1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2006 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | /// \ingroup graph_concepts |
---|
20 | /// \file |
---|
21 | /// \brief Undirected bipartite graphs and components of. |
---|
22 | |
---|
23 | |
---|
24 | #ifndef LEMON_CONCEPT_BPUGRAPH_H |
---|
25 | #define LEMON_CONCEPT_BPUGRAPH_H |
---|
26 | |
---|
27 | #include <lemon/concept/graph_component.h> |
---|
28 | |
---|
29 | #include <lemon/concept/graph.h> |
---|
30 | #include <lemon/concept/ugraph.h> |
---|
31 | |
---|
32 | #include <lemon/bits/utility.h> |
---|
33 | |
---|
34 | namespace lemon { |
---|
35 | namespace concept { |
---|
36 | |
---|
37 | /// \addtogroup graph_concepts |
---|
38 | /// @{ |
---|
39 | |
---|
40 | |
---|
41 | /// \brief Class describing the concept of Bipartite Undirected Graphs. |
---|
42 | /// |
---|
43 | /// This class describes the common interface of all |
---|
44 | /// Undirected Bipartite Graphs. |
---|
45 | /// |
---|
46 | /// As all concept describing classes it provides only interface |
---|
47 | /// without any sensible implementation. So any algorithm for |
---|
48 | /// bipartite undirected graph should compile with this class, but it |
---|
49 | /// will not run properly, of course. |
---|
50 | /// |
---|
51 | /// In LEMON bipartite undirected graphs also fulfill the concept of |
---|
52 | /// the undirected graphs (\ref lemon::concept::UGraph "UGraph Concept"). |
---|
53 | /// |
---|
54 | /// You can assume that all undirected bipartite graph can be handled |
---|
55 | /// as an undirected graph and consequently as a static graph. |
---|
56 | /// |
---|
57 | /// The bipartite graph stores two types of nodes which are named |
---|
58 | /// ANode and BNode. The graph type contains two types ANode and BNode |
---|
59 | /// which are inherited from Node type. Moreover they have |
---|
60 | /// constructor which converts Node to either ANode or BNode when it is |
---|
61 | /// possible. Therefor everywhere the Node type can be used instead of |
---|
62 | /// ANode and BNode. So the usage of the ANode and BNode is suggested. |
---|
63 | /// |
---|
64 | /// The iteration on the partition can be done with the ANodeIt and |
---|
65 | /// BNodeIt classes. The node map can be used to map values to the nodes |
---|
66 | /// and similarly we can use to map values for just the ANodes and |
---|
67 | /// BNodes the ANodeMap and BNodeMap template classes. |
---|
68 | |
---|
69 | class BpUGraph { |
---|
70 | public: |
---|
71 | /// \todo undocumented |
---|
72 | /// |
---|
73 | typedef True UndirectedTag; |
---|
74 | |
---|
75 | /// \brief The base type of node iterators, |
---|
76 | /// or in other words, the trivial node iterator. |
---|
77 | /// |
---|
78 | /// This is the base type of each node iterator, |
---|
79 | /// thus each kind of node iterator converts to this. |
---|
80 | /// More precisely each kind of node iterator should be inherited |
---|
81 | /// from the trivial node iterator. The Node class represents |
---|
82 | /// both of two types of nodes. |
---|
83 | class Node { |
---|
84 | public: |
---|
85 | /// Default constructor |
---|
86 | |
---|
87 | /// @warning The default constructor sets the iterator |
---|
88 | /// to an undefined value. |
---|
89 | Node() { } |
---|
90 | /// Copy constructor. |
---|
91 | |
---|
92 | /// Copy constructor. |
---|
93 | /// |
---|
94 | Node(const Node&) { } |
---|
95 | |
---|
96 | /// Invalid constructor \& conversion. |
---|
97 | |
---|
98 | /// This constructor initializes the iterator to be invalid. |
---|
99 | /// \sa Invalid for more details. |
---|
100 | Node(Invalid) { } |
---|
101 | /// Equality operator |
---|
102 | |
---|
103 | /// Two iterators are equal if and only if they point to the |
---|
104 | /// same object or both are invalid. |
---|
105 | bool operator==(Node) const { return true; } |
---|
106 | |
---|
107 | /// Inequality operator |
---|
108 | |
---|
109 | /// \sa operator==(Node n) |
---|
110 | /// |
---|
111 | bool operator!=(Node) const { return true; } |
---|
112 | |
---|
113 | /// Artificial ordering operator. |
---|
114 | |
---|
115 | /// To allow the use of graph descriptors as key type in std::map or |
---|
116 | /// similar associative container we require this. |
---|
117 | /// |
---|
118 | /// \note This operator only have to define some strict ordering of |
---|
119 | /// the items; this order has nothing to do with the iteration |
---|
120 | /// ordering of the items. |
---|
121 | bool operator<(Node) const { return false; } |
---|
122 | |
---|
123 | }; |
---|
124 | |
---|
125 | /// \brief The base type of anode iterators, |
---|
126 | /// or in other words, the trivial anode iterator. |
