1 | /* -*- C++ -*- |
---|
2 | * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library |
---|
3 | * |
---|
4 | * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
5 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
6 | * |
---|
7 | * Permission to use, modify and distribute this software is granted |
---|
8 | * provided that this copyright notice appears in all copies. For |
---|
9 | * precise terms see the accompanying LICENSE file. |
---|
10 | * |
---|
11 | * This software is provided "AS IS" with no warranty of any kind, |
---|
12 | * express or implied, and with no claim as to its suitability for any |
---|
13 | * purpose. |
---|
14 | * |
---|
15 | */ |
---|
16 | |
---|
17 | #ifndef LEMON_GRAPH_ADAPTOR_H |
---|
18 | #define LEMON_GRAPH_ADAPTOR_H |
---|
19 | |
---|
20 | ///\ingroup graph_adaptors |
---|
21 | ///\file |
---|
22 | ///\brief Several graph adaptors. |
---|
23 | /// |
---|
24 | ///This file contains several useful graph adaptor functions. |
---|
25 | /// |
---|
26 | ///\author Marton Makai |
---|
27 | |
---|
28 | #include <lemon/invalid.h> |
---|
29 | #include <lemon/maps.h> |
---|
30 | #include <lemon/bits/erasable_graph_extender.h> |
---|
31 | #include <lemon/bits/clearable_graph_extender.h> |
---|
32 | #include <lemon/bits/extendable_graph_extender.h> |
---|
33 | #include <lemon/bits/iterable_graph_extender.h> |
---|
34 | #include <lemon/bits/alteration_notifier.h> |
---|
35 | #include <lemon/bits/default_map.h> |
---|
36 | #include <lemon/bits/undir_graph_extender.h> |
---|
37 | #include <iostream> |
---|
38 | |
---|
39 | namespace lemon { |
---|
40 | |
---|
41 | // Graph adaptors |
---|
42 | |
---|
43 | /*! |
---|
44 | \addtogroup graph_adaptors |
---|
45 | @{ |
---|
46 | */ |
---|
47 | |
---|
48 | /*! |
---|
49 | Base type for the Graph Adaptors |
---|
50 | |
---|
51 | \warning Graph adaptors are in even more experimental state than the other |
---|
52 | parts of the lib. Use them at you own risk. |
---|
53 | |
---|
54 | This is the base type for most of LEMON graph adaptors. |
---|
55 | This class implements a trivial graph adaptor i.e. it only wraps the |
---|
56 | functions and types of the graph. The purpose of this class is to |
---|
57 | make easier implementing graph adaptors. E.g. if an adaptor is |
---|
58 | considered which differs from the wrapped graph only in some of its |
---|
59 | functions or types, then it can be derived from GraphAdaptor, and only the |
---|
60 | differences should be implemented. |
---|
61 | |
---|
62 | \author Marton Makai |
---|
63 | */ |
---|
64 | template<typename _Graph> |
---|
65 | class GraphAdaptorBase { |
---|
66 | public: |
---|
67 | typedef _Graph Graph; |
---|
68 | /// \todo Is it needed? |
---|
69 | typedef Graph BaseGraph; |
---|
70 | typedef Graph ParentGraph; |
---|
71 | |
---|
72 | protected: |
---|
73 | Graph* graph; |
---|
74 | GraphAdaptorBase() : graph(0) { } |
---|
75 | void setGraph(Graph& _graph) { graph=&_graph; } |
---|
76 | |
---|
77 | public: |
---|
78 | GraphAdaptorBase(Graph& _graph) : graph(&_graph) { } |
---|
79 | |
---|
80 | typedef typename Graph::Node Node; |
---|
81 | typedef typename Graph::Edge Edge; |
---|
82 | |
---|
83 | void first(Node& i) const { graph->first(i); } |
---|
84 | void first(Edge& i) const { graph->first(i); } |
---|
85 | void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); } |
---|
86 | void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); } |
---|
87 | |
---|
88 | void next(Node& i) const { graph->next(i); } |
---|
89 | void next(Edge& i) const { graph->next(i); } |
---|
90 | void nextIn(Edge& i) const { graph->nextIn(i); } |
---|
91 | void nextOut(Edge& i) const { graph->nextOut(i); } |
---|
92 | |
---|
93 | Node source(const Edge& e) const { return graph->source(e); } |
---|
94 | Node target(const Edge& e) const { return graph->target(e); } |
---|
95 | |
---|
96 | int nodeNum() const { return graph->nodeNum(); } |
---|
97 | int edgeNum() const { return graph->edgeNum(); } |
---|
98 | |
---|
99 | Node addNode() const { return Node(graph->addNode()); } |
---|
100 | Edge addEdge(const Node& source, const Node& target) const { |
---|
101 | return Edge(graph->addEdge(source, target)); } |
---|
102 | |
---|
103 | void erase(const Node& i) const { graph->erase(i); } |
---|
104 | void erase(const Edge& i) const { graph->erase(i); } |
---|
105 | |
---|
106 | void clear() const { graph->clear(); } |
---|
107 | |
---|
108 | int id(const Node& v) const { return graph->id(v); } |
---|
109 | int id(const Edge& e) const { return graph->id(e); } |
---|
110 | |
---|
111 | Edge oppositeNode(const Edge& e) const { |
---|
112 | return Edge(graph->opposite(e)); |
---|
113 | } |
---|
114 | |
---|
115 | template <typename _Value> |
---|
116 | class NodeMap : public _Graph::template NodeMap<_Value> { |
---|
117 | public: |
---|
118 | typedef typename _Graph::template NodeMap<_Value> Parent; |
---|
119 | NodeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { } |
---|
120 | NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value) |
---|
121 | : Parent(*gw.graph, value) { } |
---|
122 | }; |
---|
123 | |
---|
124 | template <typename _Value> |
---|
