COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/dijkstra.h @ 1435:8e85e6bbefdf

Last change on this file since 1435:8e85e6bbefdf was 1435:8e85e6bbefdf, checked in by Akos Ladanyi, 19 years ago

trunk/src/* move to trunk/

File size: 33.9 KB
RevLine 
[906]1/* -*- C++ -*-
[1435]2 * lemon/dijkstra.h - Part of LEMON, a generic C++ optimization library
[906]3 *
[1164]4 * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
[1359]5 * (Egervary Research Group on Combinatorial Optimization, EGRES).
[906]6 *
7 * Permission to use, modify and distribute this software is granted
8 * provided that this copyright notice appears in all copies. For
9 * precise terms see the accompanying LICENSE file.
10 *
11 * This software is provided "AS IS" with no warranty of any kind,
12 * express or implied, and with no claim as to its suitability for any
13 * purpose.
14 *
15 */
16
[921]17#ifndef LEMON_DIJKSTRA_H
18#define LEMON_DIJKSTRA_H
[255]19
[758]20///\ingroup flowalgs
[255]21///\file
22///\brief Dijkstra algorithm.
[1283]23///
24///\todo getPath() should be implemented! (also for BFS and DFS)
[255]25
[953]26#include <lemon/list_graph.h>
[921]27#include <lemon/bin_heap.h>
28#include <lemon/invalid.h>
[1119]29#include <lemon/error.h>
30#include <lemon/maps.h>
[255]31
[921]32namespace lemon {
[385]33
[1119]34
[1151]35 
[954]36  ///Default traits class of Dijkstra class.
37
38  ///Default traits class of Dijkstra class.
39  ///\param GR Graph type.
40  ///\param LM Type of length map.
[953]41  template<class GR, class LM>
42  struct DijkstraDefaultTraits
43  {
[954]44    ///The graph type the algorithm runs on.
[953]45    typedef GR Graph;
46    ///The type of the map that stores the edge lengths.
47
[1124]48    ///The type of the map that stores the edge lengths.
[967]49    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
[953]50    typedef LM LengthMap;
[954]51    //The type of the length of the edges.
[987]52    typedef typename LM::Value Value;
[954]53    ///The heap type used by Dijkstra algorithm.
[967]54
55    ///The heap type used by Dijkstra algorithm.
56    ///
57    ///\sa BinHeap
58    ///\sa Dijkstra
[953]59    typedef BinHeap<typename Graph::Node,
[987]60                    typename LM::Value,
[953]61                    typename GR::template NodeMap<int>,
[987]62                    std::less<Value> > Heap;
[953]63
64    ///\brief The type of the map that stores the last
65    ///edges of the shortest paths.
66    ///
[1124]67    ///The type of the map that stores the last
68    ///edges of the shortest paths.
[967]69    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
[953]70    ///
[954]71    typedef typename Graph::template NodeMap<typename GR::Edge> PredMap;
72    ///Instantiates a PredMap.
[953]73 
[1123]74    ///This function instantiates a \ref PredMap.
75    ///\param G is the graph, to which we would like to define the PredMap.
[1119]76    ///\todo The graph alone may be insufficient for the initialization
[954]77    static PredMap *createPredMap(const GR &G)
[953]78    {
79      return new PredMap(G);
80    }
[1218]81//     ///\brief The type of the map that stores the last but one
82//     ///nodes of the shortest paths.
83//     ///
84//     ///The type of the map that stores the last but one
85//     ///nodes of the shortest paths.
86//     ///It must meet the \ref concept::WriteMap "WriteMap" concept.
87//     ///
88//     typedef NullMap<typename Graph::Node,typename Graph::Node> PredNodeMap;
89//     ///Instantiates a PredNodeMap.
[1125]90   
[1218]91//     ///This function instantiates a \ref PredNodeMap.
92//     ///\param G is the graph, to which
93//     ///we would like to define the \ref PredNodeMap
94//     static PredNodeMap *createPredNodeMap(const GR &G)
95//     {
96//       return new PredNodeMap();
97//     }
[1119]98
[1218]99    ///The type of the map that stores whether a nodes is processed.
[1119]100 
[1218]101    ///The type of the map that stores whether a nodes is processed.
[1119]102    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
103    ///By default it is a NullMap.
[1218]104    ///\todo If it is set to a real map,
105    ///Dijkstra::processed() should read this.
[1119]106    ///\todo named parameter to set this type, function to read and write.
[1218]107    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
108    ///Instantiates a ProcessedMap.
[1119]109 
[1218]110    ///This function instantiates a \ref ProcessedMap.
[1156]111    ///\param G is the graph, to which
[1218]112    ///we would like to define the \ref ProcessedMap
[1366]113    static ProcessedMap *createProcessedMap(const GR &)
[1119]114    {
[1218]115      return new ProcessedMap();
[1119]116    }
[953]117    ///The type of the map that stores the dists of the nodes.
118 
[1124]119    ///The type of the map that stores the dists of the nodes.
[967]120    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
[953]121    ///
[987]122    typedef typename Graph::template NodeMap<typename LM::Value> DistMap;
[954]123    ///Instantiates a DistMap.
[953]124 
[1123]125    ///This function instantiates a \ref DistMap.
126    ///\param G is the graph, to which we would like to define the \ref DistMap
[954]127    static DistMap *createDistMap(const GR &G)
[953]128    {
129      return new DistMap(G);
130    }
131  };
132 
[255]133  ///%Dijkstra algorithm class.