---|
127 | /// |
---|
128 | /// This is the base type of each anode iterator, |
---|
129 | /// thus each kind of anode iterator converts to this. |
---|
130 | /// More precisely each kind of node iterator should be inherited |
---|
131 | /// from the trivial anode iterator. The ANode class should be used |
---|
132 | /// only in special cases. Usually the Node type should be used insted |
---|
133 | /// of it. |
---|
134 | class ANode { |
---|
135 | public: |
---|
136 | /// Default constructor |
---|
137 | |
---|
138 | /// @warning The default constructor sets the iterator |
---|
139 | /// to an undefined value. |
---|
140 | ANode() { } |
---|
141 | /// Copy constructor. |
---|
142 | |
---|
143 | /// Copy constructor. |
---|
144 | /// |
---|
145 | ANode(const ANode&) { } |
---|
146 | |
---|
147 | /// Construct the same node as ANode. |
---|
148 | |
---|
149 | /// Construct the same node as ANode. It may throws assertion |
---|
150 | /// when the given node is from the BNode set. |
---|
151 | ANode(const Node&) { } |
---|
152 | |
---|
153 | /// Invalid constructor \& conversion. |
---|
154 | |
---|
155 | /// This constructor initializes the iterator to be invalid. |
---|
156 | /// \sa Invalid for more details. |
---|
157 | ANode(Invalid) { } |
---|
158 | /// Equality operator |
---|
159 | |
---|
160 | /// Two iterators are equal if and only if they point to the |
---|
161 | /// same object or both are invalid. |
---|
162 | bool operator==(ANode) const { return true; } |
---|
163 | |
---|
164 | /// Inequality operator |
---|
165 | |
---|
166 | /// \sa operator==(ANode n) |
---|
167 | /// |
---|
168 | bool operator!=(ANode) const { return true; } |
---|
169 | |
---|
170 | /// Artificial ordering operator. |
---|
171 | |
---|
172 | /// To allow the use of graph descriptors as key type in std::map or |
---|
173 | /// similar associative container we require this. |
---|
174 | /// |
---|
175 | /// \note This operator only have to define some strict ordering of |
---|
176 | /// the items; this order has nothing to do with the iteration |
---|
177 | /// ordering of the items. |
---|
178 | bool operator<(ANode) const { return false; } |
---|
179 | |
---|
180 | }; |
---|
181 | |
---|
182 | /// \brief The base type of bnode iterators, |
---|
183 | /// or in other words, the trivial bnode iterator. |
---|
184 | /// |
---|
185 | /// This is the base type of each anode iterator, |
---|
186 | /// thus each kind of anode iterator converts to this. |
---|
187 | /// More precisely each kind of node iterator should be inherited |
---|
188 | /// from the trivial anode iterator. The BNode class should be used |
---|
189 | /// only in special cases. Usually the Node type should be used insted |
---|
190 | /// of it. |
---|
191 | class BNode { |
---|
192 | public: |
---|
193 | /// Default constructor |
---|
194 | |
---|
195 | /// @warning The default constructor sets the iterator |
---|
196 | /// to an undefined value. |
---|
197 | BNode() { } |
---|
198 | /// Copy constructor. |
---|
199 | |
---|
200 | /// Copy constructor. |
---|
201 | /// |
---|
202 | BNode(const BNode&) { } |
---|
203 | |
---|
204 | /// Construct the same node as BNode. |
---|
205 | |
---|
206 | /// Construct the same node as BNode. It may throws assertion |
---|
207 | /// when the given node is from the ANode set. |
---|
208 | BNode(const Node&) { } |
---|
209 | |
---|
210 | /// Invalid constructor \& conversion. |
---|
211 | |
---|
212 | /// This constructor initializes the iterator to be invalid. |
---|
213 | /// \sa Invalid for more details. |
---|
214 | BNode(Invalid) { } |
---|
215 | /// Equality operator |
---|
216 | |
---|
217 | /// Two iterators are equal if and only if they point to the |
---|
218 | /// same object or both are invalid. |
---|
219 | bool operator==(BNode) const { return true; } |
---|
220 | |
---|
221 | /// Inequality operator |
---|
222 | |
---|
223 | /// \sa operator==(BNode n) |
---|
224 | /// |
---|
225 | bool operator!=(BNode) const { return true; } |
---|
226 | |
---|
227 | /// Artificial ordering operator. |
---|
228 | |
---|
229 | /// To allow the use of graph descriptors as key type in std::map or |
---|
230 | /// similar associative container we require this. |
---|
231 | /// |
---|
232 | /// \note This operator only have to define some strict ordering of |
---|
233 | /// the items; this order has nothing to do with the iteration |
---|
234 | /// ordering of the items. |
---|
235 | bool operator<(BNode) const { return false; } |
---|
236 | |
---|
237 | }; |
---|
238 | |
---|
239 | /// This iterator goes through each node. |
---|
240 | |
---|
241 | /// This iterator goes through each node. |