125 | class EdgeMap : public _Graph::template EdgeMap<_Value> { |
---|
126 | public: |
---|
127 | typedef typename _Graph::template EdgeMap<_Value> Parent; |
---|
128 | EdgeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { } |
---|
129 | EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value) |
---|
130 | : Parent(*gw.graph, value) { } |
---|
131 | }; |
---|
132 | |
---|
133 | }; |
---|
134 | |
---|
135 | template <typename _Graph> |
---|
136 | class GraphAdaptor : |
---|
137 | public IterableGraphExtender<GraphAdaptorBase<_Graph> > { |
---|
138 | public: |
---|
139 | typedef _Graph Graph; |
---|
140 | typedef IterableGraphExtender<GraphAdaptorBase<_Graph> > Parent; |
---|
141 | protected: |
---|
142 | GraphAdaptor() : Parent() { } |
---|
143 | |
---|
144 | public: |
---|
145 | GraphAdaptor(Graph& _graph) { setGraph(_graph); } |
---|
146 | }; |
---|
147 | |
---|
148 | template <typename _Graph> |
---|
149 | class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> { |
---|
150 | public: |
---|
151 | typedef _Graph Graph; |
---|
152 | typedef GraphAdaptorBase<_Graph> Parent; |
---|
153 | protected: |
---|
154 | RevGraphAdaptorBase() : Parent() { } |
---|
155 | public: |
---|
156 | typedef typename Parent::Node Node; |
---|
157 | typedef typename Parent::Edge Edge; |
---|
158 | |
---|
159 | // using Parent::first; |
---|
160 | void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); } |
---|
161 | void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); } |
---|
162 | |
---|
163 | // using Parent::next; |
---|
164 | void nextIn(Edge& i) const { Parent::nextOut(i); } |
---|
165 | void nextOut(Edge& i) const { Parent::nextIn(i); } |
---|
166 | |
---|
167 | Node source(const Edge& e) const { return Parent::target(e); } |
---|
168 | Node target(const Edge& e) const { return Parent::source(e); } |
---|
169 | }; |
---|
170 | |
---|
171 | |
---|
172 | /// A graph adaptor which reverses the orientation of the edges. |
---|
173 | |
---|
174 | ///\warning Graph adaptors are in even more experimental state than the other |
---|
175 | ///parts of the lib. Use them at you own risk. |
---|
176 | /// |
---|
177 | /// Let \f$G=(V, A)\f$ be a directed graph and |
---|
178 | /// suppose that a graph instange \c g of type |
---|
179 | /// \c ListGraph implements \f$G\f$. |
---|
180 | /// \code |
---|
181 | /// ListGraph g; |
---|
182 | /// \endcode |
---|
183 | /// For each directed edge |
---|
184 | /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by |
---|
185 | /// reversing its orientation. |
---|
186 | /// Then RevGraphAdaptor implements the graph structure with node-set |
---|
187 | /// \f$V\f$ and edge-set |
---|
188 | /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be |
---|
189 | /// reversing the orientation of its edges. The following code shows how |
---|
190 | /// such an instance can be constructed. |
---|
191 | /// \code |
---|
192 | /// RevGraphAdaptor<ListGraph> gw(g); |
---|
193 | /// \endcode |
---|
194 | ///\author Marton Makai |
---|
195 | template<typename _Graph> |
---|
196 | class RevGraphAdaptor : |
---|
197 | public IterableGraphExtender<RevGraphAdaptorBase<_Graph> > { |
---|
198 | public: |
---|
199 | typedef _Graph Graph; |
---|
200 | typedef IterableGraphExtender< |
---|
201 | RevGraphAdaptorBase<_Graph> > Parent; |
---|
202 | protected: |
---|
203 | RevGraphAdaptor() { } |
---|
204 | public: |
---|
205 | RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); } |
---|
206 | }; |
---|
207 | |
---|
208 | |
---|
209 | template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap> |
---|
210 | class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> { |
---|
211 | public: |
---|
212 | typedef _Graph Graph; |
---|
213 | typedef GraphAdaptorBase<_Graph> Parent; |
---|
214 | protected: |
---|
215 | NodeFilterMap* node_filter_map; |
---|
216 | EdgeFilterMap* edge_filter_map; |
---|
217 | SubGraphAdaptorBase() : Parent(), |
---|
218 | node_filter_map(0), edge_filter_map(0) { } |
---|
219 | |
---|
220 | void setNodeFilterMap(NodeFilterMap& _node_filter_map) { |
---|
221 | node_filter_map=&_node_filter_map; |
---|
222 | } |
---|
223 | void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) { |
---|
224 | edge_filter_map=&_edge_filter_map; |
---|
225 | } |
---|
226 | |
---|
227 | public: |
---|
228 | // SubGraphAdaptorBase(Graph& _graph, |
---|
229 | // NodeFilterMap& _node_filter_map, |
---|
230 | // EdgeFilterMap& _edge_filter_map) : |
---|
231 | // Parent(&_graph), |
---|
232 | // node_filter_map(&node_filter_map), |
---|
233 | // edge_filter_map(&edge_filter_map) { } |
---|
234 | |
---|
235 | typedef typename Parent::Node Node; |
---|
236 | typedef typename Parent::Edge Edge; |
---|
237 | |
---|
238 | void first(Node& i) const { |
---|
239 | Parent::first(i); |
---|
240 | while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); |
---|
241 | } |
---|
242 | void first(Edge& i) const { |
---|
243 | Parent::first(i); |
---|
244 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); |
---|
245 | } |
---|
246 | void firstIn(Edge& i, const Node& n) const { |
---|
247 | Parent::firstIn(i, n); |
---|
248 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); |
---|
249 | } |
---|
