COIN-OR::LEMON - Graph Library

source: lemon-0.x/lemon/dim2.h @ 2562:27c54b7f4f1d

Last change on this file since 2562:27c54b7f4f1d was 2562:27c54b7f4f1d, checked in by Peter Kovacs, 16 years ago

Improvements and fixes in dim2.h.

  • Several doc improvements.
  • Fix BoundingBox::operator& implementation.
File size: 17.1 KB
RevLine 
[906]1/* -*- C++ -*-
2 *
[1956]3 * This file is a part of LEMON, a generic C++ optimization library
4 *
[2553]5 * Copyright (C) 2003-2008
[1956]6 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport
[1359]7 * (Egervary Research Group on Combinatorial Optimization, EGRES).
[906]8 *
9 * Permission to use, modify and distribute this software is granted
10 * provided that this copyright notice appears in all copies. For
11 * precise terms see the accompanying LICENSE file.
12 *
13 * This software is provided "AS IS" with no warranty of any kind,
14 * express or implied, and with no claim as to its suitability for any
15 * purpose.
16 *
17 */
18
[2207]19#ifndef LEMON_DIM2_H
20#define LEMON_DIM2_H
[201]21
22#include <iostream>
[1993]23#include <lemon/bits/utility.h>
[201]24
[491]25///\ingroup misc
[249]26///\file
27///\brief A simple two dimensional vector and a bounding box implementation
28///
[2207]29/// The class \ref lemon::dim2::Point "dim2::Point" implements
[249]30///a two dimensional vector with the usual
31/// operations.
32///
[2207]33/// The class \ref lemon::dim2::BoundingBox "dim2::BoundingBox"
34/// can be used to determine
35/// the rectangular bounding box of a set of
36/// \ref lemon::dim2::Point "dim2::Point"'s.
[458]37///
38///\author Attila Bernath
[249]39
40
[921]41namespace lemon {
[431]42
[2207]43  ///Tools for handling two dimensional coordinates
44
45  ///This namespace is a storage of several
46  ///tools for handling two dimensional coordinates
47  namespace dim2 {
48
[431]49  /// \addtogroup misc
50  /// @{
51
[1257]52  /// A simple two dimensional vector (plainvector) implementation
[242]53
[1257]54  /// A simple two dimensional vector (plainvector) implementation
[2562]55  /// with the usual vector operations.
[207]56  template<typename T>
[2207]57    class Point {
[201]58
[207]59    public:
[240]60
[987]61      typedef T Value;
[964]62
[2562]63      ///First coordinate
[1974]64      T x;
[2562]65      ///Second coordinate
[1974]66      T y;     
[207]67     
[1257]68      ///Default constructor
[2207]69      Point() {}
[201]70
[2157]71      ///Construct an instance from coordinates
[2207]72      Point(T a, T b) : x(a), y(b) { }
[201]73
[2217]74      ///The dimension of the vector.
75
[2562]76      ///This function always returns 2.