---|
242 | /// Its usage is quite simple, for example you can count the number |
---|
243 | /// of nodes in graph \c g of type \c Graph like this: |
---|
244 | ///\code |
---|
245 | /// int count=0; |
---|
246 | /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; |
---|
247 | ///\endcode |
---|
248 | class NodeIt : public Node { |
---|
249 | public: |
---|
250 | /// Default constructor |
---|
251 | |
---|
252 | /// @warning The default constructor sets the iterator |
---|
253 | /// to an undefined value. |
---|
254 | NodeIt() { } |
---|
255 | /// Copy constructor. |
---|
256 | |
---|
257 | /// Copy constructor. |
---|
258 | /// |
---|
259 | NodeIt(const NodeIt& n) : Node(n) { } |
---|
260 | /// Invalid constructor \& conversion. |
---|
261 | |
---|
262 | /// Initialize the iterator to be invalid. |
---|
263 | /// \sa Invalid for more details. |
---|
264 | NodeIt(Invalid) { } |
---|
265 | /// Sets the iterator to the first node. |
---|
266 | |
---|
267 | /// Sets the iterator to the first node of \c g. |
---|
268 | /// |
---|
269 | NodeIt(const BpUGraph&) { } |
---|
270 | /// Node -> NodeIt conversion. |
---|
271 | |
---|
272 | /// Sets the iterator to the node of \c the graph pointed by |
---|
273 | /// the trivial iterator. |
---|
274 | /// This feature necessitates that each time we |
---|
275 | /// iterate the edge-set, the iteration order is the same. |
---|
276 | NodeIt(const BpUGraph&, const Node&) { } |
---|
277 | /// Next node. |
---|
278 | |
---|
279 | /// Assign the iterator to the next node. |
---|
280 | /// |
---|
281 | NodeIt& operator++() { return *this; } |
---|
282 | }; |
---|
283 | |
---|
284 | /// This iterator goes through each ANode. |
---|
285 | |
---|
286 | /// This iterator goes through each ANode. |
---|
287 | /// Its usage is quite simple, for example you can count the number |
---|
288 | /// of nodes in graph \c g of type \c Graph like this: |
---|
289 | ///\code |
---|
290 | /// int count=0; |
---|
291 | /// for (Graph::ANodeIt n(g); n!=INVALID; ++n) ++count; |
---|
292 | ///\endcode |
---|
293 | class ANodeIt : public ANode { |
---|
294 | public: |
---|
295 | /// Default constructor |
---|
296 | |
---|
297 | /// @warning The default constructor sets the iterator |
---|
298 | /// to an undefined value. |
---|
299 | ANodeIt() { } |
---|
300 | /// Copy constructor. |
---|
301 | |
---|
302 | /// Copy constructor. |
---|
303 | /// |
---|
304 | ANodeIt(const ANodeIt& n) : Node(n) { } |
---|
305 | /// Invalid constructor \& conversion. |
---|
306 | |
---|
307 | /// Initialize the iterator to be invalid. |
---|
308 | /// \sa Invalid for more details. |
---|
309 | ANodeIt(Invalid) { } |
---|
310 | /// Sets the iterator to the first node. |
---|
311 | |
---|
312 | /// Sets the iterator to the first node of \c g. |
---|
313 | /// |
---|
314 | ANodeIt(const BpUGraph&) { } |
---|
315 | /// Node -> ANodeIt conversion. |
---|
316 | |
---|
317 | /// Sets the iterator to the node of \c the graph pointed by |
---|
318 | /// the trivial iterator. |
---|
319 | /// This feature necessitates that each time we |
---|
320 | /// iterate the edge-set, the iteration order is the same. |
---|
321 | ANodeIt(const BpUGraph&, const Node&) { } |
---|
322 | /// Next node. |
---|
323 | |
---|
324 | /// Assign the iterator to the next node. |
---|
325 | /// |
---|
326 | ANodeIt& operator++() { return *this; } |
---|
327 | }; |
---|
328 | |
---|
329 | /// This iterator goes through each BNode. |
---|
330 | |
---|
331 | /// This iterator goes through each BNode. |
---|
332 | /// Its usage is quite simple, for example you can count the number |
---|
333 | /// of nodes in graph \c g of type \c Graph like this: |
---|
334 | ///\code |
---|
335 | /// int count=0; |
---|
336 | /// for (Graph::BNodeIt n(g); n!=INVALID; ++n) ++count; |
---|
337 | ///\endcode |
---|
338 | class BNodeIt : public BNode { |
---|
339 | public: |
---|
340 | /// Default constructor |
---|
341 | |
---|
342 | /// @warning The default constructor sets the iterator |
---|
343 | /// to an undefined value. |
---|
344 | BNodeIt() { } |
---|
345 | /// Copy constructor. |
---|
346 | |
---|
347 | /// Copy constructor. |
---|
348 | /// |
---|
349 | BNodeIt(const BNodeIt& n) : Node(n) { } |
---|
350 | /// Invalid constructor \& conversion. |
---|
351 | |
---|
352 | /// Initialize the iterator to be invalid. |
---|
353 | /// \sa Invalid for more details. |
---|
354 | BNodeIt(Invalid) { } |
---|
355 | /// Sets the iterator to the first node. |
---|
356 | |
---|
357 | /// Sets the iterator to the first node of \c g. |
---|
358 | /// |
---|
359 | BNodeIt(const BpUGraph&) { } |
---|
360 | /// Node -> BNodeIt conversion. |
---|
361 | |