[1125]134 
[1151]135  /// \ingroup flowalgs
[255]136  ///This class provides an efficient implementation of %Dijkstra algorithm.
137  ///The edge lengths are passed to the algorithm using a
[959]138  ///\ref concept::ReadMap "ReadMap",
[255]139  ///so it is easy to change it to any kind of length.
140  ///
[880]141  ///The type of the length is determined by the
[987]142  ///\ref concept::ReadMap::Value "Value" of the length map.
[255]143  ///
144  ///It is also possible to change the underlying priority heap.
145  ///
[1218]146  ///\param GR The graph type the algorithm runs on. The default value
147  ///is \ref ListGraph. The value of GR is not used directly by
148  ///Dijkstra, it is only passed to \ref DijkstraDefaultTraits.
149  ///\param LM This read-only EdgeMap determines the lengths of the
150  ///edges. It is read once for each edge, so the map may involve in
151  ///relatively time consuming process to compute the edge length if
152  ///it is necessary. The default map type is \ref
153  ///concept::StaticGraph::EdgeMap "Graph::EdgeMap<int>".  The value
154  ///of LM is not used directly by Dijkstra, it is only passed to \ref
155  ///DijkstraDefaultTraits.  \param TR Traits class to set
156  ///various data types used by the algorithm.  The default traits
157  ///class is \ref DijkstraDefaultTraits
158  ///"DijkstraDefaultTraits<GR,LM>".  See \ref
159  ///DijkstraDefaultTraits for the documentation of a Dijkstra traits
160  ///class.
[456]161  ///
[689]162  ///\author Jacint Szabo and Alpar Juttner
[1128]163  ///\todo A compare object would be nice.
[584]164
[255]165#ifdef DOXYGEN
[584]166  template <typename GR,
167            typename LM,
[953]168            typename TR>
[255]169#else
[953]170  template <typename GR=ListGraph,
[584]171            typename LM=typename GR::template EdgeMap<int>,
[953]172            typename TR=DijkstraDefaultTraits<GR,LM> >
[255]173#endif
[1116]174  class Dijkstra {
[255]175  public:
[1125]176    /**
177     * \brief \ref Exception for uninitialized parameters.
178     *
179     * This error represents problems in the initialization
180     * of the parameters of the algorithms.
181     */
182    class UninitializedParameter : public lemon::UninitializedParameter {
183    public:
184      virtual const char* exceptionName() const {
[1218]185        return "lemon::Dijkstra::UninitializedParameter";
[1125]186      }
187    };
[1119]188
[953]189    typedef TR Traits;
[584]190    ///The type of the underlying graph.
[954]191    typedef typename TR::Graph Graph;
[911]192    ///\e
[255]193    typedef typename Graph::Node Node;
[911]194    ///\e
[255]195    typedef typename Graph::NodeIt NodeIt;
[911]196    ///\e
[255]197    typedef typename Graph::Edge Edge;
[911]198    ///\e
[255]199    typedef typename Graph::OutEdgeIt OutEdgeIt;
200   
[584]201    ///The type of the length of the edges.
[987]202    typedef typename TR::LengthMap::Value Value;
[693]203    ///The type of the map that stores the edge lengths.
[954]204    typedef typename TR::LengthMap LengthMap;
[693]205    ///\brief The type of the map that stores the last
[584]206    ///edges of the shortest paths.
[953]207    typedef typename TR::PredMap PredMap;
[1218]208//     ///\brief The type of the map that stores the last but one
209//     ///nodes of the shortest paths.
210//     typedef typename TR::PredNodeMap PredNodeMap;
211    ///The type of the map indicating if a node is processed.
212    typedef typename TR::ProcessedMap ProcessedMap;
[693]213    ///The type of the map that stores the dists of the nodes.
[953]214    typedef typename TR::DistMap DistMap;
215    ///The heap type used by the dijkstra algorithm.
216    typedef typename TR::Heap Heap;
[255]217  private:
[802]218    /// Pointer to the underlying graph.
[688]219    const Graph *G;
[802]220    /// Pointer to the length map
[954]221    const LengthMap *length;
[802]222    ///Pointer to the map of predecessors edges.
[1119]223    PredMap *_pred;
224    ///Indicates if \ref _pred is locally allocated (\c true) or not.
225    bool local_pred;
[1218]226//     ///Pointer to the map of predecessors nodes.
227//     PredNodeMap *_predNode;
228//     ///Indicates if \ref _predNode is locally allocated (\c true) or not.
229//     bool local_predNode;
[802]230    ///Pointer to the map of distances.
[1130]231    DistMap *_dist;
232    ///Indicates if \ref _dist is locally allocated (\c true) or not.
233    bool local_dist;
[1218]234    ///Pointer to the map of processed status of the nodes.
235    ProcessedMap *_processed;
236    ///Indicates if \ref _processed is locally allocated (\c true) or not.
237    bool local_processed;
[688]238
[1218]239//     ///The source node of the last execution.
240//     Node source;
[774]241
[1128]242    ///Creates the maps if necessary.
[688]243   
[694]244    ///\todo Error if \c G or are \c NULL. What about \c length?
[688]245    ///\todo Better memory allocation (instead of new).