250 | void firstOut(Edge& i, const Node& n) const { |
---|
251 | Parent::firstOut(i, n); |
---|
252 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); |
---|
253 | } |
---|
254 | |
---|
255 | void next(Node& i) const { |
---|
256 | Parent::next(i); |
---|
257 | while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); |
---|
258 | } |
---|
259 | void next(Edge& i) const { |
---|
260 | Parent::next(i); |
---|
261 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); |
---|
262 | } |
---|
263 | void nextIn(Edge& i) const { |
---|
264 | Parent::nextIn(i); |
---|
265 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); |
---|
266 | } |
---|
267 | void nextOut(Edge& i) const { |
---|
268 | Parent::nextOut(i); |
---|
269 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); |
---|
270 | } |
---|
271 | |
---|
272 | /// This function hides \c n in the graph, i.e. the iteration |
---|
273 | /// jumps over it. This is done by simply setting the value of \c n |
---|
274 | /// to be false in the corresponding node-map. |
---|
275 | void hide(const Node& n) const { node_filter_map->set(n, false); } |
---|
276 | |
---|
277 | /// This function hides \c e in the graph, i.e. the iteration |
---|
278 | /// jumps over it. This is done by simply setting the value of \c e |
---|
279 | /// to be false in the corresponding edge-map. |
---|
280 | void hide(const Edge& e) const { edge_filter_map->set(e, false); } |
---|
281 | |
---|
282 | /// The value of \c n is set to be true in the node-map which stores |
---|
283 | /// hide information. If \c n was hidden previuosly, then it is shown |
---|
284 | /// again |
---|
285 | void unHide(const Node& n) const { node_filter_map->set(n, true); } |
---|
286 | |
---|
287 | /// The value of \c e is set to be true in the edge-map which stores |
---|
288 | /// hide information. If \c e was hidden previuosly, then it is shown |
---|
289 | /// again |
---|
290 | void unHide(const Edge& e) const { edge_filter_map->set(e, true); } |
---|
291 | |
---|
292 | /// Returns true if \c n is hidden. |
---|
293 | bool hidden(const Node& n) const { return !(*node_filter_map)[n]; } |
---|
294 | |
---|
295 | /// Returns true if \c n is hidden. |
---|
296 | bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; } |
---|
297 | |
---|
298 | /// \warning This is a linear time operation and works only if s |
---|
299 | /// \c Graph::NodeIt is defined. |
---|
300 | /// \todo assign tags. |
---|
301 | int nodeNum() const { |
---|
302 | int i=0; |
---|
303 | Node n; |
---|
304 | for (first(n); n!=INVALID; next(n)) ++i; |
---|
305 | return i; |
---|
306 | } |
---|
307 | |
---|
308 | /// \warning This is a linear time operation and works only if |
---|
309 | /// \c Graph::EdgeIt is defined. |
---|
310 | /// \todo assign tags. |
---|
311 | int edgeNum() const { |
---|
312 | int i=0; |
---|
313 | Edge e; |
---|
314 | for (first(e); e!=INVALID; next(e)) ++i; |
---|
315 | return i; |
---|
316 | } |
---|
317 | |
---|
318 | |
---|
319 | }; |
---|
320 | |
---|
321 | /*! \brief A graph adaptor for hiding nodes and edges from a graph. |
---|
322 | |
---|
323 | \warning Graph adaptors are in even more experimental state than the other |
---|
324 | parts of the lib. Use them at you own risk. |
---|
325 | |
---|
326 | SubGraphAdaptor shows the graph with filtered node-set and |
---|
327 | edge-set. |
---|
328 | Let \f$G=(V, A)\f$ be a directed graph |
---|
329 | and suppose that the graph instance \c g of type ListGraph implements |
---|
330 | \f$G\f$. |
---|
331 | Let moreover \f$b_V\f$ and |
---|
332 | \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. |
---|
333 | SubGraphAdaptor<...>::NodeIt iterates |
---|
334 | on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and |
---|
335 | SubGraphAdaptor<...>::EdgeIt iterates |
---|
336 | on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, |
---|
337 | SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates |
---|
338 | only on edges leaving and entering a specific node which have true value. |
---|
339 | |
---|
340 | We have to note that this does not mean that an |
---|
341 | induced subgraph is obtained, the node-iterator cares only the filter |
---|
342 | on the node-set, and the edge-iterators care only the filter on the |
---|
343 | edge-set. |
---|
344 | \code |
---|
345 | typedef ListGraph Graph; |
---|
346 | Graph g; |
---|
347 | typedef Graph::Node Node; |
---|
348 | typedef Graph::Edge Edge; |
---|
349 | Node u=g.addNode(); //node of id 0 |
---|
350 | Node v=g.addNode(); //node of id 1 |
---|
351 | Node e=g.addEdge(u, v); //edge of id 0 |
---|
352 | Node f=g.addEdge(v, u); //edge of id 1 |
---|
353 | Graph::NodeMap<bool> nm(g, true); |
---|
354 | nm.set(u, false); |
---|
355 | Graph::EdgeMap<bool> em(g, true); |
---|
356 | em.set(e, false); |
---|
357 | typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW; |
---|
358 | SubGW gw(g, nm, em); |
---|
359 | for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl; |
---|
360 | std::cout << ":-)" << std::endl; |
---|
361 | for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl; |
---|
362 | \endcode |
---|
363 | The output of the above code is the following. |
---|
364 | \code |
