1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_CYCLE_CANCELING_H |
---|
20 | #define LEMON_CYCLE_CANCELING_H |
---|
21 | |
---|
22 | /// \ingroup min_cost_flow |
---|
23 | /// |
---|
24 | /// \file |
---|
25 | /// \brief Cycle-canceling algorithm for finding a minimum cost flow. |
---|
26 | |
---|
27 | #include <vector> |
---|
28 | #include <lemon/graph_adaptor.h> |
---|
29 | #include <lemon/path.h> |
---|
30 | |
---|
31 | #include <lemon/circulation.h> |
---|
32 | #include <lemon/bellman_ford.h> |
---|
33 | #include <lemon/min_mean_cycle.h> |
---|
34 | |
---|
35 | namespace lemon { |
---|
36 | |
---|
37 | /// \addtogroup min_cost_flow |
---|
38 | /// @{ |
---|
39 | |
---|
40 | /// \brief Implementation of a cycle-canceling algorithm for |
---|
41 | /// finding a minimum cost flow. |
---|
42 | /// |
---|
43 | /// \ref CycleCanceling implements a cycle-canceling algorithm for |
---|
44 | /// finding a minimum cost flow. |
---|
45 | /// |
---|
46 | /// \tparam Graph The directed graph type the algorithm runs on. |
---|
47 | /// \tparam LowerMap The type of the lower bound map. |
---|
48 | /// \tparam CapacityMap The type of the capacity (upper bound) map. |
---|
49 | /// \tparam CostMap The type of the cost (length) map. |
---|
50 | /// \tparam SupplyMap The type of the supply map. |
---|
51 | /// |
---|
52 | /// \warning |
---|
53 | /// - Edge capacities and costs should be \e non-negative \e integers. |
---|
54 | /// - Supply values should be \e signed \e integers. |
---|
55 | /// - The value types of the maps should be convertible to each other. |
---|
56 | /// - \c CostMap::Value must be signed type. |
---|
57 | /// |
---|
58 | /// \note By default the \ref BellmanFord "Bellman-Ford" algorithm is |
---|
59 | /// used for negative cycle detection with limited iteration number. |
---|
60 | /// However \ref CycleCanceling also provides the "Minimum Mean |
---|
61 | /// Cycle-Canceling" algorithm, which is \e strongly \e polynomial, |
---|
62 | /// but rather slower in practice. |
---|
63 | /// To use this version of the algorithm, call \ref run() with \c true |
---|
64 | /// parameter. |
---|
65 | /// |
---|
66 | /// \author Peter Kovacs |
---|
67 | template < typename Graph, |
---|
68 | typename LowerMap = typename Graph::template EdgeMap<int>, |
---|
69 | typename CapacityMap = typename Graph::template EdgeMap<int>, |
---|
70 | typename CostMap = typename Graph::template EdgeMap<int>, |
---|
71 | typename SupplyMap = typename Graph::template NodeMap<int> > |
---|
72 | class CycleCanceling |
---|
73 | { |
---|
74 | GRAPH_TYPEDEFS(typename Graph); |
---|
75 | |
---|
76 | typedef typename CapacityMap::Value Capacity; |
---|
77 | typedef typename CostMap::Value Cost; |
---|
78 | typedef typename SupplyMap::Value Supply; |
---|
79 | typedef typename Graph::template EdgeMap<Capacity> CapacityEdgeMap; |
---|
80 | typedef typename Graph::template NodeMap<Supply> SupplyNodeMap; |
---|
81 | |
---|
82 | typedef ResGraphAdaptor< const Graph, Capacity, |
---|
83 | CapacityEdgeMap, CapacityEdgeMap > ResGraph; |
---|
84 | typedef typename ResGraph::Node ResNode; |
---|
85 | typedef typename ResGraph::NodeIt ResNodeIt; |
---|
86 | typedef typename ResGraph::Edge ResEdge; |
---|
87 | typedef typename ResGraph::EdgeIt ResEdgeIt; |
---|
88 | |
---|
89 | public: |
---|
90 | |
---|
91 | /// The type of the flow map. |
---|
92 | typedef typename Graph::template EdgeMap<Capacity> FlowMap; |
---|
93 | /// The type of the potential map. |
---|
94 | typedef typename Graph::template NodeMap<Cost> PotentialMap; |