---|
362 | /// Sets the iterator to the node of \c the graph pointed by |
---|
363 | /// the trivial iterator. |
---|
364 | /// This feature necessitates that each time we |
---|
365 | /// iterate the edge-set, the iteration order is the same. |
---|
366 | BNodeIt(const BpUGraph&, const Node&) { } |
---|
367 | /// Next node. |
---|
368 | |
---|
369 | /// Assign the iterator to the next node. |
---|
370 | /// |
---|
371 | BNodeIt& operator++() { return *this; } |
---|
372 | }; |
---|
373 | |
---|
374 | |
---|
375 | /// The base type of the undirected edge iterators. |
---|
376 | |
---|
377 | /// The base type of the undirected edge iterators. |
---|
378 | /// |
---|
379 | class UEdge { |
---|
380 | public: |
---|
381 | /// Default constructor |
---|
382 | |
---|
383 | /// @warning The default constructor sets the iterator |
---|
384 | /// to an undefined value. |
---|
385 | UEdge() { } |
---|
386 | /// Copy constructor. |
---|
387 | |
---|
388 | /// Copy constructor. |
---|
389 | /// |
---|
390 | UEdge(const UEdge&) { } |
---|
391 | /// Initialize the iterator to be invalid. |
---|
392 | |
---|
393 | /// Initialize the iterator to be invalid. |
---|
394 | /// |
---|
395 | UEdge(Invalid) { } |
---|
396 | /// Equality operator |
---|
397 | |
---|
398 | /// Two iterators are equal if and only if they point to the |
---|
399 | /// same object or both are invalid. |
---|
400 | bool operator==(UEdge) const { return true; } |
---|
401 | /// Inequality operator |
---|
402 | |
---|
403 | /// \sa operator==(UEdge n) |
---|
404 | /// |
---|
405 | bool operator!=(UEdge) const { return true; } |
---|
406 | |
---|
407 | /// Artificial ordering operator. |
---|
408 | |
---|
409 | /// To allow the use of graph descriptors as key type in std::map or |
---|
410 | /// similar associative container we require this. |
---|
411 | /// |
---|
412 | /// \note This operator only have to define some strict ordering of |
---|
413 | /// the items; this order has nothing to do with the iteration |
---|
414 | /// ordering of the items. |
---|
415 | bool operator<(UEdge) const { return false; } |
---|
416 | }; |
---|
417 | |
---|
418 | /// This iterator goes through each undirected edge. |
---|
419 | |
---|
420 | /// This iterator goes through each undirected edge of a graph. |
---|
421 | /// Its usage is quite simple, for example you can count the number |
---|
422 | /// of undirected edges in a graph \c g of type \c Graph as follows: |
---|
423 | ///\code |
---|
424 | /// int count=0; |
---|
425 | /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count; |
---|
426 | ///\endcode |
---|
427 | class UEdgeIt : public UEdge { |
---|
428 | public: |
---|
429 | /// Default constructor |
---|
430 | |
---|
431 | /// @warning The default constructor sets the iterator |
---|
432 | /// to an undefined value. |
---|
433 | UEdgeIt() { } |
---|
434 | /// Copy constructor. |
---|
435 | |
---|
436 | /// Copy constructor. |
---|
437 | /// |
---|
438 | UEdgeIt(const UEdgeIt& e) : UEdge(e) { } |
---|
439 | /// Initialize the iterator to be invalid. |
---|
440 | |
---|
441 | /// Initialize the iterator to be invalid. |
---|
442 | /// |
---|
443 | UEdgeIt(Invalid) { } |
---|
444 | /// This constructor sets the iterator to the first undirected edge. |
---|
445 | |
---|
446 | /// This constructor sets the iterator to the first undirected edge. |
---|
447 | UEdgeIt(const BpUGraph&) { } |
---|
448 | /// UEdge -> UEdgeIt conversion |
---|
449 | |
---|
450 | /// Sets the iterator to the value of the trivial iterator. |
---|
451 | /// This feature necessitates that each time we |
---|
452 | /// iterate the undirected edge-set, the iteration order is the |
---|
453 | /// same. |
---|
454 | UEdgeIt(const BpUGraph&, const UEdge&) { } |
---|
455 | /// Next undirected edge |
---|
456 | |
---|
457 | /// Assign the iterator to the next undirected edge. |
---|
458 | UEdgeIt& operator++() { return *this; } |
---|
459 | }; |
---|
460 | |
---|
461 | /// \brief This iterator goes trough the incident undirected |
---|
462 | /// edges of a node. |
---|
463 | /// |
---|
464 | /// This iterator goes trough the incident undirected edges |
---|
465 | /// of a certain node |
---|
466 | /// of a graph. |
---|
467 | /// Its usage is quite simple, for example you can compute the |
---|
468 | /// degree (i.e. count the number |
---|
469 | /// of incident edges of a node \c n |
---|
470 | /// in graph \c g of type \c Graph as follows. |
---|
471 | ///\code |
---|
472 | /// int count=0; |
---|
473 | /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
474 | ///\endcode |
---|
475 | class IncEdgeIt : public UEdge { |
---|
476 | public: |
---|
477 | /// Default constructor |