[1128]246    void create_maps()
[688]247    {
[1119]248      if(!_pred) {
249        local_pred = true;
250        _pred = Traits::createPredMap(*G);
[688]251      }
[1218]252//       if(!_predNode) {
253//      local_predNode = true;
254//      _predNode = Traits::createPredNodeMap(*G);
255//       }
[1130]256      if(!_dist) {
257        local_dist = true;
258        _dist = Traits::createDistMap(*G);
[688]259      }
[1218]260      if(!_processed) {
261        local_processed = true;
262        _processed = Traits::createProcessedMap(*G);
[1119]263      }
[688]264    }
[255]265   
266  public :
[1116]267 
[1128]268    ///\name Named template parameters
269
270    ///@{
271
[953]272    template <class T>
[1116]273    struct DefPredMapTraits : public Traits {
[953]274      typedef T PredMap;
275      static PredMap *createPredMap(const Graph &G)
276      {
[1126]277        throw UninitializedParameter();
[953]278      }
279    };
[954]280    ///\ref named-templ-param "Named parameter" for setting PredMap type
281
282    ///\ref named-templ-param "Named parameter" for setting PredMap type
[1043]283    ///
[953]284    template <class T>
[1116]285    class DefPredMap : public Dijkstra< Graph,
[953]286                                        LengthMap,
[1116]287                                        DefPredMapTraits<T> > { };
[953]288   
[1218]289//     template <class T>
290//     struct DefPredNodeMapTraits : public Traits {
291//       typedef T PredNodeMap;
292//       static PredNodeMap *createPredNodeMap(const Graph &G)
293//       {
294//      throw UninitializedParameter();
295//       }
296//     };
297//     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
[954]298
[1218]299//     ///\ref named-templ-param "Named parameter" for setting PredNodeMap type
300//     ///
301//     template <class T>
302//     class DefPredNodeMap : public Dijkstra< Graph,
303//                                          LengthMap,
304//                                          DefPredNodeMapTraits<T> > { };
[953]305   
306    template <class T>
[1116]307    struct DefDistMapTraits : public Traits {
[953]308      typedef T DistMap;
309      static DistMap *createDistMap(const Graph &G)
310      {
[1126]311        throw UninitializedParameter();
[953]312      }
313    };
[954]314    ///\ref named-templ-param "Named parameter" for setting DistMap type
315
316    ///\ref named-templ-param "Named parameter" for setting DistMap type
[1043]317    ///
[953]318    template <class T>
[1116]319    class DefDistMap : public Dijkstra< Graph,
[953]320                                        LengthMap,
[1116]321                                        DefDistMapTraits<T> > { };
[953]322   
[1128]323    template <class T>
[1218]324    struct DefProcessedMapTraits : public Traits {
325      typedef T ProcessedMap;
326      static ProcessedMap *createProcessedMap(const Graph &G)
[1128]327      {
328        throw UninitializedParameter();
329      }
330    };
[1218]331    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
[1128]332
[1218]333    ///\ref named-templ-param "Named parameter" for setting ProcessedMap type
[1128]334    ///
335    template <class T>
[1218]336    class DefProcessedMap : public Dijkstra< Graph,
[1128]337                                        LengthMap,
[1218]338                                        DefProcessedMapTraits<T> > { };
[1128]339   
[1218]340    struct DefGraphProcessedMapTraits : public Traits {
341      typedef typename Graph::template NodeMap<bool> ProcessedMap;
342      static ProcessedMap *createProcessedMap(const Graph &G)
[1128]343      {
[1218]344        return new ProcessedMap(G);
[1128]345      }
346    };
347    ///\brief \ref named-templ-param "Named parameter"
[1218]348    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
[1128]349    ///
350    ///\ref named-templ-param "Named parameter"
[1218]351    ///for setting the ProcessedMap type to be Graph::NodeMap<bool>.
[1128]352    ///If you don't set it explicitely, it will be automatically allocated.
353    template <class T>
[1218]354    class DefProcessedMapToBeDefaultMap :
[1128]355      public Dijkstra< Graph,
356                       LengthMap,
[1218]357                       DefGraphProcessedMapTraits> { };
[1128]358   
359    ///@}
360
361
362  private:
363    typename Graph::template NodeMap<int> _heap_map;
364    Heap _heap;
365  public:     
366   
[802]367    ///Constructor.
[255]368   
[802]369    ///\param _G the graph the algorithm will run on.
370    ///\param _length the length map used by the algorithm.
[954]371    Dijkstra(const Graph& _G, const LengthMap& _length) :
[688]372      G(&_G), length(&_length),
[1119]373      _pred(NULL), local_pred(false),
[1218]374//       _predNode(NULL), local_predNode(false),
[1130]375      _dist(NULL), local_dist(false),
[1218]376      _processed(NULL), local_processed(false),
[1128]377      _heap_map(*G,-1),_heap(_heap_map)
[688]378    { }
379   
[802]380    ///Destructor.
[688]381    ~Dijkstra()
382    {
[1119]383      if(local_pred) delete _pred;
[1218]384//       if(local_predNode) delete _predNode;
[1130]385      if(local_dist) delete _dist;
[1218]386      if(local_processed) delete _processed;
[688]387    }
388
389    ///Sets the length map.
390
391    ///Sets the length map.
392    ///\return <tt> (*this) </tt>
[1116]393    Dijkstra &lengthMap(const LengthMap &m)
[688]394    {
395      length = &m;
396      return *this;
397    }
398
399    ///Sets the map storing the predecessor edges.