---|
95 | |
---|
96 | private: |
---|
97 | |
---|
98 | /// \brief Map adaptor class for handling residual edge costs. |
---|
99 | /// |
---|
100 | /// Map adaptor class for handling residual edge costs. |
---|
101 | class ResidualCostMap : public MapBase<ResEdge, Cost> |
---|
102 | { |
---|
103 | private: |
---|
104 | |
---|
105 | const CostMap &_cost_map; |
---|
106 | |
---|
107 | public: |
---|
108 | |
---|
109 | ///\e |
---|
110 | ResidualCostMap(const CostMap &cost_map) : _cost_map(cost_map) {} |
---|
111 | |
---|
112 | ///\e |
---|
113 | Cost operator[](const ResEdge &e) const { |
---|
114 | return ResGraph::forward(e) ? _cost_map[e] : -_cost_map[e]; |
---|
115 | } |
---|
116 | |
---|
117 | }; //class ResidualCostMap |
---|
118 | |
---|
119 | private: |
---|
120 | |
---|
121 | // The maximum number of iterations for the first execution of the |
---|
122 | // Bellman-Ford algorithm. It should be at least 2. |
---|
123 | static const int BF_FIRST_LIMIT = 2; |
---|
124 | // The iteration limit for the Bellman-Ford algorithm is multiplied |
---|
125 | // by BF_LIMIT_FACTOR/100 in every round. |
---|
126 | static const int BF_LIMIT_FACTOR = 150; |
---|
127 | |
---|
128 | private: |
---|
129 | |
---|
130 | // The directed graph the algorithm runs on |
---|
131 | const Graph &_graph; |
---|
132 | // The original lower bound map |
---|
133 | const LowerMap *_lower; |
---|
134 | // The modified capacity map |
---|
135 | CapacityEdgeMap _capacity; |
---|
136 | // The original cost map |
---|
137 | const CostMap &_cost; |
---|
138 | // The modified supply map |
---|
139 | SupplyNodeMap _supply; |
---|
140 | bool _valid_supply; |
---|
141 | |
---|
142 | // Edge map of the current flow |
---|
143 | FlowMap *_flow; |
---|
144 | bool _local_flow; |
---|
145 | // Node map of the current potentials |
---|
146 | PotentialMap *_potential; |
---|
147 | bool _local_potential; |
---|
148 | |
---|
149 | // The residual graph |
---|
150 | ResGraph *_res_graph; |
---|
151 | // The residual cost map |
---|
152 | ResidualCostMap _res_cost; |
---|
153 | |
---|
154 | public: |
---|
155 | |
---|
156 | /// \brief General constructor (with lower bounds). |
---|
157 | /// |
---|
158 | /// General constructor (with lower bounds). |
---|
159 | /// |
---|
160 | /// \param graph The directed graph the algorithm runs on. |
---|
161 | /// \param lower The lower bounds of the edges. |
---|
162 | /// \param capacity The capacities (upper bounds) of the edges. |
---|
163 | /// \param cost The cost (length) values of the edges. |
---|
164 | /// \param supply The supply values of the nodes (signed). |
---|
165 | CycleCanceling( const Graph &graph, |
---|
166 | const LowerMap &lower, |
---|
167 | const CapacityMap &capacity, |
---|
168 | const CostMap &cost, |
---|
169 | const SupplyMap &supply ) : |
---|
170 | _graph(graph), _lower(&lower), _capacity(graph), _cost(cost), |
---|
171 | _supply(graph), _flow(0), _local_flow(false), |
---|
172 | _potential(0), _local_potential(false), _res_cost(_cost) |
---|
173 | { |
---|
174 | // Removing non-zero lower bounds |
---|
175 | _capacity = subMap(capacity, lower); |
---|
176 | Supply sum = 0; |
---|
177 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
178 | Supply s = supply[n]; |
---|
179 | for (InEdgeIt e(_graph, n); e != INVALID; ++e) |
---|
180 | s += lower[e]; |
---|
181 | for (OutEdgeIt e(_graph, n); e != INVALID; ++e) |
---|
182 | s -= lower[e]; |
---|
183 | sum += (_supply[n] = s); |
---|
184 | } |
---|
185 | _valid_supply = sum == 0; |
---|
186 | } |
---|
187 | |