---|
365 | 1 |
---|
366 | :-) |
---|
367 | 1 |
---|
368 | \endcode |
---|
369 | Note that \c n is of type \c SubGW::NodeIt, but it can be converted to |
---|
370 | \c Graph::Node that is why \c g.id(n) can be applied. |
---|
371 | |
---|
372 | For other examples see also the documentation of NodeSubGraphAdaptor and |
---|
373 | EdgeSubGraphAdaptor. |
---|
374 | |
---|
375 | \author Marton Makai |
---|
376 | */ |
---|
377 | template<typename _Graph, typename NodeFilterMap, |
---|
378 | typename EdgeFilterMap> |
---|
379 | class SubGraphAdaptor : |
---|
380 | public IterableGraphExtender< |
---|
381 | SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > { |
---|
382 | public: |
---|
383 | typedef _Graph Graph; |
---|
384 | typedef IterableGraphExtender< |
---|
385 | SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent; |
---|
386 | protected: |
---|
387 | SubGraphAdaptor() { } |
---|
388 | public: |
---|
389 | SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, |
---|
390 | EdgeFilterMap& _edge_filter_map) { |
---|
391 | setGraph(_graph); |
---|
392 | setNodeFilterMap(_node_filter_map); |
---|
393 | setEdgeFilterMap(_edge_filter_map); |
---|
394 | } |
---|
395 | }; |
---|
396 | |
---|
397 | |
---|
398 | |
---|
399 | /*! \brief An adaptor for hiding nodes from a graph. |
---|
400 | |
---|
401 | \warning Graph adaptors are in even more experimental state than the other |
---|
402 | parts of the lib. Use them at you own risk. |
---|
403 | |
---|
404 | An adaptor for hiding nodes from a graph. |
---|
405 | This adaptor specializes SubGraphAdaptor in the way that only the node-set |
---|
406 | can be filtered. Note that this does not mean of considering induced |
---|
407 | subgraph, the edge-iterators consider the original edge-set. |
---|
408 | \author Marton Makai |
---|
409 | */ |
---|
410 | template<typename Graph, typename NodeFilterMap> |
---|
411 | class NodeSubGraphAdaptor : |
---|
412 | public SubGraphAdaptor<Graph, NodeFilterMap, |
---|
413 | ConstMap<typename Graph::Edge,bool> > { |
---|
414 | public: |
---|
415 | typedef SubGraphAdaptor<Graph, NodeFilterMap, |
---|
416 | ConstMap<typename Graph::Edge,bool> > Parent; |
---|
417 | protected: |
---|
418 | ConstMap<typename Graph::Edge, bool> const_true_map; |
---|
419 | public: |
---|
420 | NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : |
---|
421 | Parent(), const_true_map(true) { |
---|
422 | Parent::setGraph(_graph); |
---|
423 | Parent::setNodeFilterMap(_node_filter_map); |
---|
424 | Parent::setEdgeFilterMap(const_true_map); |
---|
425 | } |
---|
426 | }; |
---|
427 | |
---|
428 | |
---|
429 | /*! \brief An adaptor for hiding edges from a graph. |
---|
430 | |
---|
431 | \warning Graph adaptors are in even more experimental state than the other |
---|
432 | parts of the lib. Use them at you own risk. |
---|
433 | |
---|
434 | An adaptor for hiding edges from a graph. |
---|
435 | This adaptor specializes SubGraphAdaptor in the way that only the edge-set |
---|
436 | can be filtered. The usefulness of this adaptor is demonstrated in the |
---|
437 | problem of searching a maximum number of edge-disjoint shortest paths |
---|
438 | between |
---|
439 | two nodes \c s and \c t. Shortest here means being shortest w.r.t. |
---|
440 | non-negative edge-lengths. Note that |
---|
441 | the comprehension of the presented solution |
---|
442 | need's some elementary knowledge from combinatorial optimization. |
---|
443 | |
---|
444 | If a single shortest path is to be |
---|
445 | searched between \c s and \c t, then this can be done easily by |
---|
446 | applying the Dijkstra algorithm. What happens, if a maximum number of |
---|
447 | edge-disjoint shortest paths is to be computed. It can be proved that an |
---|
448 | edge can be in a shortest path if and only if it is tight with respect to |
---|
449 | the potential function computed by Dijkstra. Moreover, any path containing |
---|
450 | only such edges is a shortest one. Thus we have to compute a maximum number |
---|
451 | of edge-disjoint paths between \c s and \c t in the graph which has edge-set |
---|
452 | all the tight edges. The computation will be demonstrated on the following |
---|
453 | graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. |
---|
454 | The full source code is available in \ref sub_graph_adaptor_demo.cc. |
---|
455 | If you are interested in more demo programs, you can use |
---|
456 | \ref dim_to_dot.cc to generate .dot files from dimacs files. |
---|
457 | The .dot file of the following figure was generated by |
---|
458 | the demo program \ref dim_to_dot.cc. |
---|
459 | |
---|
460 | \dot |
---|
461 | digraph lemon_dot_example { |
---|
462 | node [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; |
---|
463 | n0 [ label="0 (s)" ]; |
---|
464 | n1 [ label="1" ]; |
---|
465 | n2 [ label="2" ]; |
---|
466 | n3 [ label="3" ]; |
---|
467 | n4 [ label="4" ]; |
---|
468 | n5 [ label="5" ]; |
---|
469 | n6 [ label="6 (t)" ]; |
---|
470 | edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; |
---|
471 | n5 -> n6 [ label="9, length:4" ]; |
---|
472 | n4 -> n6 [ label="8, length:2" ]; |
---|
473 | n3 -> n5 [ label="7, length:1" ]; |
---|