400
401    ///Sets the map storing the predecessor edges.
402    ///If you don't use this function before calling \ref run(),
403    ///it will allocate one. The destuctor deallocates this
404    ///automatically allocated map, of course.
405    ///\return <tt> (*this) </tt>
[1116]406    Dijkstra &predMap(PredMap &m)
[688]407    {
[1119]408      if(local_pred) {
409        delete _pred;
410        local_pred=false;
[688]411      }
[1119]412      _pred = &m;
[688]413      return *this;
414    }
415
[1218]416//     ///Sets the map storing the predecessor nodes.
[688]417
[1218]418//     ///Sets the map storing the predecessor nodes.
419//     ///If you don't use this function before calling \ref run(),
420//     ///it will allocate one. The destuctor deallocates this
421//     ///automatically allocated map, of course.
422//     ///\return <tt> (*this) </tt>
423//     Dijkstra &predNodeMap(PredNodeMap &m)
424//     {
425//       if(local_predNode) {
426//      delete _predNode;
427//      local_predNode=false;
428//       }
429//       _predNode = &m;
430//       return *this;
431//     }
[688]432
433    ///Sets the map storing the distances calculated by the algorithm.
434
435    ///Sets the map storing the distances calculated by the algorithm.
436    ///If you don't use this function before calling \ref run(),
437    ///it will allocate one. The destuctor deallocates this
438    ///automatically allocated map, of course.
439    ///\return <tt> (*this) </tt>
[1116]440    Dijkstra &distMap(DistMap &m)
[688]441    {
[1130]442      if(local_dist) {
443        delete _dist;
444        local_dist=false;
[688]445      }
[1130]446      _dist = &m;
[688]447      return *this;
448    }
[694]449
[1130]450  private:
451    void finalizeNodeData(Node v,Value dst)
452    {
[1218]453      _processed->set(v,true);
[1130]454      _dist->set(v, dst);
[1218]455//       if((*_pred)[v]!=INVALID)
456//       _predNode->set(v,G->source((*_pred)[v])); ///\todo What to do?
[1130]457    }
458
459  public:
[1218]460    ///\name Execution control
[1128]461    ///The simplest way to execute the algorithm is to use
[1156]462    ///one of the member functions called \c run(...).
[1128]463    ///\n
[1218]464    ///If you need more control on the execution,
[1128]465    ///first you must call \ref init(), then you can add several source nodes
[1218]466    ///with \ref addSource().
467    ///Finally \ref start() will perform the actual path
[1128]468    ///computation.
469
470    ///@{
471
472    ///Initializes the internal data structures.
473
474    ///Initializes the internal data structures.
475    ///
476    ///\todo _heap_map's type could also be in the traits class.
[1229]477    ///\todo The heaps should be able to make themselves empty directly.
[1128]478    void init()
479    {
480      create_maps();
[1229]481      while(!_heap.empty()) _heap.pop();
[774]482      for ( NodeIt u(*G) ; u!=INVALID ; ++u ) {
[1119]483        _pred->set(u,INVALID);
[1218]484//      _predNode->set(u,INVALID);
485        _processed->set(u,false);
[1128]486        _heap_map.set(u,Heap::PRE_HEAP);
[694]487      }
[1128]488    }
489   
490    ///Adds a new source node.
491
[1155]492    ///Adds a new source node to the priority heap.
[1128]493    ///
494    ///The optional second parameter is the initial distance of the node.
495    ///
[1155]496    ///It checks if the node has already been added to the heap and
497    ///It is pushed to the heap only if either it was not in the heap
498    ///or the shortest path found till then is longer then \c dst.
[1128]499    void addSource(Node s,Value dst=0)
500    {
[1218]501//       source = s;
[1128]502      if(_heap.state(s) != Heap::IN_HEAP) _heap.push(s,dst);
[1155]503      else if(_heap[s]<dst) {
504        _heap.push(s,dst);
505        _pred->set(s,INVALID);
506      }
[1128]507    }
508   
[1155]509    ///Processes the next node in the priority heap
510
511    ///Processes the next node in the priority heap.
512    ///
513    ///\warning The priority heap must not be empty!
[1151]514    void processNextNode()
[1128]515    {
516      Node v=_heap.top();
517      Value oldvalue=_heap[v];
518      _heap.pop();
[1130]519      finalizeNodeData(v,oldvalue);
[694]520     
[1128]521      for(OutEdgeIt e(*G,v); e!=INVALID; ++e) {
522        Node w=G->target(e);
523        switch(_heap.state(w)) {
524        case Heap::PRE_HEAP:
525          _heap.push(w,oldvalue+(*length)[e]);
526          _pred->set(w,e);
[1130]527//        _predNode->set(w,v);
[1128]528          break;
529        case Heap::IN_HEAP:
530          if ( oldvalue+(*length)[e] < _heap[w] ) {
531            _heap.decrease(w, oldvalue+(*length)[e]);
[1119]532            _pred->set(w,e);
[1130]533//          _predNode->set(w,v);
[694]534          }
[1128]535          break;
536        case Heap::POST_HEAP:
537          break;
[694]538        }
539      }
540    }
[1128]541
[1218]542    ///\brief Returns \c false if there are nodes
543    ///to be processed in the priority heap
[1155]544    ///
[1218]545    ///Returns \c false if there are nodes
546    ///to be processed in the priority heap
547    bool emptyQueue() { return _heap.empty(); }
[1155]548    ///Returns the number of the nodes to be processed in the priority heap
549
550    ///Returns the number of the nodes to be processed in the priority heap
551    ///
[1218]552    int queueSize() { return _heap.size(); }
[1155]553   
[1130]554    ///Executes the algorithm.