---|
188 | /// \brief General constructor (without lower bounds). |
---|
189 | /// |
---|
190 | /// General constructor (without lower bounds). |
---|
191 | /// |
---|
192 | /// \param graph The directed graph the algorithm runs on. |
---|
193 | /// \param capacity The capacities (upper bounds) of the edges. |
---|
194 | /// \param cost The cost (length) values of the edges. |
---|
195 | /// \param supply The supply values of the nodes (signed). |
---|
196 | CycleCanceling( const Graph &graph, |
---|
197 | const CapacityMap &capacity, |
---|
198 | const CostMap &cost, |
---|
199 | const SupplyMap &supply ) : |
---|
200 | _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost), |
---|
201 | _supply(supply), _flow(0), _local_flow(false), |
---|
202 | _potential(0), _local_potential(false), _res_cost(_cost) |
---|
203 | { |
---|
204 | // Checking the sum of supply values |
---|
205 | Supply sum = 0; |
---|
206 | for (NodeIt n(_graph); n != INVALID; ++n) sum += _supply[n]; |
---|
207 | _valid_supply = sum == 0; |
---|
208 | } |
---|
209 | |
---|
210 | /// \brief Simple constructor (with lower bounds). |
---|
211 | /// |
---|
212 | /// Simple constructor (with lower bounds). |
---|
213 | /// |
---|
214 | /// \param graph The directed graph the algorithm runs on. |
---|
215 | /// \param lower The lower bounds of the edges. |
---|
216 | /// \param capacity The capacities (upper bounds) of the edges. |
---|
217 | /// \param cost The cost (length) values of the edges. |
---|
218 | /// \param s The source node. |
---|
219 | /// \param t The target node. |
---|
220 | /// \param flow_value The required amount of flow from node \c s |
---|
221 | /// to node \c t (i.e. the supply of \c s and the demand of \c t). |
---|
222 | CycleCanceling( const Graph &graph, |
---|
223 | const LowerMap &lower, |
---|
224 | const CapacityMap &capacity, |
---|
225 | const CostMap &cost, |
---|
226 | Node s, Node t, |
---|
227 | Supply flow_value ) : |
---|
228 | _graph(graph), _lower(&lower), _capacity(graph), _cost(cost), |
---|
229 | _supply(graph), _flow(0), _local_flow(false), |
---|
230 | _potential(0), _local_potential(false), _res_cost(_cost) |
---|
231 | { |
---|
232 | // Removing non-zero lower bounds |
---|
233 | _capacity = subMap(capacity, lower); |
---|
234 | for (NodeIt n(_graph); n != INVALID; ++n) { |
---|
235 | Supply sum = 0; |
---|
236 | if (n == s) sum = flow_value; |
---|
237 | if (n == t) sum = -flow_value; |
---|
238 | for (InEdgeIt e(_graph, n); e != INVALID; ++e) |
---|
239 | sum += lower[e]; |
---|
240 | for (OutEdgeIt e(_graph, n); e != INVALID; ++e) |
---|
241 | sum -= lower[e]; |
---|
242 | _supply[n] = sum; |
---|
243 | } |
---|
244 | _valid_supply = true; |
---|
245 | } |
---|
246 | |
---|
247 | /// \brief Simple constructor (without lower bounds). |
---|
248 | /// |
---|
249 | /// Simple constructor (without lower bounds). |
---|
250 | /// |
---|
251 | /// \param graph The directed graph the algorithm runs on. |
---|
252 | /// \param capacity The capacities (upper bounds) of the edges. |
---|
253 | /// \param cost The cost (length) values of the edges. |
---|
254 | /// \param s The source node. |
---|
255 | /// \param t The target node. |
---|
256 | /// \param flow_value The required amount of flow from node \c s |
---|
257 | /// to node \c t (i.e. the supply of \c s and the demand of \c t). |
---|
258 | CycleCanceling( const Graph &graph, |
---|
259 | const CapacityMap &capacity, |
---|
260 | const CostMap &cost, |
---|
261 | Node s, Node t, |
---|
262 | Supply flow_value ) : |
---|
