/* -*- C++ -*- * * This file is a part of LEMON, a generic C++ optimization library * * Copyright (C) 2003-2006 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ ///\ingroup graph_concepts ///\file ///\brief The concept of the undirected graphs. #ifndef LEMON_CONCEPT_UGRAPH_H #define LEMON_CONCEPT_UGRAPH_H #include #include #include namespace lemon { namespace concept { /// \addtogroup graph_concepts /// @{ /// Class describing the concept of Undirected Graphs. /// This class describes the common interface of all Undirected /// Graphs. /// /// As all concept describing classes it provides only interface /// without any sensible implementation. So any algorithm for /// undirected graph should compile with this class, but it will not /// run properly, of couse. /// /// In LEMON undirected graphs also fulfill the concept of directed /// graphs (\ref lemon::concept::Graph "Graph Concept"). For /// explanation of this and more see also the page \ref graphs, /// a tutorial about graphs. /// /// You can assume that all undirected graph can be handled /// as a directed graph. This way it is fully conform /// to the Graph concept. class UGraph { public: ///\e ///\todo undocumented /// typedef True UndirectedTag; /// \brief The base type of node iterators, /// or in other words, the trivial node iterator. /// /// This is the base type of each node iterator, /// thus each kind of node iterator converts to this. /// More precisely each kind of node iterator should be inherited /// from the trivial node iterator. class Node { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. Node() { } /// Copy constructor. /// Copy constructor. /// Node(const Node&) { } /// Invalid constructor \& conversion. /// This constructor initializes the iterator to be invalid. /// \sa Invalid for more details. Node(Invalid) { } /// Equality operator /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Node) const { return true; } /// Inequality operator /// \sa operator==(Node n) /// bool operator!=(Node) const { return true; } /// Artificial ordering operator. /// To allow the use of graph descriptors as key type in std::map or /// similar associative container we require this. /// /// \note This operator only have to define some strict ordering of /// the items; this order has nothing to do with the iteration /// ordering of the items. bool operator<(Node) const { return false; } }; /// This iterator goes through each node. /// This iterator goes through each node. /// Its usage is quite simple, for example you can count the number /// of nodes in graph \c g of type \c Graph like this: ///\code /// int count=0; /// for (Graph::NodeIt n(g); n!=INVALID; ++n) ++count; ///\endcode class NodeIt : public Node { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. NodeIt() { } /// Copy constructor. /// Copy constructor. /// NodeIt(const NodeIt& n) : Node(n) { } /// Invalid constructor \& conversion. /// Initialize the iterator to be invalid. /// \sa Invalid for more details. NodeIt(Invalid) { } /// Sets the iterator to the first node. /// Sets the iterator to the first node of \c g. /// NodeIt(const UGraph&) { } /// Node -> NodeIt conversion. /// Sets the iterator to the node of \c the graph pointed by /// the trivial iterator. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. NodeIt(const UGraph&, const Node&) { } /// Next node. /// Assign the iterator to the next node. /// NodeIt& operator++() { return *this; } }; /// The base type of the undirected edge iterators. /// The base type of the undirected edge iterators. /// class UEdge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. UEdge() { } /// Copy constructor. /// Copy constructor. /// UEdge(const UEdge&) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// UEdge(Invalid) { } /// Equality operator /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(UEdge) const { return true; } /// Inequality operator /// \sa operator==(UEdge n) /// bool operator!=(UEdge) const { return true; } /// Artificial ordering operator. /// To allow the use of graph descriptors as key type in std::map or /// similar associative container we require this. /// /// \note This operator only have to define some strict ordering of /// the items; this order has nothing to do with the iteration /// ordering of the items. bool operator<(UEdge) const { return false; } }; /// This iterator goes through each undirected edge. /// This iterator goes through each undirected edge of a graph. /// Its usage is quite simple, for example you can count the number /// of undirected edges in a graph \c g of type \c Graph as follows: ///\code /// int count=0; /// for(Graph::UEdgeIt e(g); e!=INVALID; ++e) ++count; ///\endcode class UEdgeIt : public UEdge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. UEdgeIt() { } /// Copy constructor. /// Copy constructor. /// UEdgeIt(const UEdgeIt& e) : UEdge(e) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// UEdgeIt(Invalid) { } /// This constructor sets the iterator to the first undirected edge. /// This constructor sets the iterator to the first undirected edge. UEdgeIt(const UGraph&) { } /// UEdge -> UEdgeIt conversion /// Sets the iterator to the value of the trivial iterator. /// This feature necessitates that each time we /// iterate the undirected edge-set, the iteration order is the /// same. UEdgeIt(const UGraph&, const UEdge&) { } /// Next undirected edge /// Assign the iterator to the next undirected edge. UEdgeIt& operator++() { return *this; } }; /// \brief This iterator goes trough the incident undirected /// edges of a node. /// /// This iterator goes trough the incident undirected edges /// of a certain node of a graph. You should assume that the /// loop edges will be iterated twice. /// /// Its usage is quite simple, for example you can compute the /// degree (i.e. count the number of incident edges of a node \c n /// in graph \c g of type \c Graph as follows. /// ///\code /// int count=0; /// for(Graph::IncEdgeIt e(g, n); e!