---|
478 | |
---|
479 | /// @warning The default constructor sets the iterator |
---|
480 | /// to an undefined value. |
---|
481 | IncEdgeIt() { } |
---|
482 | /// Copy constructor. |
---|
483 | |
---|
484 | /// Copy constructor. |
---|
485 | /// |
---|
486 | IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { } |
---|
487 | /// Initialize the iterator to be invalid. |
---|
488 | |
---|
489 | /// Initialize the iterator to be invalid. |
---|
490 | /// |
---|
491 | IncEdgeIt(Invalid) { } |
---|
492 | /// This constructor sets the iterator to first incident edge. |
---|
493 | |
---|
494 | /// This constructor set the iterator to the first incident edge of |
---|
495 | /// the node. |
---|
496 | IncEdgeIt(const BpUGraph&, const Node&) { } |
---|
497 | /// UEdge -> IncEdgeIt conversion |
---|
498 | |
---|
499 | /// Sets the iterator to the value of the trivial iterator \c e. |
---|
500 | /// This feature necessitates that each time we |
---|
501 | /// iterate the edge-set, the iteration order is the same. |
---|
502 | IncEdgeIt(const BpUGraph&, const UEdge&) { } |
---|
503 | /// Next incident edge |
---|
504 | |
---|
505 | /// Assign the iterator to the next incident edge |
---|
506 | /// of the corresponding node. |
---|
507 | IncEdgeIt& operator++() { return *this; } |
---|
508 | }; |
---|
509 | |
---|
510 | /// The directed edge type. |
---|
511 | |
---|
512 | /// The directed edge type. It can be converted to the |
---|
513 | /// undirected edge. |
---|
514 | class Edge : public UEdge { |
---|
515 | public: |
---|
516 | /// Default constructor |
---|
517 | |
---|
518 | /// @warning The default constructor sets the iterator |
---|
519 | /// to an undefined value. |
---|
520 | Edge() { } |
---|
521 | /// Copy constructor. |
---|
522 | |
---|
523 | /// Copy constructor. |
---|
524 | /// |
---|
525 | Edge(const Edge& e) : UEdge(e) { } |
---|
526 | /// Initialize the iterator to be invalid. |
---|
527 | |
---|
528 | /// Initialize the iterator to be invalid. |
---|
529 | /// |
---|
530 | Edge(Invalid) { } |
---|
531 | /// Equality operator |
---|
532 | |
---|
533 | /// Two iterators are equal if and only if they point to the |
---|
534 | /// same object or both are invalid. |
---|
535 | bool operator==(Edge) const { return true; } |
---|
536 | /// Inequality operator |
---|
537 | |
---|
538 | /// \sa operator==(Edge n) |
---|
539 | /// |
---|
540 | bool operator!=(Edge) const { return true; } |
---|
541 | |
---|
542 | /// Artificial ordering operator. |
---|
543 | |
---|
544 | /// To allow the use of graph descriptors as key type in std::map or |
---|
545 | /// similar associative container we require this. |
---|
546 | /// |
---|
547 | /// \note This operator only have to define some strict ordering of |
---|
548 | /// the items; this order has nothing to do with the iteration |
---|
549 | /// ordering of the items. |
---|
550 | bool operator<(Edge) const { return false; } |
---|
551 | |
---|
552 | }; |
---|
553 | /// This iterator goes through each directed edge. |
---|
554 | |
---|
555 | /// This iterator goes through each edge of a graph. |
---|
556 | /// Its usage is quite simple, for example you can count the number |
---|
557 | /// of edges in a graph \c g of type \c Graph as follows: |
---|
558 | ///\code |
---|
559 | /// int count=0; |
---|
560 | /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; |
---|
561 | ///\endcode |
---|
562 | class EdgeIt : public Edge { |
---|
563 | public: |
---|
564 | /// Default constructor |
---|
565 | |
---|
566 | /// @warning The default constructor sets the iterator |
---|
567 | /// to an undefined value. |
---|
568 | EdgeIt() { } |
---|
569 | /// Copy constructor. |
---|
570 | |
---|
571 | /// Copy constructor. |
---|
572 | /// |
---|
573 | EdgeIt(const EdgeIt& e) : Edge(e) { } |
---|
574 | /// Initialize the iterator to be invalid. |
---|
575 | |
---|
576 | /// Initialize the iterator to be invalid. |
---|
577 | /// |
---|
578 | EdgeIt(Invalid) { } |
---|
579 | /// This constructor sets the iterator to the first edge. |
---|
580 | |
---|
581 | /// This constructor sets the iterator to the first edge of \c g. |
---|
582 | ///@param g the graph |
---|
583 | EdgeIt(const BpUGraph &g) { ignore_unused_variable_warning(g); } |
---|
584 | /// Edge -> EdgeIt conversion |
---|
585 | |
---|
586 | /// Sets the iterator to the value of the trivial iterator \c e. |
---|
587 | /// This feature necessitates that each time we |
---|
588 | /// iterate the edge-set, the iteration order is the same. |
---|
589 | EdgeIt(const BpUGraph&, const Edge&) { } |
---|
590 | ///Next edge |
---|
591 | |
---|
592 | /// Assign the iterator to the next edge. |
---|