[1128]555
[1130]556    ///Executes the algorithm.
[1128]557    ///
[1130]558    ///\pre init() must be called and at least one node should be added
559    ///with addSource() before using this function.
[1128]560    ///
561    ///This method runs the %Dijkstra algorithm from the root node(s)
562    ///in order to
563    ///compute the
564    ///shortest path to each node. The algorithm computes
565    ///- The shortest path tree.
566    ///- The distance of each node from the root(s).
567    ///
568    void start()
569    {
[1151]570      while ( !_heap.empty() ) processNextNode();
[1128]571    }
[255]572   
[1130]573    ///Executes the algorithm until \c dest is reached.
[1128]574
[1130]575    ///Executes the algorithm until \c dest is reached.
[1128]576    ///
[1130]577    ///\pre init() must be called and at least one node should be added
578    ///with addSource() before using this function.
[1128]579    ///
580    ///This method runs the %Dijkstra algorithm from the root node(s)
581    ///in order to
582    ///compute the
583    ///shortest path to \c dest. The algorithm computes
584    ///- The shortest path to \c  dest.
585    ///- The distance of \c dest from the root(s).
586    ///
587    void start(Node dest)
588    {
[1151]589      while ( !_heap.empty() && _heap.top()!=dest ) processNextNode();
[1229]590      if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
[1130]591    }
592   
593    ///Executes the algorithm until a condition is met.
594
595    ///Executes the algorithm until a condition is met.
596    ///
597    ///\pre init() must be called and at least one node should be added
598    ///with addSource() before using this function.
599    ///
600    ///\param nm must be a bool (or convertible) node map. The algorithm
601    ///will stop when it reaches a node \c v with <tt>nm[v]==true</tt>.
[1345]602    template<class NodeBoolMap>
603    void start(const NodeBoolMap &nm)
[1130]604    {
[1193]605      while ( !_heap.empty() && !nm[_heap.top()] ) processNextNode();
[1229]606      if ( !_heap.empty() ) finalizeNodeData(_heap.top(),_heap.prio());
[1128]607    }
608   
609    ///Runs %Dijkstra algorithm from node \c s.
610   
611    ///This method runs the %Dijkstra algorithm from a root node \c s
612    ///in order to
613    ///compute the
614    ///shortest path to each node. The algorithm computes
615    ///- The shortest path tree.
616    ///- The distance of each node from the root.
617    ///
618    ///\note d.run(s) is just a shortcut of the following code.
619    ///\code
620    ///  d.init();
621    ///  d.addSource(s);
622    ///  d.start();
623    ///\endcode
624    void run(Node s) {
625      init();
626      addSource(s);
627      start();
628    }
629   
[1130]630    ///Finds the shortest path between \c s and \c t.
631   
632    ///Finds the shortest path between \c s and \c t.
633    ///
634    ///\return The length of the shortest s---t path if there exists one,
635    ///0 otherwise.
636    ///\note Apart from the return value, d.run(s) is
637    ///just a shortcut of the following code.
638    ///\code
639    ///  d.init();
640    ///  d.addSource(s);
641    ///  d.start(t);
642    ///\endcode
643    Value run(Node s,Node t) {
644      init();
645      addSource(s);
646      start(t);
647      return (*_pred)[t]==INVALID?0:(*_dist)[t];
648    }
649   
[1128]650    ///@}
651
652    ///\name Query Functions
653    ///The result of the %Dijkstra algorithm can be obtained using these
654    ///functions.\n
655    ///Before the use of these functions,
656    ///either run() or start() must be called.
657   
658    ///@{
659
[1283]660    ///Copies the shortest path to \c t into \c p
661   
662    ///This function copies the shortest path to \c t into \c p.
663    ///If it \c \t is a source itself or unreachable, then it does not
664    ///alter \c p.
665    ///\todo Is it the right way to handle unreachable nodes?
666    ///\return Returns \c true if a path to \c t was actually copied to \c p,
667    ///\c false otherwise.
668    ///\sa DirPath
669    template<class P>
670    bool getPath(P &p,Node t)
671    {
672      if(reached(t)) {
673        p.clear();
674        typename P::Builder b(p);
675        for(b.setStartNode(t);pred(t)!=INVALID;t=predNode(t))
676          b.pushFront(pred(t));
677        b.commit();
678        return true;
679      }
680      return false;
681    }
682         
[385]683    ///The distance of a node from the root.
[255]684
[385]685    ///Returns the distance of a node from the root.
[255]686    ///\pre \ref run() must be called before using this function.
[385]687    ///\warning If node \c v in unreachable from the root the return value
[255]688    ///of this funcion is undefined.
[1130]689    Value dist(Node v) const { return (*_dist)[v]; }
[373]690
[584]691    ///Returns the 'previous edge' of the shortest path tree.