=INVALID; ++e) ++count; ///\endcode class IncEdgeIt : public UEdge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. IncEdgeIt() { } /// Copy constructor. /// Copy constructor. /// IncEdgeIt(const IncEdgeIt& e) : UEdge(e) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// IncEdgeIt(Invalid) { } /// This constructor sets the iterator to first incident edge. /// This constructor set the iterator to the first incident edge of /// the node. IncEdgeIt(const UGraph&, const Node&) { } /// UEdge -> IncEdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. IncEdgeIt(const UGraph&, const UEdge&) { } /// Next incident edge /// Assign the iterator to the next incident edge /// of the corresponding node. IncEdgeIt& operator++() { return *this; } }; /// The directed edge type. /// The directed edge type. It can be converted to the /// undirected edge. class Edge : public UEdge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. Edge() { } /// Copy constructor. /// Copy constructor. /// Edge(const Edge& e) : UEdge(e) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// Edge(Invalid) { } /// Equality operator /// Two iterators are equal if and only if they point to the /// same object or both are invalid. bool operator==(Edge) const { return true; } /// Inequality operator /// \sa operator==(Edge n) /// bool operator!=(Edge) const { return true; } /// Artificial ordering operator. /// To allow the use of graph descriptors as key type in std::map or /// similar associative container we require this. /// /// \note This operator only have to define some strict ordering of /// the items; this order has nothing to do with the iteration /// ordering of the items. bool operator<(Edge) const { return false; } }; /// This iterator goes through each directed edge. /// This iterator goes through each edge of a graph. /// Its usage is quite simple, for example you can count the number /// of edges in a graph \c g of type \c Graph as follows: ///\code /// int count=0; /// for(Graph::EdgeIt e(g); e!=INVALID; ++e) ++count; ///\endcode class EdgeIt : public Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. EdgeIt() { } /// Copy constructor. /// Copy constructor. /// EdgeIt(const EdgeIt& e) : Edge(e) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// EdgeIt(Invalid) { } /// This constructor sets the iterator to the first edge. /// This constructor sets the iterator to the first edge of \c g. ///@param g the graph EdgeIt(const UGraph &g) { ignore_unused_variable_warning(g); } /// Edge -> EdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. EdgeIt(const UGraph&, const Edge&) { } ///Next edge /// Assign the iterator to the next edge. EdgeIt& operator++() { return *this; } }; /// This iterator goes trough the outgoing directed edges of a node. /// This iterator goes trough the \e outgoing edges of a certain node /// of a graph. /// Its usage is quite simple, for example you can count the number /// of outgoing edges of a node \c n /// in graph \c g of type \c Graph as follows. ///\code /// int count=0; /// for (Graph::OutEdgeIt e(g, n); e!=INVALID; ++e) ++count; ///\endcode class OutEdgeIt : public Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. OutEdgeIt() { } /// Copy constructor. /// Copy constructor. /// OutEdgeIt(const OutEdgeIt& e) : Edge(e) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// OutEdgeIt(Invalid) { } /// This constructor sets the iterator to the first outgoing edge. /// This constructor sets the iterator to the first outgoing edge of /// the node. ///@param n the node ///@param g the graph OutEdgeIt(const UGraph& n, const Node& g) { ignore_unused_variable_warning(n); ignore_unused_variable_warning(g); } /// Edge -> OutEdgeIt conversion /// Sets the iterator to the value of the trivial iterator. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. OutEdgeIt(const UGraph&, const Edge&) { } ///Next outgoing edge /// Assign the iterator to the next /// outgoing edge of the corresponding node. OutEdgeIt& operator++() { return *this; } }; /// This iterator goes trough the incoming directed edges of a node. /// This iterator goes trough the \e incoming edges of a certain node /// of a graph. /// Its usage is quite simple, for example you can count the number /// of outgoing edges of a node \c n /// in graph \c g of type \c Graph as follows. ///\code /// int count=0; /// for(Graph::InEdgeIt e(g, n); e!