[2217]77      ///
[2212]78      int size() const { return 2; }
79
80      ///Subscripting operator
[2217]81
82      ///\c p[0] is \c p.x and \c p[1] is \c p.y
83      ///
[2212]84      T& operator[](int idx) { return idx == 0 ? x : y; }
85
86      ///Const subscripting operator
[2217]87
88      ///\c p[0] is \c p.x and \c p[1] is \c p.y
89      ///
[2212]90      const T& operator[](int idx) const { return idx == 0 ? x : y; }
[201]91
[1049]92      ///Conversion constructor
[2207]93      template<class TT> Point(const Point<TT> &p) : x(p.x), y(p.y) {}
[1049]94
[2157]95      ///Give back the square of the norm of the vector
[1257]96      T normSquare() const {
[1426]97        return x*x+y*y;
[1391]98      }
[201]99 
[2562]100      ///Increment the left hand side by \c u
[2207]101      Point<T>& operator +=(const Point<T>& u) {
[1426]102        x += u.x;
103        y += u.y;
104        return *this;
[1391]105      }
[201]106 
[2562]107      ///Decrement the left hand side by \c u
[2207]108      Point<T>& operator -=(const Point<T>& u) {
[1426]109        x -= u.x;
110        y -= u.y;
111        return *this;
[1391]112      }
[201]113
[2157]114      ///Multiply the left hand side with a scalar
[2207]115      Point<T>& operator *=(const T &u) {
[1426]116        x *= u;
117        y *= u;
118        return *this;
[1391]119      }
[207]120
[2157]121      ///Divide the left hand side by a scalar
[2207]122      Point<T>& operator /=(const T &u) {
[1426]123        x /= u;
124        y /= u;
125        return *this;
[1391]126      }
[201]127 
[2157]128      ///Return the scalar product of two vectors
[2207]129      T operator *(const Point<T>& u) const {
[1426]130        return x*u.x+y*u.y;
[1391]131      }
[201]132 
[2157]133      ///Return the sum of two vectors
[2207]134      Point<T> operator+(const Point<T> &u) const {
135        Point<T> b=*this;
[1426]136        return b+=u;
[1391]137      }
[201]138
[2562]139      ///Return the negative of the vector
[2207]140      Point<T> operator-() const {
141        Point<T> b=*this;
[1426]142        b.x=-b.x; b.y=-b.y;
143        return b;
[1391]144      }
[1049]145
[2157]146      ///Return the difference of two vectors
[2207]147      Point<T> operator-(const Point<T> &u) const {
148        Point<T> b=*this;
[1426]149        return b-=u;
[1391]150      }
[201]151
[2157]152      ///Return a vector multiplied by a scalar
[2207]153      Point<T> operator*(const T &u) const {
154        Point<T> b=*this;
[1426]155        return b*=u;
[1391]156      }
[201]157
[2157]158      ///Return a vector divided by a scalar
[2207]159      Point<T> operator/(const T &u) const {
160        Point<T> b=*this;
[1426]161        return b/=u;
[1391]162      }
[201]163
[2157]164      ///Test equality
[2207]165      bool operator==(const Point<T> &u) const {
[1426]166        return (x==u.x) && (y==u.y);
[1391]167      }
[201]168
[2157]169      ///Test inequality
[2207]170      bool operator!=(Point u) const {
[1426]171        return  (x!=u.x) || (y!=u.y);
[1391]172      }
[201]173
[207]174    };
[201]175
[2562]176  ///Return a Point
[1999]177
[2562]178  ///Return a Point.
[2207]179  ///\relates Point
[1999]180  template <typename T>
[2212]181  inline Point<T> makePoint(const T& x, const T& y) {
[2207]182    return Point<T>(x, y);
[1999]183  }
184
[2157]185  ///Return a vector multiplied by a scalar
[1083]186
[2157]187  ///Return a vector multiplied by a scalar
[2207]188  ///\relates Point
189  template<typename T> Point<T> operator*(const T &u,const Point<T> &x) {
[1071]190    return x*u;
[1391]191  }
[1071]192
[814]193  ///Read a plainvector from a stream
194
[967]195  ///Read a plainvector from a stream
[2207]196  ///\relates Point
[814]197  ///
[207]198  template<typename T>
[2207]199  inline std::istream& operator>>(std::istream &is, Point<T> &z) {
[1392]200    char c;
201    if (is >> c) {
202      if (c != '(') is.putback(c);
203    } else {
204      is.clear();
205    }
206    if (!(is >> z.x)) return is;
207    if (is >> c) {
208      if (c != ',') is.putback(c);
209    } else {
210      is.clear();
211    }
212    if (!(is >> z.y)) return is;
213    if (is >> c) {
214      if (c != ')') is.putback(c);
215    } else {
216      is.clear();
217    }
[207]218    return is;
219  }
[201]220
[814]221  ///Write a plainvector to a stream
222
[967]223  ///Write a plainvector to a stream
[2207]224  ///\relates Point
[814]225  ///
[207]226  template<typename T>
[2207]227  inline std::ostream& operator<<(std::ostream &os, const Point<T>& z)
[207]228  {
[240]229    os << "(" << z.x << ", " << z.y << ")";
[207]230    return os;
231  }
232
[1202]233  ///Rotate by 90 degrees
234
235  ///Returns its parameter rotated by 90 degrees in positive direction.