263 | _graph(graph), _lower(NULL), _capacity(capacity), _cost(cost), |
---|
264 | _supply(graph, 0), _flow(0), _local_flow(false), |
---|
265 | _potential(0), _local_potential(false), _res_cost(_cost) |
---|
266 | { |
---|
267 | _supply[s] = flow_value; |
---|
268 | _supply[t] = -flow_value; |
---|
269 | _valid_supply = true; |
---|
270 | } |
---|
271 | |
---|
272 | /// Destructor. |
---|
273 | ~CycleCanceling() { |
---|
274 | if (_local_flow) delete _flow; |
---|
275 | if (_local_potential) delete _potential; |
---|
276 | delete _res_graph; |
---|
277 | } |
---|
278 | |
---|
279 | /// \brief Set the flow map. |
---|
280 | /// |
---|
281 | /// Set the flow map. |
---|
282 | /// |
---|
283 | /// \return \c (*this) |
---|
284 | CycleCanceling& flowMap(FlowMap &map) { |
---|
285 | if (_local_flow) { |
---|
286 | delete _flow; |
---|
287 | _local_flow = false; |
---|
288 | } |
---|
289 | _flow = ↦ |
---|
290 | return *this; |
---|
291 | } |
---|
292 | |
---|
293 | /// \brief Set the potential map. |
---|
294 | /// |
---|
295 | /// Set the potential map. |
---|
296 | /// |
---|
297 | /// \return \c (*this) |
---|
298 | CycleCanceling& potentialMap(PotentialMap &map) { |
---|
299 | if (_local_potential) { |
---|
300 | delete _potential; |
---|
301 | _local_potential = false; |
---|
302 | } |
---|
303 | _potential = ↦ |
---|
304 | return *this; |
---|
305 | } |
---|
306 | |
---|
307 | /// \name Execution control |
---|
308 | |
---|
309 | /// @{ |
---|
310 | |
---|
311 | /// \brief Run the algorithm. |
---|
312 | /// |
---|
313 | /// Run the algorithm. |
---|
314 | /// |
---|
315 | /// \param min_mean_cc Set this parameter to \c true to run the |
---|
316 | /// "Minimum Mean Cycle-Canceling" algorithm, which is strongly |
---|
317 | /// polynomial, but rather slower in practice. |
---|
318 | /// |
---|
319 | /// \return \c true if a feasible flow can be found. |
---|
320 | bool run(bool min_mean_cc = false) { |
---|
321 | return init() && start(min_mean_cc); |
---|
322 | } |
---|
323 | |
---|
324 | /// @} |
---|
325 | |
---|
326 | /// \name Query Functions |
---|
327 | /// The result of the algorithm can be obtained using these |
---|
328 | /// functions.\n |
---|
329 | /// \ref lemon::CycleCanceling::run() "run()" must be called before |
---|
330 | /// using them. |
---|
331 | |
---|
332 | /// @{ |
---|
333 | |
---|
334 | /// \brief Return a const reference to the edge map storing the |
---|
335 | /// found flow. |
---|
336 | /// |
---|
337 | /// Return a const reference to the edge map storing the found flow. |
---|
338 | /// |
---|
339 | /// \pre \ref run() must be called before using this function. |
---|
340 | const FlowMap& flowMap() const { |
---|
341 | return *_flow; |
---|
342 | } |
---|
343 | |
---|
344 | /// \brief Return a const reference to the node map storing the |
---|
345 | /// found potentials (the dual solution). |
---|
346 | /// |
---|
347 | /// Return a const reference to the node map storing the found |
---|
348 | /// potentials (the dual solution). |
---|
349 | /// |
---|
350 | /// \pre \ref run() must be called before using this function. |
---|
351 | const PotentialMap& potentialMap() const { |
---|
352 | return *_potential; |
---|
353 | } |
---|
354 | |
---|
355 | /// \brief Return the flow on the given edge. |
---|
356 | /// |
---|
357 | /// Return the flow on the given edge. |
---|
358 | /// |
---|
359 | /// \pre \ref run() must be called before using this function. |
---|
360 | Capacity flow(const Edge& edge) const { |
---|
361 | return (*_flow)[edge]; |
---|
362 | } |