593 | EdgeIt& operator++() { return *this; } |
---|
594 | }; |
---|
595 | |
---|
596 | /// This iterator goes trough the outgoing directed edges of a node. |
---|
597 | |
---|
598 | /// This iterator goes trough the \e outgoing edges of a certain node |
---|
599 | /// of a graph. |
---|
600 | /// Its usage is quite simple, for example you can count the number |
---|
601 | /// of outgoing edges of a node \c n |
---|
602 | /// in graph \c g of type \c Graph as follows. |
---|
603 | ///\code |
---|
604 | /// int count=0; |
---|
605 | /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
606 | ///\endcode |
---|
607 | |
---|
608 | class OutEdgeIt : public Edge { |
---|
609 | public: |
---|
610 | /// Default constructor |
---|
611 | |
---|
612 | /// @warning The default constructor sets the iterator |
---|
613 | /// to an undefined value. |
---|
614 | OutEdgeIt() { } |
---|
615 | /// Copy constructor. |
---|
616 | |
---|
617 | /// Copy constructor. |
---|
618 | /// |
---|
619 | OutEdgeIt(const OutEdgeIt& e) : Edge(e) { } |
---|
620 | /// Initialize the iterator to be invalid. |
---|
621 | |
---|
622 | /// Initialize the iterator to be invalid. |
---|
623 | /// |
---|
624 | OutEdgeIt(Invalid) { } |
---|
625 | /// This constructor sets the iterator to the first outgoing edge. |
---|
626 | |
---|
627 | /// This constructor sets the iterator to the first outgoing edge of |
---|
628 | /// the node. |
---|
629 | ///@param n the node |
---|
630 | ///@param g the graph |
---|
631 | OutEdgeIt(const BpUGraph& n, const Node& g) { |
---|
632 | ignore_unused_variable_warning(n); |
---|
633 | ignore_unused_variable_warning(g); |
---|
634 | } |
---|
635 | /// Edge -> OutEdgeIt conversion |
---|
636 | |
---|
637 | /// Sets the iterator to the value of the trivial iterator. |
---|
638 | /// This feature necessitates that each time we |
---|
639 | /// iterate the edge-set, the iteration order is the same. |
---|
640 | OutEdgeIt(const BpUGraph&, const Edge&) { } |
---|
641 | ///Next outgoing edge |
---|
642 | |
---|
643 | /// Assign the iterator to the next |
---|
644 | /// outgoing edge of the corresponding node. |
---|
645 | OutEdgeIt& operator++() { return *this; } |
---|
646 | }; |
---|
647 | |
---|
648 | /// This iterator goes trough the incoming directed edges of a node. |
---|
649 | |
---|
650 | /// This iterator goes trough the \e incoming edges of a certain node |
---|
651 | /// of a graph. |
---|
652 | /// Its usage is quite simple, for example you can count the number |
---|
653 | /// of outgoing edges of a node \c n |
---|
654 | /// in graph \c g of type \c Graph as follows. |
---|
655 | ///\code |
---|
656 | /// int count=0; |
---|
657 | /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count; |
---|
658 | ///\endcode |
---|
659 | |
---|
660 | class InEdgeIt : public Edge { |
---|
661 | public: |
---|
662 | /// Default constructor |
---|
663 | |
---|
664 | /// @warning The default constructor sets the iterator |
---|
665 | /// to an undefined value. |
---|
666 | InEdgeIt() { } |
---|
667 | /// Copy constructor. |
---|
668 | |
---|
669 | /// Copy constructor. |
---|
670 | /// |
---|
671 | InEdgeIt(const InEdgeIt& e) : Edge(e) { } |
---|
672 | /// Initialize the iterator to be invalid. |
---|
673 | |
---|
674 | /// Initialize the iterator to be invalid. |
---|
675 | /// |
---|
676 | InEdgeIt(Invalid) { } |
---|
677 | /// This constructor sets the iterator to first incoming edge. |
---|
678 | |
---|
679 | /// This constructor set the iterator to the first incoming edge of |
---|
680 | /// the node. |
---|
681 | ///@param n the node |
---|
682 | ///@param g the graph |
---|
683 | InEdgeIt(const BpUGraph& g, const Node& n) { |
---|
684 | ignore_unused_variable_warning(n); |
---|
685 | ignore_unused_variable_warning(g); |
---|
686 | } |
---|
687 | /// Edge -> InEdgeIt conversion |
---|
688 | |
---|
689 | /// Sets the iterator to the value of the trivial iterator \c e. |
---|
690 | /// This feature necessitates that each time we |
---|
691 | /// iterate the edge-set, the iteration order is the same. |
---|
692 | InEdgeIt(const BpUGraph&, const Edge&) { } |
---|
693 | /// Next incoming edge |
---|
694 | |
---|
695 | /// Assign the iterator to the next inedge of the corresponding node. |
---|
696 | /// |
---|
697 | InEdgeIt& operator++() { return *this; } |
---|
698 | }; |
---|
699 | |
---|
700 | /// \brief Read write map of the nodes to type \c T. |
---|
701 | /// |
---|
702 | /// ReadWrite map of the nodes to type \c T. |
---|
703 | /// \sa Reference |
---|
704 | /// \warning Making maps that can handle bool type (NodeMap<bool>) |
---|
705 | /// needs some extra attention! |
---|
706 | /// \todo Wrong documentation |