[2207]236  ///\relates Point
[1202]237  ///
238  template<typename T>
[2207]239  inline Point<T> rot90(const Point<T> &z)
[1202]240  {
[2207]241    return Point<T>(-z.y,z.x);
[1202]242  }
243
[2157]244  ///Rotate by 180 degrees
245
246  ///Returns its parameter rotated by 180 degrees.
[2207]247  ///\relates Point
[2157]248  ///
249  template<typename T>
[2207]250  inline Point<T> rot180(const Point<T> &z)
[2157]251  {
[2207]252    return Point<T>(-z.x,-z.y);
[2157]253  }
254
[1202]255  ///Rotate by 270 degrees
256
257  ///Returns its parameter rotated by 90 degrees in negative direction.
[2207]258  ///\relates Point
[1202]259  ///
260  template<typename T>
[2207]261  inline Point<T> rot270(const Point<T> &z)
[1202]262  {
[2207]263    return Point<T>(z.y,-z.x);
[1202]264  }
265
266 
[244]267
[458]268  /// A class to calculate or store the bounding box of plainvectors.
269
270  /// A class to calculate or store the bounding box of plainvectors.
271  ///
272  ///\author Attila Bernath
[2451]273    template<typename T>
[244]274    class BoundingBox {
[2207]275      Point<T> bottom_left, top_right;
[244]276      bool _empty;
277    public:
278     
[1426]279      ///Default constructor: creates an empty bounding box
[244]280      BoundingBox() { _empty = true; }
281
[2157]282      ///Construct an instance from one point
[2207]283      BoundingBox(Point<T> a) { bottom_left=top_right=a; _empty = false; }
[2451]284     
285      ///Construct an instance from two points
286     
[2562]287      ///Construct an instance from two points.
288      ///\param a The bottom left corner.
289      ///\param b The top right corner.
290      ///\warning The coordinates of the bottom left corner must be no more
291      ///than those of the top right one.
[2451]292      BoundingBox(Point<T> a,Point<T> b)
293      {
294        bottom_left=a;
295        top_right=b;
296        _empty = false;
297      }
298     
299      ///Construct an instance from four numbers
[244]300
[2562]301      ///Construct an instance from four numbers.
302      ///\param l The left side of the box.
303      ///\param b The bottom of the box.
304      ///\param r The right side of the box.
305      ///\param t The top of the box.
306      ///\warning The left side must be no more than the right side and
307      ///bottom must be no more than the top.
[2451]308      BoundingBox(T l,T b,T r,T t)
309      {
310        bottom_left=Point<T>(l,b);
311        top_right=Point<T>(r,t);
312        _empty = false;
313      }
314     
[2562]315      ///Return \c true if the bounding box is empty.
316     
317      ///Return \c true if the bounding box is empty (i.e. return \c false
318      ///if at least one point was added to the box or the coordinates of
319      ///the box were set).
320      ///
321      ///The coordinates of an empty bounding box are not defined.
[244]322      bool empty() const {
[1426]323        return _empty;
[244]324      }
[2451]325     
[2157]326      ///Make the BoundingBox empty
[1391]327      void clear() {
[1426]328        _empty=1;
[1391]329      }
330
[2562]331      ///Give back the bottom left corner of the box
[2157]332
[2562]333      ///Give back the bottom left corner of the box.
[2157]334      ///If the bounding box is empty, then the return value is not defined.
[2207]335      Point<T> bottomLeft() const {
[1426]336        return bottom_left;
[1391]337      }
[244]338
[2562]339      ///Set the bottom left corner of the box
[2157]340
[2562]341      ///Set the bottom left corner of the box.
342      ///It should only be used for non-empty box.