=INVALID; ++e) ++count; ///\endcode class InEdgeIt : public Edge { public: /// Default constructor /// @warning The default constructor sets the iterator /// to an undefined value. InEdgeIt() { } /// Copy constructor. /// Copy constructor. /// InEdgeIt(const InEdgeIt& e) : Edge(e) { } /// Initialize the iterator to be invalid. /// Initialize the iterator to be invalid. /// InEdgeIt(Invalid) { } /// This constructor sets the iterator to first incoming edge. /// This constructor set the iterator to the first incoming edge of /// the node. ///@param n the node ///@param g the graph InEdgeIt(const UGraph& g, const Node& n) { ignore_unused_variable_warning(n); ignore_unused_variable_warning(g); } /// Edge -> InEdgeIt conversion /// Sets the iterator to the value of the trivial iterator \c e. /// This feature necessitates that each time we /// iterate the edge-set, the iteration order is the same. InEdgeIt(const UGraph&, const Edge&) { } /// Next incoming edge /// Assign the iterator to the next inedge of the corresponding node. /// InEdgeIt& operator++() { return *this; } }; /// \brief Read write map of the nodes to type \c T. /// /// ReadWrite map of the nodes to type \c T. /// \sa Reference /// \warning Making maps that can handle bool type (NodeMap) /// needs some extra attention! template class NodeMap : public ReadWriteMap< Node, T > { public: ///\e NodeMap(const UGraph&) { } ///\e NodeMap(const UGraph&, T) { } ///Copy constructor NodeMap(const NodeMap& nm) : ReadWriteMap< Node, T >(nm) { } ///Assignment operator template NodeMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// \brief Read write map of the directed edges to type \c T. /// /// Reference map of the directed edges to type \c T. /// \sa Reference /// \warning Making maps that can handle bool type (EdgeMap) /// needs some extra attention! template class EdgeMap : public ReadWriteMap { public: ///\e EdgeMap(const UGraph&) { } ///\e EdgeMap(const UGraph&, T) { } ///Copy constructor EdgeMap(const EdgeMap& em) : ReadWriteMap(em) { } ///Assignment operator template EdgeMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// Read write map of the undirected edges to type \c T. /// Reference map of the edges to type \c T. /// \sa Reference /// \warning Making maps that can handle bool type (UEdgeMap) /// needs some extra attention! template class UEdgeMap : public ReadWriteMap { public: ///\e UEdgeMap(const UGraph&) { } ///\e UEdgeMap(const UGraph&, T) { } ///Copy constructor UEdgeMap(const UEdgeMap& em) : ReadWriteMap(em) {} ///Assignment operator template UEdgeMap& operator=(const CMap&) { checkConcept, CMap>(); return *this; } }; /// \brief Direct the given undirected edge. /// /// Direct the given undirected edge. The returned edge source /// will be the given edge. Edge direct(const UEdge&, const Node&) const { return INVALID; } /// \brief Direct the given undirected edge. /// /// Direct the given undirected edge. The returned edge source /// will be the source of the undirected edge if the given bool /// is true. Edge direct(const UEdge&, bool) const { return INVALID; } /// \brief Returns true if the edge has default orientation. /// /// Returns whether the given directed edge is same orientation as /// the corresponding undirected edge. bool direction(Edge) const { return true; } /// \brief Returns the opposite directed edge. /// /// Returns the opposite directed edge. Edge oppositeEdge(Edge) const { return INVALID; } /// \brief Opposite node on an edge /// /// \return the opposite of the given Node on the given Edge Node oppositeNode(Node, UEdge) const { return INVALID; } /// \brief First node of the undirected edge. /// /// \return the first node of the given UEdge. /// /// Naturally uectected edges don't have direction and thus /// don't have source and target node. But we use these two methods /// to query the two endnodes of the edge. The direction of the edge /// which arises this way is called the inherent direction of the /// undirected edge, and is used to define the "default" direction /// of the directed versions of the edges. /// \sa direction Node source(UEdge) const { return INVALID; } /// \brief Second node of the undirected edge. Node target(UEdge) const { return INVALID; } /// \brief Source node of the directed edge. Node source(Edge) const { return INVALID; } /// \brief Target node of the directed edge. Node target(Edge) const { return INVALID; } void first(Node&) const {} void next(Node&) const {} void first(UEdge&) const {} void next(UEdge&) const {} void first(Edge&) const {} void next(Edge&) const {} void firstOut(Edge&, Node) const {} void nextOut(Edge&) const {} void firstIn(Edge&, Node) const {} void nextIn(Edge&) const {} void firstInc(UEdge &, bool &, const Node &) const {} void nextInc(UEdge &, bool &) const {} /// \brief Base node of the iterator /// /// Returns the base node (the source in this case) of the iterator Node baseNode(OutEdgeIt e) const { return source(e); } /// \brief Running node of the iterator /// /// Returns the running node (the target in this case) of the /// iterator Node runningNode(OutEdgeIt e) const { return target(e); } /// \brief Base node of the iterator /// /// Returns the base node (the target in this case) of the iterator Node baseNode(InEdgeIt e) const { return target(e); } /// \brief Running node of the iterator /// /// Returns the running node (the source in this case) of the /// iterator Node runningNode(InEdgeIt e) const { return source(e); } /// \brief Base node of the iterator /// /// Returns the base node of the iterator Node baseNode(IncEdgeIt) const { return INVALID; } /// \brief Running node of the iterator /// /// Returns the running node of the iterator Node runningNode(IncEdgeIt) const { return INVALID; } template struct Constraints { void constraints() { checkConcept, Graph>(); checkConcept, Graph>(); checkConcept, Graph>(); } }; }; /// @} } } #endif