---|
707 | template<class T> |
---|
708 | class NodeMap : public ReadWriteMap< Node, T > |
---|
709 | { |
---|
710 | public: |
---|
711 | |
---|
712 | ///\e |
---|
713 | NodeMap(const BpUGraph&) { } |
---|
714 | ///\e |
---|
715 | NodeMap(const BpUGraph&, T) { } |
---|
716 | |
---|
717 | ///Copy constructor |
---|
718 | NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } |
---|
719 | ///Assignment operator |
---|
720 | NodeMap& operator=(const NodeMap&) { return *this; } |
---|
721 | // \todo fix this concept |
---|
722 | }; |
---|
723 | |
---|
724 | /// \brief Read write map of the ANodes to type \c T. |
---|
725 | /// |
---|
726 | /// ReadWrite map of the ANodes to type \c T. |
---|
727 | /// \sa Reference |
---|
728 | /// \warning Making maps that can handle bool type (NodeMap<bool>) |
---|
729 | /// needs some extra attention! |
---|
730 | /// \todo Wrong documentation |
---|
731 | template<class T> |
---|
732 | class ANodeMap : public ReadWriteMap< Node, T > |
---|
733 | { |
---|
734 | public: |
---|
735 | |
---|
736 | ///\e |
---|
737 | ANodeMap(const BpUGraph&) { } |
---|
738 | ///\e |
---|
739 | ANodeMap(const BpUGraph&, T) { } |
---|
740 | |
---|
741 | ///Copy constructor |
---|
742 | ANodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } |
---|
743 | ///Assignment operator |
---|
744 | ANodeMap& operator=(const NodeMap&) { return *this; } |
---|
745 | // \todo fix this concept |
---|
746 | }; |
---|
747 | |
---|
748 | /// \brief Read write map of the BNodes to type \c T. |
---|
749 | /// |
---|
750 | /// ReadWrite map of the BNodes to type \c T. |
---|
751 | /// \sa Reference |
---|
752 | /// \warning Making maps that can handle bool type (NodeMap<bool>) |
---|
753 | /// needs some extra attention! |
---|
754 | /// \todo Wrong documentation |
---|
755 | template<class T> |
---|
756 | class BNodeMap : public ReadWriteMap< Node, T > |
---|
757 | { |
---|
758 | public: |
---|
759 | |
---|
760 | ///\e |
---|
761 | BNodeMap(const BpUGraph&) { } |
---|
762 | ///\e |
---|
763 | BNodeMap(const BpUGraph&, T) { } |
---|
764 | |
---|
765 | ///Copy constructor |
---|
766 | BNodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } |
---|
767 | ///Assignment operator |
---|
768 | BNodeMap& operator=(const NodeMap&) { return *this; } |
---|
769 | // \todo fix this concept |
---|
770 | }; |
---|
771 | |
---|
772 | /// \brief Read write map of the directed edges to type \c T. |
---|
773 | /// |
---|
774 | /// Reference map of the directed edges to type \c T. |
---|
775 | /// \sa Reference |
---|
776 | /// \warning Making maps that can handle bool type (EdgeMap<bool>) |
---|
777 | /// needs some extra attention! |
---|
778 | /// \todo Wrong documentation |
---|
779 | template<class T> |
---|
780 | class EdgeMap : public ReadWriteMap<Edge,T> |
---|
781 | { |
---|
782 | public: |
---|
783 | |
---|
784 | ///\e |
---|
785 | EdgeMap(const BpUGraph&) { } |
---|
786 | ///\e |
---|
787 | EdgeMap(const BpUGraph&, T) { } |
---|
788 | ///Copy constructor |
---|
789 | EdgeMap(const EdgeMap& em) : ReadWriteMap<Edge,T>(em) { } |
---|
790 | ///Assignment operator |
---|
791 | EdgeMap& operator=(const EdgeMap&) { return *this; } |
---|
792 | // \todo fix this concept |
---|
793 | }; |
---|
794 | |
---|
795 | /// Read write map of the undirected edges to type \c T. |
---|
796 | |
---|
797 | /// Reference map of the edges to type \c T. |
---|
798 | /// \sa Reference |
---|
799 | /// \warning Making maps that can handle bool type (UEdgeMap<bool>) |
---|
800 | /// needs some extra attention! |
---|
801 | /// \todo Wrong documentation |
---|
802 | template<class T> |
---|
803 | class UEdgeMap : public ReadWriteMap<UEdge,T> |
---|
804 | { |
---|
805 | public: |
---|
806 | |
---|
807 | ///\e |
---|
808 | UEdgeMap(const BpUGraph&) { } |
---|
809 | ///\e |
---|
810 | UEdgeMap(const BpUGraph&, T) { } |
---|
811 | ///Copy constructor |
---|
812 | UEdgeMap(const UEdgeMap& em) : ReadWriteMap<UEdge,T>(em) {} |
---|
813 | ///Assignment operator |
---|
814 | UEdgeMap &operator=(const UEdgeMap&) { return *this; } |
---|
815 | // \todo fix this concept |
---|
816 | }; |
---|
817 | |
---|
818 | /// \brief Direct the given undirected edge. |
---|
819 | /// |
---|
820 | /// Direct the given undirected edge. The returned edge source |
---|
821 | /// will be the given edge. |
---|
822 | Edge direct(const UEdge&, const Node&) const { |
---|
823 | return INVALID; |
---|
824 | } |
---|
825 | |
---|
826 | /// \brief Direct the given undirected edge. |
---|
827 | /// |
---|
828 | /// Direct the given undirected edge. The returned edge source |
---|
829 | /// will be the source of the undirected edge if the given bool |