[2207]343      void bottomLeft(Point<T> p) {
[1927]344        bottom_left = p;
345      }
346
[2562]347      ///Give back the top right corner of the box
[2157]348
[2562]349      ///Give back the top right corner of the box.
[2157]350      ///If the bounding box is empty, then the return value is not defined.
[2207]351      Point<T> topRight() const {
[1426]352        return top_right;
[1391]353      }
[244]354
[2562]355      ///Set the top right corner of the box
[2157]356
[2562]357      ///Set the top right corner of the box.
358      ///It should only be used for non-empty box.
[2207]359      void topRight(Point<T> p) {
[1927]360        top_right = p;
361      }
362
[2562]363      ///Give back the bottom right corner of the box
[2157]364
[2562]365      ///Give back the bottom right corner of the box.
[2157]366      ///If the bounding box is empty, then the return value is not defined.
[2207]367      Point<T> bottomRight() const {
368        return Point<T>(top_right.x,bottom_left.y);
[1391]369      }
[1045]370
[2562]371      ///Set the bottom right corner of the box
[2157]372
[2562]373      ///Set the bottom right corner of the box.
374      ///It should only be used for non-empty box.
[2207]375      void bottomRight(Point<T> p) {
[1927]376        top_right.x = p.x;
377        bottom_left.y = p.y;
378      }
[2157]379 
[2562]380      ///Give back the top left corner of the box
[1927]381
[2562]382      ///Give back the top left corner of the box.
[2157]383      ///If the bounding box is empty, then the return value is not defined.
[2207]384      Point<T> topLeft() const {
385        return Point<T>(bottom_left.x,top_right.y);
[1391]386      }
[1045]387
[2562]388      ///Set the top left corner of the box
[2157]389
[2562]390      ///Set the top left corner of the box.
391      ///It should only be used for non-empty box.
[2207]392      void topLeft(Point<T> p) {
[1927]393        top_right.y = p.y;
394        bottom_left.x = p.x;
395      }
396
[2157]397      ///Give back the bottom of the box
398
399      ///Give back the bottom of the box.
400      ///If the bounding box is empty, then the return value is not defined.
[1045]401      T bottom() const {
[1426]402        return bottom_left.y;
[1391]403      }
[1045]404
[2157]405      ///Set the bottom of the box
406
407      ///Set the bottom of the box.
[2562]408      ///It should only be used for non-empty box.
[1927]409      void bottom(T t) {
410        bottom_left.y = t;
411      }
412
[2157]413      ///Give back the top of the box
414
415      ///Give back the top of the box.
416      ///If the bounding box is empty, then the return value is not defined.
[1045]417      T top() const {
[1426]418        return top_right.y;
[1391]419      }
[1045]420
[2157]421      ///Set the top of the box
422
423      ///Set the top of the box.
[2562]424      ///It should only be used for non-empty box.
[1927]425      void top(T t) {
426        top_right.y = t;
427      }
428
[2157]429      ///Give back the left side of the box
430
431      ///Give back the left side of the box.
432      ///If the bounding box is empty, then the return value is not defined.
[1045]433      T left() const {
[1426]434        return bottom_left.x;
[1391]435      }
[2157]436 
437      ///Set the left side of the box
[1045]438
[2157]439      ///Set the left side of the box.
[2562]440      ///It should only be used for non-empty box.
[1927]441      void left(T t) {
442        bottom_left.x = t;
443      }
444
[2157]445      /// Give back the right side of the box
446
447      /// Give back the right side of the box.
448      ///If the bounding box is empty, then the return value is not defined.
[1045]449      T right() const {
[1426]450        return top_right.x;
[1391]451      }
[1045]452
[2157]453      ///Set the right side of the box
454
455      ///Set the right side of the box.
[2562]456      ///It should only be used for non-empty box.
[1927]457      void right(T t) {
458        top_right.x = t;
459      }
460
[2157]461      ///Give back the height of the box
462
463      ///Give back the height of the box.
464      ///If the bounding box is empty, then the return value is not defined.
[1102]465      T height() const {
[1426]466        return top_right.y-bottom_left.y;
[1391]467      }
[1102]468
[2157]469      ///Give back the width of the box
470
471      ///Give back the width of the box.
