if(o_p2p.y>0) // { // o_a_p2p=2*M_PI-o_a_p2p; // } // //old vector from first node to the breakpoint // xy o_1b((my_points[1].get_x()-my_points[0].get_x()),(my_points[1].get_y()-my_points[0].get_y())); // //projection of the old node-breakpoint vector to positive x axis // xy o_x_1b(fabs(o_1b.x),0); // //length of 1b vector // double o_l_1b=sqrt( o_1b.normSquare() ); // if(o_1b.x<0) // { // o_l_1b*=-1; // } // //length of projection of 1b vector // double o_l_x_1b=sqrt( o_x_1b.normSquare() ); // //old angle of 1b vector to the x axis // double o_a_1b=acos(o_l_x_1b/o_l_1b); // if(o_1b.y>0) // { // o_a_1b=2*M_PI-o_a_1b; // } // if(p.size()==2) // { // set_arrow=true; // my_points[0]=p[0]; // my_points[2]=p[1]; // //new vector from one to the other node // xy n_p2p(my_points[2].get_x()-my_points[0].get_x(),my_points[2].get_y()-my_points[0].get_y()); // //projection of the new vector to positive x axis // xy n_x_p2p(fabs(n_p2p.x),0); // //length of p2p vector // double n_l_p2p=sqrt( n_p2p.normSquare() ); // if(n_p2p.x<0) // { // n_l_p2p*=-1; // } // //length of projection of p2p vector // double n_l_x_p2p=sqrt( n_x_p2p.normSquare() ); // //new angle of p2p vector to the x axis // double n_a_p2p=acos(n_l_x_p2p/n_l_p2p); // if(n_p2p.y>0) // { // n_a_p2p=2*M_PI-n_a_p2p; // } // //new angle of 1b vector to the x axis // double n_a_1b=o_a_1b+n_a_p2p-o_a_p2p; // std::cout << " p2p regi: " << o_a_p2p/M_PI*180 << " uj: " << n_a_p2p/M_PI*180-(int)n_a_p2p/M_PI*180 << std::endl; // std::cout << " 1b regi: " << o_a_1b/M_PI*180 << " uj: " << n_a_1b/M_PI*180-(int)n_a_1b/M_PI*180 << std::endl; // // std::cout << o_p2p << " " << n_p2p << std::endl; // if((n_a_1b>M_PI*3/2)||(n_a_1bM_PI/2)) // { // std::cout << "bal terfel" << std::endl; // my_points[1]=Gnome::Art::Point(p[0].get_x()-cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,p[0].get_y()+sin(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p); // } // else // { // std::cout << "y tengely" << std::endl; // double new_y=my_points[1].get_y(); // my_points[1]=Gnome::Art::Point(p[0].get_x()-cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,new_y); // } // std::cout << "alap: " << p[0] << " eredeti hossz: " << o_l_1b << " nagy uj: " << n_l_p2p << " nagy regi: " << o_l_p2p << " a*b/c " << o_l_1b*n_l_p2p/o_l_p2p << " eredmeny: " << my_points[1] << std::endl; // // if(o_1b.x*o_1b.y>0) // // { // // if(n_p2p.x>0) // // { // // my_points[1]=Gnome::Art::Point(p[0].get_x()+cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,p[0].get_y()+sin(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p); // // } // // else // // { // // my_points[1]=Gnome::Art::Point(p[0].get_x()-cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,p[0].get_y()-sin(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p); // // } // // } // // else if(o_1b.x*o_1b.y<0) // // { // // if(n_p2p.x>0) // // { // // my_points[1]=Gnome::Art::Point(p[0].get_x()+cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,p[0].get_y()-sin(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p); // // } // // else // // { // // my_points[1]=Gnome::Art::Point(p[0].get_x()-cos(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p,p[0].get_y()+sin(n_a_1b)*o_l_1b*n_l_p2p/o_l_p2p); // // } // // } // // else // // { // // } ////////////////////////////////////////////////////////////////////////////////////////////////////// /////////// kepps shape-with scalar multiplication ////////////////////////////////////////////////////////////////////////////////////////////////////// // if(p.size()==2) // { // //old vector from one to the other node - a // xy a_v(my_points[2].get_x()-my_points[0].get_x(),my_points[2].get_y()-my_points[0].get_y()); // //new vector from one to the other node - b // xy b_v(p[1].get_x()-p[0].get_x(),p[1].get_y()-p[0].get_y()); // //old vector from one node to the breakpoint - c // xy c_v(my_points[1].get_x()-my_points[0].get_x(),my_points[1].get_y()-my_points[0].get_y()); // //new vector from one node to the breakpoint - d - we have to calculate this one // xy d_v; // //scalar product of a and b (old and new vector from first point to the other) // double sab=a_v*b_v; // //scalar product of c and d (old and new vector from first point to breakpoint) // double scd=sab*c_v.normSquare()/a_v.normSquare(); // std::cout<<" a " << a_v<<" b " < target( my_points[2].get_x(), my_points[2].get_y() ); xy center( my_points[1].get_x(), my_points[1].get_y() ); xy unit_vector_in_dir(target-center); // std::cout << target << " - " << center << " = " << unit_vector_in_dir << " / " <property_points().set_value(arrow_points); } } bool BrokenEdge::edgeFormerEventHandler(GdkEvent* e) { switch(e->type) { case GDK_BUTTON_PRESS: //we mark the location of the event to be able to calculate parameters of dragging if(gdc.getActualTool()!=CREATE_NODE) { gdc.toggleEdgeActivity(this, true); clicked_x=e->button.x; clicked_y=e->button.y; isbutton=true; } break; case GDK_BUTTON_RELEASE: if(gdc.getActualTool()!=CREATE_NODE) { gdc.toggleEdgeActivity(this, false); isbutton=false; } break; case GDK_MOTION_NOTIFY: //we only have to do sg. if the mouse button is pressed if(isbutton) { //new coordinates will be the old values, //because the item will be moved to the //new coordinate therefore the new movement //has to be calculated from here double dx=e->motion.x-clicked_x; double dy=e->motion.y-clicked_y; Gnome::Canvas::Points points_new; points_new.push_back(my_points[0]); points_new.push_back(my_points[1]=Gnome::Art::Point(my_points[1].get_x()+dx,my_points[1].get_y()+dy)); points_new.push_back(my_points[2]); setPoints(points_new); gdc.textReposition(xy(my_points[1].get_x(),my_points[1].get_y())); clicked_x=e->motion.x; clicked_y=e->motion.y; } default: break; } return true; } xy BrokenEdge::getArrowPos() { xy ret_val(my_points[1].get_x(),my_points[1].get_y()); return ret_val; }