[255]692
[584]693    ///For a node \c v it returns the 'previous edge' of the shortest path tree,
[785]694    ///i.e. it returns the last edge of a shortest path from the root to \c
[688]695    ///v. It is \ref INVALID
696    ///if \c v is unreachable from the root or if \c v=s. The
[385]697    ///shortest path tree used here is equal to the shortest path tree used in
698    ///\ref predNode(Node v).  \pre \ref run() must be called before using
699    ///this function.
[780]700    ///\todo predEdge could be a better name.
[1119]701    Edge pred(Node v) const { return (*_pred)[v]; }
[373]702
[584]703    ///Returns the 'previous node' of the shortest path tree.
[255]704
[584]705    ///For a node \c v it returns the 'previous node' of the shortest path tree,
[385]706    ///i.e. it returns the last but one node from a shortest path from the
707    ///root to \c /v. It is INVALID if \c v is unreachable from the root or if
708    ///\c v=s. The shortest path tree used here is equal to the shortest path
709    ///tree used in \ref pred(Node v).  \pre \ref run() must be called before
710    ///using this function.
[1130]711    Node predNode(Node v) const { return (*_pred)[v]==INVALID ? INVALID:
712                                  G->source((*_pred)[v]); }
[255]713   
714    ///Returns a reference to the NodeMap of distances.
715
[385]716    ///Returns a reference to the NodeMap of distances. \pre \ref run() must
717    ///be called before using this function.
[1130]718    const DistMap &distMap() const { return *_dist;}
[385]719 
[255]720    ///Returns a reference to the shortest path tree map.
721
722    ///Returns a reference to the NodeMap of the edges of the
723    ///shortest path tree.
724    ///\pre \ref run() must be called before using this function.
[1119]725    const PredMap &predMap() const { return *_pred;}
[385]726 
[1218]727//     ///Returns a reference to the map of nodes of shortest paths.
[255]728
[1218]729//     ///Returns a reference to the NodeMap of the last but one nodes of the
730//     ///shortest path tree.
731//     ///\pre \ref run() must be called before using this function.
732//     const PredNodeMap &predNodeMap() const { return *_predNode;}
[255]733
[385]734    ///Checks if a node is reachable from the root.
[255]735
[385]736    ///Returns \c true if \c v is reachable from the root.
[1218]737    ///\warning The source nodes are inditated as unreached.
[255]738    ///\pre \ref run() must be called before using this function.
[385]739    ///
[1218]740    bool reached(Node v) { return _heap_map[v]!=Heap::PRE_HEAP; }
[255]741   
[1128]742    ///@}
[255]743  };
[953]744
[1218]745
746
747
748 
749  ///Default traits class of Dijkstra function.
750
751  ///Default traits class of Dijkstra function.
752  ///\param GR Graph type.
753  ///\param LM Type of length map.
754  template<class GR, class LM>
755  struct DijkstraWizardDefaultTraits
756  {
757    ///The graph type the algorithm runs on.
758    typedef GR Graph;
759    ///The type of the map that stores the edge lengths.
760
761    ///The type of the map that stores the edge lengths.
762    ///It must meet the \ref concept::ReadMap "ReadMap" concept.
763    typedef LM LengthMap;
764    //The type of the length of the edges.
765    typedef typename LM::Value Value;
766    ///The heap type used by Dijkstra algorithm.
767
768    ///The heap type used by Dijkstra algorithm.
769    ///
770    ///\sa BinHeap
771    ///\sa Dijkstra
772    typedef BinHeap<typename Graph::Node,
773                    typename LM::Value,
774                    typename GR::template NodeMap<int>,
775                    std::less<Value> > Heap;
776
777    ///\brief The type of the map that stores the last
778    ///edges of the shortest paths.
779    ///
780    ///The type of the map that stores the last
781    ///edges of the shortest paths.
782    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
783    ///
784    typedef NullMap <typename GR::Node,typename GR::Edge> PredMap;
785    ///Instantiates a PredMap.
786 
787    ///This function instantiates a \ref PredMap.
788    ///\param G is the graph, to which we would like to define the PredMap.
789    ///\todo The graph alone may be insufficient for the initialization
[1367]790    static PredMap *createPredMap(const GR &)
[1218]791    {
792      return new PredMap();
793    }
794    ///The type of the map that stores whether a nodes is processed.
795 
796    ///The type of the map that stores whether a nodes is processed.
797    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
798    ///By default it is a NullMap.
799    ///\todo If it is set to a real map,
800    ///Dijkstra::processed() should read this.
801    ///\todo named parameter to set this type, function to read and write.
802    typedef NullMap<typename Graph::Node,bool> ProcessedMap;
803    ///Instantiates a ProcessedMap.
804 
805    ///This function instantiates a \ref ProcessedMap.
806    ///\param G is the graph, to which
807    ///we would like to define the \ref ProcessedMap
[1367]808    static ProcessedMap *createProcessedMap(const GR &)
[1218]809    {
810      return new ProcessedMap();
811    }
812    ///The type of the map that stores the dists of the nodes.
813 
814    ///The type of the map that stores the dists of the nodes.
815    ///It must meet the \ref concept::WriteMap "WriteMap" concept.
816    ///
817    typedef NullMap<typename Graph::Node,typename LM::Value> DistMap;
818    ///Instantiates a DistMap.
819 
820    ///This function instantiates a \ref DistMap.