---|
830 | /// is true. |
---|
831 | Edge direct(const UEdge&, bool) const { |
---|
832 | return INVALID; |
---|
833 | } |
---|
834 | |
---|
835 | /// \brief Returns true when the given node is an ANode. |
---|
836 | /// |
---|
837 | /// Returns true when the given node is an ANode. |
---|
838 | bool aNode(Node) const { return true;} |
---|
839 | |
---|
840 | /// \brief Returns true when the given node is an BNode. |
---|
841 | /// |
---|
842 | /// Returns true when the given node is an BNode. |
---|
843 | bool bNode(Node) const { return true;} |
---|
844 | |
---|
845 | /// \brief Returns the edge's end node which is in the ANode set. |
---|
846 | /// |
---|
847 | /// Returns the edge's end node which is in the ANode set. |
---|
848 | Node aNode(UEdge) const { return INVALID;} |
---|
849 | |
---|
850 | /// \brief Returns the edge's end node which is in the BNode set. |
---|
851 | /// |
---|
852 | /// Returns the edge's end node which is in the BNode set. |
---|
853 | Node bNode(UEdge) const { return INVALID;} |
---|
854 | |
---|
855 | /// \brief Returns true if the edge has default orientation. |
---|
856 | /// |
---|
857 | /// Returns whether the given directed edge is same orientation as |
---|
858 | /// the corresponding undirected edge. |
---|
859 | bool direction(Edge) const { return true; } |
---|
860 | |
---|
861 | /// \brief Returns the opposite directed edge. |
---|
862 | /// |
---|
863 | /// Returns the opposite directed edge. |
---|
864 | Edge oppositeEdge(Edge) const { return INVALID; } |
---|
865 | |
---|
866 | /// \brief Opposite node on an edge |
---|
867 | /// |
---|
868 | /// \return the opposite of the given Node on the given Edge |
---|
869 | Node oppositeNode(Node, UEdge) const { return INVALID; } |
---|
870 | |
---|
871 | /// \brief First node of the undirected edge. |
---|
872 | /// |
---|
873 | /// \return the first node of the given UEdge. |
---|
874 | /// |
---|
875 | /// Naturally uectected edges don't have direction and thus |
---|
876 | /// don't have source and target node. But we use these two methods |
---|
877 | /// to query the two endnodes of the edge. The direction of the edge |
---|
878 | /// which arises this way is called the inherent direction of the |
---|
879 | /// undirected edge, and is used to define the "default" direction |
---|
880 | /// of the directed versions of the edges. |
---|
881 | /// \sa direction |
---|
882 | Node source(UEdge) const { return INVALID; } |
---|
883 | |
---|
884 | /// \brief Second node of the undirected edge. |
---|
885 | Node target(UEdge) const { return INVALID; } |
---|
886 | |
---|
887 | /// \brief Source node of the directed edge. |
---|
888 | Node source(Edge) const { return INVALID; } |
---|
889 | |
---|
890 | /// \brief Target node of the directed edge. |
---|
891 | Node target(Edge) const { return INVALID; } |
---|
892 | |
---|
893 | /// \brief Base node of the iterator |
---|
894 | /// |
---|
895 | /// Returns the base node (the source in this case) of the iterator |
---|
896 | Node baseNode(OutEdgeIt e) const { |
---|
897 | return source(e); |
---|
898 | } |
---|
899 | |
---|
900 | /// \brief Running node of the iterator |
---|
901 | /// |
---|
902 | /// Returns the running node (the target in this case) of the |
---|
903 | /// iterator |
---|
904 | Node runningNode(OutEdgeIt e) const { |
---|
905 | return target(e); |
---|
906 | } |
---|
907 | |
---|
908 | /// \brief Base node of the iterator |
---|
909 | /// |
---|
910 | /// Returns the base node (the target in this case) of the iterator |
---|
911 | Node baseNode(InEdgeIt e) const { |
---|
912 | return target(e); |
---|
913 | } |
---|
914 | /// \brief Running node of the iterator |
---|
915 | /// |
---|
916 | /// Returns the running node (the source in this case) of the |
---|
917 | /// iterator |
---|
918 | Node runningNode(InEdgeIt e) const { |
---|
919 | return source(e); |
---|
920 | } |
---|
921 | |
---|
922 | /// \brief Base node of the iterator |
---|
923 | /// |
---|
924 | /// Returns the base node of the iterator |
---|
925 | Node baseNode(IncEdgeIt) const { |
---|
926 | return INVALID; |
---|
927 | } |
---|
928 | |
---|
929 | /// \brief Running node of the iterator |
---|
930 | /// |
---|
931 | /// Returns the running node of the iterator |
---|
932 | Node runningNode(IncEdgeIt) const { |
---|
933 | return INVALID; |
---|
934 | } |
---|
935 | |
---|
936 | template <typename Graph> |
---|
937 | struct Constraints { |
---|
938 | void constraints() { |
---|
939 | } |
---|
940 | }; |
---|
941 | |
---|
942 | }; |
---|
943 | |
---|
944 | |
---|
945 | /// @} |
---|
946 | |
---|
947 | } |
---|
948 | |
---|
949 | } |
---|
950 | |
---|
951 | #endif |
---|