---|
363 | |
---|
364 | /// \brief Return the potential of the given node. |
---|
365 | /// |
---|
366 | /// Return the potential of the given node. |
---|
367 | /// |
---|
368 | /// \pre \ref run() must be called before using this function. |
---|
369 | Cost potential(const Node& node) const { |
---|
370 | return (*_potential)[node]; |
---|
371 | } |
---|
372 | |
---|
373 | /// \brief Return the total cost of the found flow. |
---|
374 | /// |
---|
375 | /// Return the total cost of the found flow. The complexity of the |
---|
376 | /// function is \f$ O(e) \f$. |
---|
377 | /// |
---|
378 | /// \pre \ref run() must be called before using this function. |
---|
379 | Cost totalCost() const { |
---|
380 | Cost c = 0; |
---|
381 | for (EdgeIt e(_graph); e != INVALID; ++e) |
---|
382 | c += (*_flow)[e] * _cost[e]; |
---|
383 | return c; |
---|
384 | } |
---|
385 | |
---|
386 | /// @} |
---|
387 | |
---|
388 | private: |
---|
389 | |
---|
390 | /// Initialize the algorithm. |
---|
391 | bool init() { |
---|
392 | if (!_valid_supply) return false; |
---|
393 | |
---|
394 | // Initializing flow and potential maps |
---|
395 | if (!_flow) { |
---|
396 | _flow = new FlowMap(_graph); |
---|
397 | _local_flow = true; |
---|
398 | } |
---|
399 | if (!_potential) { |
---|
400 | _potential = new PotentialMap(_graph); |
---|
401 | _local_potential = true; |
---|
402 | } |
---|
403 | |
---|
404 | _res_graph = new ResGraph(_graph, _capacity, *_flow); |
---|
405 | |
---|
406 | // Finding a feasible flow using Circulation |
---|
407 | Circulation< Graph, ConstMap<Edge, Capacity>, CapacityEdgeMap, |
---|
408 | SupplyMap > |
---|
409 | circulation( _graph, constMap<Edge>(Capacity(0)), _capacity, |
---|
410 | _supply ); |
---|
411 | return circulation.flowMap(*_flow).run(); |
---|
412 | } |
---|
413 | |
---|
414 | bool start(bool min_mean_cc) { |
---|
415 | if (min_mean_cc) |
---|
416 | startMinMean(); |
---|
417 | else |
---|
418 | start(); |
---|
419 | |
---|
420 | // Handling non-zero lower bounds |
---|
421 | if (_lower) { |
---|
422 | for (EdgeIt e(_graph); e != INVALID; ++e) |
---|
423 | (*_flow)[e] += (*_lower)[e]; |
---|
424 | } |
---|
425 | return true; |
---|
426 | } |
---|
427 | |
---|
428 | /// \brief Execute the algorithm using \ref BellmanFord. |
---|
429 | /// |
---|
430 | /// Execute the algorithm using the \ref BellmanFord |
---|
431 | /// "Bellman-Ford" algorithm for negative cycle detection with |
---|
432 | /// successively larger limit for the number of iterations. |
---|
433 | void start() { |
---|
434 | typename BellmanFord<ResGraph, ResidualCostMap>::PredMap pred(*_res_graph); |
---|
435 | typename ResGraph::template NodeMap<int> visited(*_res_graph); |
---|
436 | std::vector<ResEdge> cycle; |
---|
437 | int node_num = countNodes(_graph); |
---|
438 | |
---|
439 | int length_bound = BF_FIRST_LIMIT; |
---|
440 | bool optimal = false; |
---|
441 | while (!optimal) { |
---|
442 | BellmanFord<ResGraph, ResidualCostMap> bf(*_res_graph, _res_cost); |
---|
443 | bf.predMap(pred); |
---|
444 | bf.init(0); |
---|
445 | int iter_num = 0; |
---|
446 | bool cycle_found = false; |
---|
447 | while (!cycle_found) { |
---|
448 | int curr_iter_num = iter_num + length_bound <= node_num ? |
---|
449 | length_bound : node_num - iter_num; |
---|
450 | iter_num += curr_iter_num; |
---|
451 | int real_iter_num = curr_iter_num; |
---|
452 | for (int i = 0; i < curr_iter_num; ++i) { |
---|
453 | if (bf.processNextWeakRound()) { |
---|
454 | real_iter_num = i; |
---|
455 | break; |
---|
456 | } |
---|
457 | } |