821    ///\param G is the graph, to which we would like to define the \ref DistMap
[1367]822    static DistMap *createDistMap(const GR &)
[1218]823    {
824      return new DistMap();
825    }
826  };
827 
[1123]828  /// Default traits used by \ref DijkstraWizard
829
[1151]830  /// To make it easier to use Dijkstra algorithm
831  ///we have created a wizard class.
832  /// This \ref DijkstraWizard class needs default traits,
833  ///as well as the \ref Dijkstra class.
[1123]834  /// The \ref DijkstraWizardBase is a class to be the default traits of the
835  /// \ref DijkstraWizard class.
[1220]836  /// \todo More named parameters are required...
[1116]837  template<class GR,class LM>
[1218]838  class DijkstraWizardBase : public DijkstraWizardDefaultTraits<GR,LM>
[1116]839  {
840
[1218]841    typedef DijkstraWizardDefaultTraits<GR,LM> Base;
[1116]842  protected:
[1201]843    /// Type of the nodes in the graph.
844    typedef typename Base::Graph::Node Node;
845
[1116]846    /// Pointer to the underlying graph.
847    void *_g;
848    /// Pointer to the length map
849    void *_length;
850    ///Pointer to the map of predecessors edges.
851    void *_pred;
[1218]852//     ///Pointer to the map of predecessors nodes.
853//     void *_predNode;
[1116]854    ///Pointer to the map of distances.
855    void *_dist;
856    ///Pointer to the source node.
[1201]857    Node _source;
[1116]858
859    public:
[1123]860    /// Constructor.
861   
862    /// This constructor does not require parameters, therefore it initiates
863    /// all of the attributes to default values (0, INVALID).
[1218]864    DijkstraWizardBase() : _g(0), _length(0), _pred(0),
865//                         _predNode(0),
866                           _dist(0), _source(INVALID) {}
[1116]867
[1123]868    /// Constructor.
869   
[1156]870    /// This constructor requires some parameters,
871    /// listed in the parameters list.
[1123]872    /// Others are initiated to 0.
873    /// \param g is the initial value of  \ref _g
874    /// \param l is the initial value of  \ref _length
875    /// \param s is the initial value of  \ref _source
[1116]876    DijkstraWizardBase(const GR &g,const LM &l, Node s=INVALID) :
[1218]877      _g((void *)&g), _length((void *)&l), _pred(0),
878//       _predNode(0),
879      _dist(0), _source(s) {}
[1116]880
881  };
882 
[1229]883  /// A class to make the usage of Dijkstra algorithm easier
[953]884
[1123]885  /// This class is created to make it easier to use Dijkstra algorithm.
886  /// It uses the functions and features of the plain \ref Dijkstra,
[1151]887  /// but it is much simpler to use it.
[953]888  ///
[1123]889  /// Simplicity means that the way to change the types defined
890  /// in the traits class is based on functions that returns the new class
[1151]891  /// and not on templatable built-in classes.
892  /// When using the plain \ref Dijkstra
893  /// the new class with the modified type comes from
894  /// the original class by using the ::
895  /// operator. In the case of \ref DijkstraWizard only
896  /// a function have to be called and it will
[1123]897  /// return the needed class.
898  ///
899  /// It does not have own \ref run method. When its \ref run method is called
900  /// it initiates a plain \ref Dijkstra class, and calls the \ref Dijkstra::run
901  /// method of it.
[953]902  template<class TR>
[1116]903  class DijkstraWizard : public TR
[953]904  {
[1116]905    typedef TR Base;
[953]906
[1123]907    ///The type of the underlying graph.
[953]908    typedef typename TR::Graph Graph;
[1119]909    //\e
[953]910    typedef typename Graph::Node Node;
[1119]911    //\e
[953]912    typedef typename Graph::NodeIt NodeIt;
[1119]913    //\e
[953]914    typedef typename Graph::Edge Edge;
[1119]915    //\e
[953]916    typedef typename Graph::OutEdgeIt OutEdgeIt;
917   
[1123]918    ///The type of the map that stores the edge lengths.
[953]919    typedef typename TR::LengthMap LengthMap;
[1123]920    ///The type of the length of the edges.
[987]921    typedef typename LengthMap::Value Value;
[1123]922    ///\brief The type of the map that stores the last
923    ///edges of the shortest paths.
[953]924    typedef typename TR::PredMap PredMap;
[1218]925//     ///\brief The type of the map that stores the last but one
926//     ///nodes of the shortest paths.
927//     typedef typename TR::PredNodeMap PredNodeMap;
[1123]928    ///The type of the map that stores the dists of the nodes.
[953]929    typedef typename TR::DistMap DistMap;
930
[1123]931    ///The heap type used by the dijkstra algorithm.
[953]932    typedef typename TR::Heap Heap;
[1116]933public:
[1123]934    /// Constructor.
[1116]935    DijkstraWizard() : TR() {}
[953]936
[1123]937    /// Constructor that requires parameters.
[1124]938
939    /// Constructor that requires parameters.
[1123]940    /// These parameters will be the default values for the traits class.
[1116]941    DijkstraWizard(const Graph &g,const LengthMap &l, Node s=INVALID) :
942      TR(g,l,s) {}
[953]943
[1123]944    ///Copy constructor
[1116]945    DijkstraWizard(const TR &b) : TR(b) {}
[953]946
[1116]947    ~DijkstraWizard() {}
948
[1123]949    ///Runs Dijkstra algorithm from a given node.
950   
951    ///Runs Dijkstra algorithm from a given node.