474 | n2 -> n5 [ label="6, length:3" ]; |
---|
475 | n2 -> n6 [ label="5, length:5" ]; |
---|
476 | n2 -> n4 [ label="4, length:2" ]; |
---|
477 | n1 -> n4 [ label="3, length:3" ]; |
---|
478 | n0 -> n3 [ label="2, length:1" ]; |
---|
479 | n0 -> n2 [ label="1, length:2" ]; |
---|
480 | n0 -> n1 [ label="0, length:3" ]; |
---|
481 | } |
---|
482 | \enddot |
---|
483 | |
---|
484 | \code |
---|
485 | Graph g; |
---|
486 | Node s, t; |
---|
487 | LengthMap length(g); |
---|
488 | |
---|
489 | readDimacs(std::cin, g, length, s, t); |
---|
490 | |
---|
491 | cout << "edges with lengths (of form id, source--length->target): " << endl; |
---|
492 | for(EdgeIt e(g); e!=INVALID; ++e) |
---|
493 | cout << g.id(e) << ", " << g.id(g.source(e)) << "--" |
---|
494 | << length[e] << "->" << g.id(g.target(e)) << endl; |
---|
495 | |
---|
496 | cout << "s: " << g.id(s) << " t: " << g.id(t) << endl; |
---|
497 | \endcode |
---|
498 | Next, the potential function is computed with Dijkstra. |
---|
499 | \code |
---|
500 | typedef Dijkstra<Graph, LengthMap> Dijkstra; |
---|
501 | Dijkstra dijkstra(g, length); |
---|
502 | dijkstra.run(s); |
---|
503 | \endcode |
---|
504 | Next, we consrtruct a map which filters the edge-set to the tight edges. |
---|
505 | \code |
---|
506 | typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> |
---|
507 | TightEdgeFilter; |
---|
508 | TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length); |
---|
509 | |
---|
510 | typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW; |
---|
511 | SubGW gw(g, tight_edge_filter); |
---|
512 | \endcode |
---|
513 | Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed |
---|
514 | with a max flow algorithm Preflow. |
---|
515 | \code |
---|
516 | ConstMap<Edge, int> const_1_map(1); |
---|
517 | Graph::EdgeMap<int> flow(g, 0); |
---|
518 | |
---|
519 | Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > |
---|
520 | preflow(gw, s, t, const_1_map, flow); |
---|
521 | preflow.run(); |
---|
522 | \endcode |
---|
523 | Last, the output is: |
---|
524 | \code |
---|
525 | cout << "maximum number of edge-disjoint shortest path: " |
---|
526 | << preflow.flowValue() << endl; |
---|
527 | cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " |
---|
528 | << endl; |
---|
529 | for(EdgeIt e(g); e!=INVALID; ++e) |
---|
530 | if (flow[e]) |
---|
531 | cout << " " << g.id(g.source(e)) << "--" |
---|
532 | << length[e] << "->" << g.id(g.target(e)) << endl; |
---|
533 | \endcode |
---|
534 | The program has the following (expected :-)) output: |
---|
535 | \code |
---|
536 | edges with lengths (of form id, source--length->target): |
---|
537 | 9, 5--4->6 |
---|
538 | 8, 4--2->6 |
---|
539 | 7, 3--1->5 |
---|
540 | 6, 2--3->5 |
---|
541 | 5, 2--5->6 |
---|
542 | 4, 2--2->4 |
---|
543 | 3, 1--3->4 |
---|
544 | 2, 0--1->3 |
---|
545 | 1, 0--2->2 |
---|
546 | 0, 0--3->1 |
---|
547 | s: 0 t: 6 |
---|
548 | maximum number of edge-disjoint shortest path: 2 |
---|
549 | edges of the maximum number of edge-disjoint shortest s-t paths: |
---|
550 | 9, 5--4->6 |
---|
551 | 8, 4--2->6 |
---|
552 | 7, 3--1->5 |
---|
553 | 4, 2--2->4 |
---|
554 | 2, 0--1->3 |
---|
555 | 1, 0--2->2 |
---|
556 | \endcode |
---|
557 | |
---|
558 | \author Marton Makai |
---|
559 | */ |
---|
560 | template<typename Graph, typename EdgeFilterMap> |
---|
561 | class EdgeSubGraphAdaptor : |
---|
562 | public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, |
---|
563 | EdgeFilterMap> { |
---|
564 | public: |
---|
565 | typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, |
---|
566 | EdgeFilterMap> Parent; |
---|
567 | protected: |
---|
568 | ConstMap<typename Graph::Node, bool> const_true_map; |
---|
569 | public: |
---|
570 | EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : |
---|
571 | Parent(), const_true_map(true) { |
---|
572 | Parent::setGraph(_graph); |
---|
573 | Parent::setNodeFilterMap(const_true_map); |
---|
574 | Parent::setEdgeFilterMap(_edge_filter_map); |
---|
575 | } |
---|
576 | }; |
---|
577 | |
---|
578 | template <typename _Graph> |
---|
579 | class UndirGraphAdaptorBase : |
---|
580 | public UndirGraphExtender<GraphAdaptorBase<_Graph> > { |
---|
581 | public: |
---|
582 | typedef _Graph Graph; |
---|
583 | typedef UndirGraphExtender<GraphAdaptorBase<_Graph> > Parent; |
---|
584 | protected: |
---|
585 | UndirGraphAdaptorBase() : Parent() { } |
---|
586 | public: |
---|
587 | typedef typename Parent::UndirEdge UndirEdge; |
---|
588 | typedef typename Parent::Edge Edge; |
---|
589 | |
---|
590 | /// \bug Why cant an edge say that it is forward or not??? |
---|
591 | /// By this, a pointer to the graph have to be stored |
---|
592 | /// The implementation |
---|
593 | template <typename T> |
---|
594 | class EdgeMap { |
---|
595 | protected: |
---|
596 | const UndirGraphAdaptorBase<_Graph>* g; |
---|
597 | template <typename TT> friend class EdgeMap; |
---|
598 | typename _Graph::template EdgeMap<T> forward_map, backward_map; |
---|
599 | public: |
---|
600 | typedef T Value; |
---|
601 | typedef Edge Key; |
---|
602 | |
---|
603 | EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) : g(&_g), |
---|
604 | forward_map(*(g->graph)), backward_map(*(g->graph)) { } |