472      ///If the bounding box is empty, then the return value is not defined.
[1102]473      T width() const {
[1426]474        return top_right.x-bottom_left.x;
[1391]475      }
[1102]476
[244]477      ///Checks whether a point is inside a bounding box
[2562]478      bool inside(const Point<T>& u) const {
[1426]479        if (_empty)
480          return false;
481        else{
482          return ((u.x-bottom_left.x)*(top_right.x-u.x) >= 0 &&
483              (u.y-bottom_left.y)*(top_right.y-u.y) >= 0 );
484        }
[244]485      }
486 
487      ///Increments a bounding box with a point
[2562]488
489      ///Increments a bounding box with a point.
490      ///
[2207]491      BoundingBox& add(const Point<T>& u){
[1426]492        if (_empty){
493          bottom_left=top_right=u;
494          _empty = false;
495        }
496        else{
497          if (bottom_left.x > u.x) bottom_left.x = u.x;
498          if (bottom_left.y > u.y) bottom_left.y = u.y;
499          if (top_right.x < u.x) top_right.x = u.x;
500          if (top_right.y < u.y) top_right.y = u.y;
501        }
502        return *this;
[1391]503      }
[2214]504   
[2562]505      ///Increments a bounding box to contain another bounding box
506     
507      ///Increments a bounding box to contain another bounding box.
508      ///
[1588]509      BoundingBox& add(const BoundingBox &u){
[1426]510        if ( !u.empty() ){
[1588]511          this->add(u.bottomLeft());
512          this->add(u.topRight());
[1426]513        }
514        return *this;
[1391]515      }
[244]516 
[1588]517      ///Intersection of two bounding boxes
[2562]518
519      ///Intersection of two bounding boxes.
520      ///
521      BoundingBox operator&(const BoundingBox& u) const {
[1588]522        BoundingBox b;
[2562]523        if (this->_empty || u._empty) {
524          b._empty = true;
525        } else {
526          b.bottom_left.x=std::max(this->bottom_left.x,u.bottom_left.x);
527          b.bottom_left.y=std::max(this->bottom_left.y,u.bottom_left.y);
528          b.top_right.x=std::min(this->top_right.x,u.top_right.x);
529          b.top_right.y=std::min(this->top_right.y,u.top_right.y);
530          b._empty = b.bottom_left.x > b.top_right.x ||
531                     b.bottom_left.y > b.top_right.y;
532        }
[1588]533        return b;
[1391]534      }
[244]535
536    };//class Boundingbox
537
538
[2562]539  ///Map of x-coordinates of a \ref Point "Point"-map
[1317]540
541  ///\ingroup maps
[2562]542  ///Map of x-coordinates of a \ref Point "Point"-map.
[1317]543  ///
544  template<class M>
545  class XMap
546  {
[1706]547    M& _map;
[1317]548  public:
[1420]549
[1317]550    typedef typename M::Value::Value Value;
551    typedef typename M::Key Key;
552    ///\e
[1706]553    XMap(M& map) : _map(map) {}
[1317]554    Value operator[](Key k) const {return _map[k].x;}
[1352]555    void set(Key k,Value v) {_map.set(k,typename M::Value(v,_map[k].y));}
[1317]556  };
557   
558  ///Returns an \ref XMap class
559
560  ///This function just returns an \ref XMap class.
561  ///
562  ///\ingroup maps
563  ///\relates XMap
564  template<class M>
565  inline XMap<M> xMap(M &m)
566  {
567    return XMap<M>(m);
568  }
569
[1420]570  template<class M>
571  inline XMap<M> xMap(const M &m)
572  {
573    return XMap<M>(m);
574  }
575
[1317]576  ///Constant (read only) version of \ref XMap
577
578  ///\ingroup maps
[2214]579  ///Constant (read only) version of \ref XMap
[1317]580  ///
581  template<class M>
582  class ConstXMap
583  {
[1706]584    const M& _map;
[1317]585  public:
[1420]586
[1317]587    typedef typename M::Value::Value Value;
588    typedef typename M::Key Key;
589    ///\e
590    ConstXMap(const M &map) : _map(map) {}
591    Value operator[](Key k) const {return _map[k].x;}
592  };
593   
594  ///Returns a \ref ConstXMap class
595
[2562]596  ///This function just returns a \ref ConstXMap class.
