/* -*- C++ -*- * lemon/bits/array_map.h - Part of LEMON, a generic C++ optimization library * * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_ARRAY_MAP_H #define LEMON_ARRAY_MAP_H #include #include ///\ingroup graphmaps ///\file ///\brief Graph maps that construates and destruates ///their elements dynamically. namespace lemon { /// \addtogroup graphmaps /// @{ /// The ArrayMap template class is graph map structure what /// automatically updates the map when a key is added to or erased from /// the map. This map factory uses the allocators to implement /// the container functionality. /// /// The template parameter is the AlterationNotifier that the maps /// will belong to and the Value. template class ArrayMap : public AlterationNotifier<_Item>::ObserverBase { typedef _Item Item; public: /// The graph type of the maps. typedef _Graph Graph; /// The key type of the maps. typedef _Item Key; typedef AlterationNotifier<_Item> Registry; /// The MapBase of the Map which imlements the core regisitry function. typedef typename Registry::ObserverBase Parent; /// The value type of the map. typedef _Value Value; private: typedef std::allocator Allocator; public: /// Graph and Registry initialized map constructor. ArrayMap(const Graph& _g) : graph(&_g) { Item it; attach(_g.getNotifier(Item())); allocate_memory(); for (graph->first(it); it != INVALID; graph->next(it)) { int id = graph->id(it);; allocator.construct(&(values[id]), Value()); } } /// Constructor to use default value to initialize the map. /// It constrates a map and initialize all of the the map. ArrayMap(const Graph& _g, const Value& _v) : graph(&_g) { Item it; attach(_g.getNotifier(_Item())); allocate_memory(); for (graph->first(it); it != INVALID; graph->next(it)) { int id = graph->id(it);; allocator.construct(&(values[id]), _v); } } /// Constructor to copy a map of the same map type. ArrayMap(const ArrayMap& copy) : Parent() { if (copy.attached()) { attach(*copy.getRegistry()); } capacity = copy.capacity; if (capacity == 0) return; values = allocator.allocate(capacity); Item it; for (graph->first(it); it != INVALID; graph->next(it)) { int id = graph->id(it);; allocator.construct(&(values[id]), copy.values[id]); } } using Parent::attach; using Parent::detach; using Parent::attached; /// Assign operator to copy a map of the same map type. ArrayMap& operator=(const ArrayMap& copy) { if (© == this) return *this; if (graph != copy.graph) { if (attached()) { clear(); detach(); } if (copy.attached()) { attach(*copy.getRegistry()); } capacity = copy.capacity; if (capacity == 0) return *this; values = allocator.allocate(capacity); } Item it; for (graph->first(it); it != INVALID; graph->next(it)) { int id = graph->id(it);; allocator.construct(&(values[id]), copy.values[id]); } return *this; } /// The destructor of the map. virtual ~ArrayMap() { if (attached()) { clear(); detach(); } } ///The subscript operator. The map can be subscripted by the ///actual keys of the graph. Value& operator[](const Key& key) { int id = graph->id(key); return values[id]; } ///The const subscript operator. The map can be subscripted by the ///actual keys of the graph. const Value& operator[](const Key& key) const { int id = graph->id(key); return values[id]; } /// Setter function of the map. Equivalent with map[key] = val. /// This is a compatibility feature with the not dereferable maps. void set(const Key& key, const Value& val) { (*this)[key] = val; } /// Add a new key to the map. It called by the map registry. void add(const Key& key) { int id = graph->id(key); if (id >= capacity) { int new_capacity = (capacity == 0 ? 1 : capacity); while (new_capacity <= id) { new_capacity <<= 1; } Value* new_values = allocator.allocate(new_capacity); Item it; for (graph->first(it); it != INVALID; graph->next(it)) { int jd = graph->id(it);; if (id != jd) { allocator.construct(&(new_values[jd]), values[jd]); allocator.destroy(&(values[jd])); } } if (capacity != 0) allocator.deallocate(values, capacity); values = new_values; capacity = new_capacity; } allocator.construct(&(values[id]), Value()); } void add(const std::vector& keys) { int max_id = -1; for (int i = 0; i < (int)keys.size(); ++i) { int id = graph->id(keys[i]); if (id > max_id) { max_id = id; } } if (max_id >= capacity) { int new_capacity = (capacity == 0 ? 1 : capacity); while (new_capacity <= max_id) { new_capacity <<= 1; } Value* new_values = allocator.allocate(new_capacity); Item it; for (graph->first(it); it != INVALID; graph->next(it)) { int id = graph->id(it); bool found = false; for (int i = 0; i < (int)keys.size(); ++i) { int jd = graph->id(keys[i]); if (id == jd) { found = true; break; } } if (found) continue; allocator.construct(&(new_values[id]), values[id]); allocator.destroy(&(values[id])); } if (capacity != 0) allocator.deallocate(values, capacity); values = new_values; capacity = new_capacity; } for (int i = 0; i < (int)keys.size(); ++i) { int id = graph->id(keys[i]); allocator.construct(&(values[id]), Value()); } } /// Erase a key from the map. It called by the map registry. void erase(const Key& key) { int id = graph->id(key); allocator.destroy(&(values[id])); } void erase(const std::vector& keys) { for (int i = 0; i < (int)keys.size(); ++i) { int id = graph->id(keys[i]); allocator.destroy(&(values[id])); } } void build() { allocate_memory(); Item it; for (graph->first(it); it != INVALID; graph->next(it)) { int id = graph->id(it);; allocator.construct(&(values[id]), Value()); } } void clear() { if (capacity != 0) { Item it; for (graph->first(it); it != INVALID; graph->next(it)) { int id = graph->id(it); allocator.destroy(&(values[id])); } allocator.deallocate(values, capacity); capacity = 0; } } const Graph* getGraph() { return graph; } private: void allocate_memory() { int max_id = graph->maxId(_Item()); if (max_id == -1) { capacity = 0; values = 0; return; } capacity = 1; while (capacity <= max_id) { capacity <<= 1; } values = allocator.allocate(capacity); } const Graph* graph; int capacity; Value* values; Allocator allocator; }; template class ArrayMappableGraphExtender : public _Base { public: typedef ArrayMappableGraphExtender<_Base> Graph; typedef _Base Parent; typedef typename Parent::Node Node; typedef typename Parent::NodeIt NodeIt; typedef typename Parent::NodeNotifier NodeObserverRegistry; typedef typename Parent::Edge Edge; typedef typename Parent::EdgeIt EdgeIt; typedef typename Parent::EdgeNotifier EdgeObserverRegistry; template class NodeMap : public IterableMapExtender > { public: typedef ArrayMappableGraphExtender<_Base> Graph; typedef typename Graph::Node Node; typedef typename Graph::NodeIt NodeIt; typedef IterableMapExtender > Parent; //typedef typename Parent::Graph Graph; typedef typename Parent::Value Value; NodeMap(const Graph& g) : Parent(g) {} NodeMap(const Graph& g, const Value& v) : Parent(g, v) {} }; template class EdgeMap : public IterableMapExtender > { public: typedef ArrayMappableGraphExtender<_Base> Graph; typedef typename Graph::Edge Edge; typedef typename Graph::EdgeIt EdgeIt; typedef IterableMapExtender > Parent; //typedef typename Parent::Graph Graph; typedef typename Parent::Value Value; EdgeMap(const Graph& g) : Parent(g) {} EdgeMap(const Graph& g, const Value& v) : Parent(g, v) {} }; }; /// @} } #endif //LEMON_ARRAY_MAP_H