952    ///The node can be given by the \ref source function.
[1116]953    void run()
[953]954    {
[1201]955      if(Base::_source==INVALID) throw UninitializedParameter();
[1193]956      Dijkstra<Graph,LengthMap,TR>
[1345]957        dij(*(Graph*)Base::_g,*(LengthMap*)Base::_length);
958      if(Base::_pred) dij.predMap(*(PredMap*)Base::_pred);
[1218]959//       if(Base::_predNode) Dij.predNodeMap(*(PredNodeMap*)Base::_predNode);
[1345]960      if(Base::_dist) dij.distMap(*(DistMap*)Base::_dist);
961      dij.run(Base::_source);
[1116]962    }
963
[1124]964    ///Runs Dijkstra algorithm from the given node.
[1123]965
[1124]966    ///Runs Dijkstra algorithm from the given node.
[1123]967    ///\param s is the given source.
[1116]968    void run(Node s)
969    {
[1201]970      Base::_source=s;
[1116]971      run();
[953]972    }
973
974    template<class T>
[1116]975    struct DefPredMapBase : public Base {
976      typedef T PredMap;
[1367]977      static PredMap *createPredMap(const Graph &) { return 0; };
[1236]978      DefPredMapBase(const TR &b) : TR(b) {}
[1116]979    };
[953]980   
[1156]981    ///\brief \ref named-templ-param "Named parameter"
982    ///function for setting PredMap type
983    ///
984    /// \ref named-templ-param "Named parameter"
985    ///function for setting PredMap type
[1124]986    ///
[953]987    template<class T>
[1116]988    DijkstraWizard<DefPredMapBase<T> > predMap(const T &t)
[953]989    {
[1193]990      Base::_pred=(void *)&t;
[1116]991      return DijkstraWizard<DefPredMapBase<T> >(*this);
[953]992    }
993   
[1116]994
[1218]995//     template<class T>
996//     struct DefPredNodeMapBase : public Base {
997//       typedef T PredNodeMap;
998//       static PredNodeMap *createPredNodeMap(const Graph &G) { return 0; };
[1236]999//       DefPredNodeMapBase(const TR &b) : TR(b) {}
[1218]1000//     };
[1116]1001   
[1218]1002//     ///\brief \ref named-templ-param "Named parameter"
1003//     ///function for setting PredNodeMap type
1004//     ///
1005//     /// \ref named-templ-param "Named parameter"
1006//     ///function for setting PredNodeMap type
1007//     ///
1008//     template<class T>
1009//     DijkstraWizard<DefPredNodeMapBase<T> > predNodeMap(const T &t)
1010//     {
1011//       Base::_predNode=(void *)&t;
1012//       return DijkstraWizard<DefPredNodeMapBase<T> >(*this);
1013//     }
[1116]1014   
1015    template<class T>
1016    struct DefDistMapBase : public Base {
1017      typedef T DistMap;
[1367]1018      static DistMap *createDistMap(const Graph &) { return 0; };
[1236]1019      DefDistMapBase(const TR &b) : TR(b) {}
[1116]1020    };
[953]1021   
[1156]1022    ///\brief \ref named-templ-param "Named parameter"
1023    ///function for setting DistMap type
1024    ///
1025    /// \ref named-templ-param "Named parameter"
1026    ///function for setting DistMap type
[1124]1027    ///
[953]1028    template<class T>
[1116]1029    DijkstraWizard<DefDistMapBase<T> > distMap(const T &t)
[953]1030    {
[1193]1031      Base::_dist=(void *)&t;
[1116]1032      return DijkstraWizard<DefDistMapBase<T> >(*this);
[953]1033    }
[1117]1034   
[1123]1035    /// Sets the source node, from which the Dijkstra algorithm runs.
1036
1037    /// Sets the source node, from which the Dijkstra algorithm runs.
1038    /// \param s is the source node.
[1117]1039    DijkstraWizard<TR> &source(Node s)
[953]1040    {
[1201]1041      Base::_source=s;
[953]1042      return *this;
1043    }
1044   
1045  };
[255]1046 
[1218]1047  ///Function type interface for Dijkstra algorithm.
[953]1048
[1151]1049  /// \ingroup flowalgs
[1218]1050  ///Function type interface for Dijkstra algorithm.
[953]1051  ///
[1218]1052  ///This function also has several
1053  ///\ref named-templ-func-param "named parameters",
1054  ///they are declared as the members of class \ref DijkstraWizard.
1055  ///The following
1056  ///example shows how to use these parameters.
1057  ///\code
1058  ///  dijkstra(g,length,source).predMap(preds).run();
1059  ///\endcode
1060  ///\warning Don't forget to put the \ref DijkstraWizard::run() "run()"
1061  ///to the end of the parameter list.
1062  ///\sa DijkstraWizard
1063  ///\sa Dijkstra
[953]1064  template<class GR, class LM>
[1116]1065  DijkstraWizard<DijkstraWizardBase<GR,LM> >
1066  dijkstra(const GR &g,const LM &l,typename GR::Node s=INVALID)
[953]1067  {
[1116]1068    return DijkstraWizard<DijkstraWizardBase<GR,LM> >(g,l,s);
[953]1069  }
1070
[921]1071} //END OF NAMESPACE LEMON
[255]1072
1073#endif
1074
Note: See TracBrowser for help on using the repository browser.