---|
605 | |
---|
606 | EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), |
---|
607 | forward_map(*(g->graph), a), backward_map(*(g->graph), a) { } |
---|
608 | |
---|
609 | void set(Edge e, T a) { |
---|
610 | if (g->direction(e)) |
---|
611 | forward_map.set(e, a); |
---|
612 | else |
---|
613 | backward_map.set(e, a); |
---|
614 | } |
---|
615 | |
---|
616 | T operator[](Edge e) const { |
---|
617 | if (g->direction(e)) |
---|
618 | return forward_map[e]; |
---|
619 | else |
---|
620 | return backward_map[e]; |
---|
621 | } |
---|
622 | }; |
---|
623 | |
---|
624 | template <typename T> |
---|
625 | class UndirEdgeMap { |
---|
626 | template <typename TT> friend class UndirEdgeMap; |
---|
627 | typename _Graph::template EdgeMap<T> map; |
---|
628 | public: |
---|
629 | typedef T Value; |
---|
630 | typedef UndirEdge Key; |
---|
631 | |
---|
632 | UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) : |
---|
633 | map(*(g.graph)) { } |
---|
634 | |
---|
635 | UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, T a) : |
---|
636 | map(*(g.graph), a) { } |
---|
637 | |
---|
638 | void set(UndirEdge e, T a) { |
---|
639 | map.set(e, a); |
---|
640 | } |
---|
641 | |
---|
642 | T operator[](UndirEdge e) const { |
---|
643 | return map[e]; |
---|
644 | } |
---|
645 | }; |
---|
646 | |
---|
647 | }; |
---|
648 | |
---|
649 | /// \brief An undirected graph is made from a directed graph by an adaptor |
---|
650 | /// |
---|
651 | /// Undocumented, untested!!! |
---|
652 | /// If somebody knows nice demo application, let's polulate it. |
---|
653 | /// |
---|
654 | /// \author Marton Makai |
---|
655 | template<typename _Graph> |
---|
656 | class UndirGraphAdaptor : |
---|
657 | public IterableUndirGraphExtender< |
---|
658 | UndirGraphAdaptorBase<_Graph> > { |
---|
659 | public: |
---|
660 | typedef _Graph Graph; |
---|
661 | typedef IterableUndirGraphExtender< |
---|
662 | UndirGraphAdaptorBase<_Graph> > Parent; |
---|
663 | protected: |
---|
664 | UndirGraphAdaptor() { } |
---|
665 | public: |
---|
666 | UndirGraphAdaptor(_Graph& _graph) { |
---|
667 | setGraph(_graph); |
---|
668 | } |
---|
669 | }; |
---|
670 | |
---|
671 | |
---|
672 | template <typename _Graph, |
---|
673 | typename ForwardFilterMap, typename BackwardFilterMap> |
---|
674 | class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> { |
---|
675 | public: |
---|
676 | typedef _Graph Graph; |
---|
677 | typedef GraphAdaptorBase<_Graph> Parent; |
---|
678 | protected: |
---|
679 | ForwardFilterMap* forward_filter; |
---|
680 | BackwardFilterMap* backward_filter; |
---|
681 | SubBidirGraphAdaptorBase() : Parent(), |
---|
682 | forward_filter(0), backward_filter(0) { } |
---|
683 | |
---|
684 | void setForwardFilterMap(ForwardFilterMap& _forward_filter) { |
---|
685 | forward_filter=&_forward_filter; |
---|
686 | } |
---|
687 | void setBackwardFilterMap(BackwardFilterMap& _backward_filter) { |
---|
688 | backward_filter=&_backward_filter; |
---|
689 | } |
---|
690 | |
---|
691 | public: |
---|
692 | // SubGraphAdaptorBase(Graph& _graph, |
---|
693 | // NodeFilterMap& _node_filter_map, |
---|
694 | // EdgeFilterMap& _edge_filter_map) : |
---|
695 | // Parent(&_graph), |
---|
696 | // node_filter_map(&node_filter_map), |
---|
697 | // edge_filter_map(&edge_filter_map) { } |
---|
698 | |
---|
699 | typedef typename Parent::Node Node; |
---|
700 | typedef typename _Graph::Edge GraphEdge; |
---|
701 | template <typename T> class EdgeMap; |
---|
702 | /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from |
---|
703 | /// _Graph::Edge. It contains an extra bool flag which is true |
---|
704 | /// if and only if the |
---|
705 | /// edge is the backward version of the original edge. |
---|
706 | class Edge : public _Graph::Edge { |
---|
707 | friend class SubBidirGraphAdaptorBase< |
---|
708 | Graph, ForwardFilterMap, BackwardFilterMap>; |
---|
709 | template<typename T> friend class EdgeMap; |
---|
710 | protected: |
---|
711 | bool backward; //true, iff backward |
---|
712 | public: |
---|
713 | Edge() { } |
---|
714 | /// \todo =false is needed, or causes problems? |
---|
715 | /// If \c _backward is false, then we get an edge corresponding to the |
---|
716 | /// original one, otherwise its oppositely directed pair is obtained. |
---|
717 | Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : |
---|
718 | _Graph::Edge(e), backward(_backward) { } |
---|
719 | Edge(Invalid i) : _Graph::Edge(i), backward(true) { } |
---|
720 | bool operator==(const Edge& v) const { |
---|
721 | return (this->backward==v.backward && |
---|
722 | static_cast<typename _Graph::Edge>(*this)== |
---|
723 | static_cast<typename _Graph::Edge>(v)); |
---|
724 | } |
---|
725 | bool operator!=(const Edge& v) const { |
---|
726 | return (this->backward!=v.backward || |
---|
727 | static_cast<typename _Graph::Edge>(*this)!= |
---|
728 | static_cast<typename _Graph::Edge>(v)); |
---|
729 | } |
---|
730 | }; |
---|
731 | |
---|
732 | void first(Node& i) const { |
---|
733 | Parent::first(i); |
---|
734 | } |
---|
735 | |
---|
736 | void first(Edge& i) const { |
---|
737 | Parent::first(i); |
---|
738 | i.backward=false; |