[1317]597  ///
598  ///\ingroup maps
599  ///\relates ConstXMap
600  template<class M>
601  inline ConstXMap<M> xMap(const M &m)
602  {
603    return ConstXMap<M>(m);
604  }
605
[2562]606  ///Map of y-coordinates of a \ref Point "Point"-map
[1317]607   
608  ///\ingroup maps
[2562]609  ///Map of y-coordinates of a \ref Point "Point"-map.
[1317]610  ///
611  template<class M>
612  class YMap
613  {
[1706]614    M& _map;
[1317]615  public:
[1420]616
[1317]617    typedef typename M::Value::Value Value;
618    typedef typename M::Key Key;
619    ///\e
[1706]620    YMap(M& map) : _map(map) {}
[1317]621    Value operator[](Key k) const {return _map[k].y;}
[1352]622    void set(Key k,Value v) {_map.set(k,typename M::Value(_map[k].x,v));}
[1317]623  };
624
[2562]625  ///Returns a \ref YMap class
[1317]626
[2562]627  ///This function just returns a \ref YMap class.
[1317]628  ///
629  ///\ingroup maps
630  ///\relates YMap
631  template<class M>
632  inline YMap<M> yMap(M &m)
633  {
634    return YMap<M>(m);
635  }
636
[1420]637  template<class M>
638  inline YMap<M> yMap(const M &m)
639  {
640    return YMap<M>(m);
641  }
642
[1317]643  ///Constant (read only) version of \ref YMap
644
645  ///\ingroup maps
[2214]646  ///Constant (read only) version of \ref YMap
[1317]647  ///
648  template<class M>
649  class ConstYMap
650  {
[1706]651    const M& _map;
[1317]652  public:
[1420]653
[1317]654    typedef typename M::Value::Value Value;
655    typedef typename M::Key Key;
656    ///\e
657    ConstYMap(const M &map) : _map(map) {}
658    Value operator[](Key k) const {return _map[k].y;}
659  };
660   
661  ///Returns a \ref ConstYMap class
662
[2562]663  ///This function just returns a \ref ConstYMap class.
[1317]664  ///
665  ///\ingroup maps
666  ///\relates ConstYMap
667  template<class M>
668  inline ConstYMap<M> yMap(const M &m)
669  {
670    return ConstYMap<M>(m);
671  }
672
673
[2562]674  ///\brief Map of the \ref Point::normSquare() "normSquare()"
675  ///of a \ref Point "Point"-map
676  ///
677  ///Map of the \ref Point::normSquare() "normSquare()"
678  ///of a \ref Point "Point"-map.
679  ///\ingroup maps
[2214]680    ///
[1352]681  template<class M>
682  class NormSquareMap
683  {
[1706]684    const M& _map;
[1352]685  public:
[1420]686
[1352]687    typedef typename M::Value::Value Value;
688    typedef typename M::Key Key;
689    ///\e
690    NormSquareMap(const M &map) : _map(map) {}
691    Value operator[](Key k) const {return _map[k].normSquare();}
692  };
693   
694  ///Returns a \ref NormSquareMap class
695
[2562]696  ///This function just returns a \ref NormSquareMap class.
[1352]697  ///
698  ///\ingroup maps
699  ///\relates NormSquareMap
700  template<class M>
701  inline NormSquareMap<M> normSquareMap(const M &m)
702  {
703    return NormSquareMap<M>(m);
704  }
705
[431]706  /// @}
[244]707
[2207]708  } //namespce dim2
709 
[921]710} //namespace lemon
[201]711
[2207]712#endif //LEMON_DIM2_H
Note: See TracBrowser for help on using the repository browser.