---|
458 | if (real_iter_num < curr_iter_num) { |
---|
459 | // Optimal flow is found |
---|
460 | optimal = true; |
---|
461 | // Setting node potentials |
---|
462 | for (NodeIt n(_graph); n != INVALID; ++n) |
---|
463 | (*_potential)[n] = bf.dist(n); |
---|
464 | break; |
---|
465 | } else { |
---|
466 | // Searching for node disjoint negative cycles |
---|
467 | for (ResNodeIt n(*_res_graph); n != INVALID; ++n) |
---|
468 | visited[n] = 0; |
---|
469 | int id = 0; |
---|
470 | for (ResNodeIt n(*_res_graph); n != INVALID; ++n) { |
---|
471 | if (visited[n] > 0) continue; |
---|
472 | visited[n] = ++id; |
---|
473 | ResNode u = pred[n] == INVALID ? |
---|
474 | INVALID : _res_graph->source(pred[n]); |
---|
475 | while (u != INVALID && visited[u] == 0) { |
---|
476 | visited[u] = id; |
---|
477 | u = pred[u] == INVALID ? |
---|
478 | INVALID : _res_graph->source(pred[u]); |
---|
479 | } |
---|
480 | if (u != INVALID && visited[u] == id) { |
---|
481 | // Finding the negative cycle |
---|
482 | cycle_found = true; |
---|
483 | cycle.clear(); |
---|
484 | ResEdge e = pred[u]; |
---|
485 | cycle.push_back(e); |
---|
486 | Capacity d = _res_graph->rescap(e); |
---|
487 | while (_res_graph->source(e) != u) { |
---|
488 | cycle.push_back(e = pred[_res_graph->source(e)]); |
---|
489 | if (_res_graph->rescap(e) < d) |
---|
490 | d = _res_graph->rescap(e); |
---|
491 | } |
---|
492 | |
---|
493 | // Augmenting along the cycle |
---|
494 | for (int i = 0; i < int(cycle.size()); ++i) |
---|
495 | _res_graph->augment(cycle[i], d); |
---|
496 | } |
---|
497 | } |
---|
498 | } |
---|
499 | |
---|
500 | if (!cycle_found) |
---|
501 | length_bound = length_bound * BF_LIMIT_FACTOR / 100; |
---|
502 | } |
---|
503 | } |
---|
504 | } |
---|
505 | |
---|
506 | /// \brief Execute the algorithm using \ref MinMeanCycle. |
---|
507 | /// |
---|
508 | /// Execute the algorithm using \ref MinMeanCycle for negative |
---|
509 | /// cycle detection. |
---|
510 | void startMinMean() { |
---|
511 | typedef Path<ResGraph> ResPath; |
---|
512 | MinMeanCycle<ResGraph, ResidualCostMap> mmc(*_res_graph, _res_cost); |
---|
513 | ResPath cycle; |
---|
514 | |
---|
515 | mmc.cyclePath(cycle).init(); |
---|
516 | if (mmc.findMinMean()) { |
---|
517 | while (mmc.cycleLength() < 0) { |
---|
518 | // Finding the cycle |
---|
519 | mmc.findCycle(); |
---|
520 | |
---|
521 | // Finding the largest flow amount that can be augmented |
---|
522 | // along the cycle |
---|
523 | Capacity delta = 0; |
---|
524 | for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e) { |
---|
525 | if (delta == 0 || _res_graph->rescap(e) < delta) |
---|
526 | delta = _res_graph->rescap(e); |
---|
527 | } |
---|
528 | |
---|
529 | // Augmenting along the cycle |
---|
530 | for (typename ResPath::EdgeIt e(cycle); e != INVALID; ++e) |
---|
531 | _res_graph->augment(e, delta); |
---|
532 | |
---|
533 | // Finding the minimum cycle mean for the modified residual |
---|
534 | // graph |
---|
535 | mmc.reset(); |
---|
536 | if (!mmc.findMinMean()) break; |
---|
537 | } |
---|
538 | } |
---|
539 | |
---|
540 | // Computing node potentials |
---|
541 | BellmanFord<ResGraph, ResidualCostMap> bf(*_res_graph, _res_cost); |
---|
542 | bf.init(0); bf.start(); |
---|
543 | for (NodeIt n(_graph); n != INVALID; ++n) |
---|
544 | (*_potential)[n] = bf.dist(n); |
---|
545 | } |
---|
546 | |
---|
547 | }; //class CycleCanceling |
---|
548 | |
---|
549 | ///@} |
---|
550 | |
---|
551 | } //namespace lemon |
---|
552 | |
---|
553 | #endif //LEMON_CYCLE_CANCELING_H |
---|