---|
739 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
740 | !(*forward_filter)[i]) Parent::next(i); |
---|
741 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
---|
742 | Parent::first(i); |
---|
743 | i.backward=true; |
---|
744 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
745 | !(*backward_filter)[i]) Parent::next(i); |
---|
746 | } |
---|
747 | } |
---|
748 | |
---|
749 | void firstIn(Edge& i, const Node& n) const { |
---|
750 | Parent::firstIn(i, n); |
---|
751 | i.backward=false; |
---|
752 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
753 | !(*forward_filter)[i]) Parent::nextIn(i); |
---|
754 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
---|
755 | Parent::firstOut(i, n); |
---|
756 | i.backward=true; |
---|
757 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
758 | !(*backward_filter)[i]) Parent::nextOut(i); |
---|
759 | } |
---|
760 | } |
---|
761 | |
---|
762 | void firstOut(Edge& i, const Node& n) const { |
---|
763 | Parent::firstOut(i, n); |
---|
764 | i.backward=false; |
---|
765 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
766 | !(*forward_filter)[i]) Parent::nextOut(i); |
---|
767 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
---|
768 | Parent::firstIn(i, n); |
---|
769 | i.backward=true; |
---|
770 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
771 | !(*backward_filter)[i]) Parent::nextIn(i); |
---|
772 | } |
---|
773 | } |
---|
774 | |
---|
775 | void next(Node& i) const { |
---|
776 | Parent::next(i); |
---|
777 | } |
---|
778 | |
---|
779 | void next(Edge& i) const { |
---|
780 | if (!(i.backward)) { |
---|
781 | Parent::next(i); |
---|
782 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
783 | !(*forward_filter)[i]) Parent::next(i); |
---|
784 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
---|
785 | Parent::first(i); |
---|
786 | i.backward=true; |
---|
787 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
788 | !(*backward_filter)[i]) Parent::next(i); |
---|
789 | } |
---|
790 | } else { |
---|
791 | Parent::next(i); |
---|
792 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
793 | !(*backward_filter)[i]) Parent::next(i); |
---|
794 | } |
---|
795 | } |
---|
796 | |
---|
797 | void nextIn(Edge& i) const { |
---|
798 | if (!(i.backward)) { |
---|
799 | Node n=Parent::target(i); |
---|
800 | Parent::nextIn(i); |
---|
801 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
802 | !(*forward_filter)[i]) Parent::nextIn(i); |
---|
803 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
---|
804 | Parent::firstOut(i, n); |
---|
805 | i.backward=true; |
---|
806 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
807 | !(*backward_filter)[i]) Parent::nextOut(i); |
---|
808 | } |
---|
809 | } else { |
---|
810 | Parent::nextOut(i); |
---|
811 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
812 | !(*backward_filter)[i]) Parent::nextOut(i); |
---|
813 | } |
---|
814 | } |
---|
815 | |
---|
816 | void nextOut(Edge& i) const { |
---|
817 | if (!(i.backward)) { |
---|
818 | Node n=Parent::source(i); |
---|
819 | Parent::nextOut(i); |
---|
820 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
821 | !(*forward_filter)[i]) Parent::nextOut(i); |
---|
822 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
---|
823 | Parent::firstIn(i, n); |
---|
824 | i.backward=true; |
---|
825 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
826 | !(*backward_filter)[i]) Parent::nextIn(i); |
---|
827 | } |
---|
828 | } else { |
---|
829 | Parent::nextIn(i); |
---|
830 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
---|
831 | !(*backward_filter)[i]) Parent::nextIn(i); |
---|
832 | } |
---|
833 | } |
---|
834 | |
---|
835 | Node source(Edge e) const { |
---|
836 | return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); } |
---|
837 | Node target(Edge e) const { |
---|
838 | return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); } |
---|
839 | |
---|
840 | /// Gives back the opposite edge. |
---|
841 | Edge opposite(const Edge& e) const { |
---|
842 | Edge f=e; |
---|
843 | f.backward=!f.backward; |
---|
844 | return f; |
---|
845 | } |
---|
846 | |
---|
847 | /// \warning This is a linear time operation and works only if |
---|
848 | /// \c Graph::EdgeIt is defined. |
---|
849 | /// \todo hmm |
---|
850 | int edgeNum() const { |
---|
851 | int i=0; |
---|
852 | Edge e; |
---|
853 | for (first(e); e!=INVALID; next(e)) ++i; |
---|
854 | return i; |
---|
855 | } |
---|
856 | |
---|
857 | bool forward(const Edge& e) const { return !e.backward; } |
---|
858 | bool backward(const Edge& e) const { return e.backward; } |
---|
859 | |
---|
860 | template <typename T> |
---|
861 | /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two |
---|
862 | /// _Graph::EdgeMap one for the forward edges and |
---|
863 | /// one for the backward edges. |
---|
864 | class EdgeMap { |
---|
865 | template <typename TT> friend class EdgeMap; |
---|
866 | typename _Graph::template EdgeMap<T> forward_map, backward_map; |
---|
867 | public: |
---|
868 | typedef T Value; |
---|
869 | typedef Edge Key; |
---|
870 | |
---|
871 | EdgeMap(const SubBidirGraphAdaptorBase<_Graph, |
---|
872 | ForwardFilterMap, BackwardFilterMap>& g) : |
---|
873 | forward_map(*(g.graph)), backward_map(*(g.graph)) { } |
---|
874 | |
---|
875 | EdgeMap(const SubBidirGraphAdaptorBase<_Graph, |
---|
876 | ForwardFilterMap, BackwardFilterMap>& g, T a) : |
---|
877 | forward_map(*(g.graph), a), backward_map(*(g.graph), a) { } |
---|
878 | |
---|
879 | void set(Edge e, T a) { |
---|
880 | if (!e.backward) |
---|
881 | forward_map.set(e, a); |
---|
882 | else |
---|
883 | backward_map.set(e, a); |
---|
884 | } |
---|
885 | |
---|
886 | // typename _Graph::template EdgeMap<T>::ConstReference |
---|
887 | // operator[](Edge e) const { |
---|
888 | // if (!e.backward) |
---|
889 | // return forward_map[e]; |
---|
890 | // else |
---|
891 | // return backward_map[e]; |
---|
892 | // } |
---|
893 | |
---|
894 | // typename _Graph::template EdgeMap<T>::Reference |
---|
895 | T operator[](Edge e) const { |
---|
896 | if (!e.backward) |
---|
897 | return forward_map[e]; |
---|
898 | else |
---|
899 | return backward_map[e]; |
---|
900 | } |
---|
901 | |
---|
902 | void update() { |
---|
903 | forward_map.update(); |
---|
904 | backward_map.update(); |
---|
905 | } |
---|
906 | }; |
---|
907 | |
---|
908 | }; |
---|
909 | |
---|
910 | |
---|
911 | ///\brief An adaptor for composing a subgraph of a |
---|
912 | /// bidirected graph made from a directed one. |
---|
913 | /// |
---|
914 | /// An adaptor for composing a subgraph of a |
---|
915 | /// bidirected graph made from a directed one. |
---|
916 | /// |
---|
917 | ///\warning Graph adaptors are in even more experimental state than the other |
---|
918 | ///parts of the lib. Use them at you own risk. |
---|
919 | /// |
---|
920 | /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge |
---|
921 | /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by |
---|
922 | /// reversing its orientation. We are given moreover two bool valued |
---|
923 | /// maps on the edge-set, |
---|
924 | /// \f$forward\_filter\f$, and \f$backward\_filter\f$. |
---|
925 | /// SubBidirGraphAdaptor implements the graph structure with node-set |
---|
926 | /// \f$V\f$ and edge-set |
---|
927 | /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. |
---|
928 | /// The purpose of writing + instead of union is because parallel |
---|
929 | /// edges can arise. (Similarly, antiparallel edges also can arise). |
---|
930 | /// In other words, a subgraph of the bidirected graph obtained, which |
---|
931 | /// is given by orienting the edges of the original graph in both directions. |
---|
932 | /// As the oppositely directed edges are logically different, |
---|
933 | /// the maps are able to attach different values for them. |
---|
934 | /// |
---|
935 | /// An example for such a construction is \c RevGraphAdaptor where the |
---|
936 | /// forward_filter is everywhere false and the backward_filter is |
---|
937 | /// everywhere true. We note that for sake of efficiency, |
---|
938 | /// \c RevGraphAdaptor is implemented in a different way. |
---|
939 | /// But BidirGraphAdaptor is obtained from |
---|
940 | /// SubBidirGraphAdaptor by considering everywhere true |
---|
941 | /// valued maps both for forward_filter and backward_filter. |
---|
942 | /// |
---|
943 | /// The most important application of SubBidirGraphAdaptor |
---|
944 | /// is ResGraphAdaptor, which stands for the residual graph in directed |
---|
945 | /// flow and circulation problems. |
---|
946 | /// As adaptors usually, the SubBidirGraphAdaptor implements the |
---|
947 | /// above mentioned graph structure without its physical storage, |
---|
948 | /// that is the whole stuff is stored in constant memory. |
---|
949 | template<typename _Graph, |
---|
950 | typename ForwardFilterMap, typename BackwardFilterMap> |
---|
951 | class SubBidirGraphAdaptor : |
---|
952 | public IterableGraphExtender< |
---|
953 | SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > { |
---|
954 | public: |
---|
955 | typedef _Graph Graph; |
---|
956 | typedef IterableGraphExtender< |
---|
957 | SubBidirGraphAdaptorBase< |
---|
958 | _Graph, ForwardFilterMap, BackwardFilterMap> > Parent; |
---|
959 | protected: |
---|
960 | SubBidirGraphAdaptor() { } |
---|
961 | public: |
---|
962 | SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, |
---|
963 | BackwardFilterMap& _backward_filter) { |
---|
964 | setGraph(_graph); |
---|
965 | setForwardFilterMap(_forward_filter); |
---|
966 | setBackwardFilterMap(_backward_filter); |
---|
967 | } |
---|
968 | }; |
---|
969 | |
---|
970 | |
---|
971 | |
---|
972 | ///\brief An adaptor for composing bidirected graph from a directed one. |
---|
973 | /// |
---|
974 | ///\warning Graph adaptors are in even more experimental state than the other |
---|
975 | ///parts of the lib. Use them at you own risk. |
---|
976 | /// |
---|
977 | /// An adaptor for composing bidirected graph from a directed one. |
---|
978 | /// A bidirected graph is composed over the directed one without physical |
---|
979 | /// storage. As the oppositely directed edges are logically different ones |
---|
980 | /// the maps are able to attach different values for them. |
---|
981 | template<typename Graph> |
---|
982 | class BidirGraphAdaptor : |
---|
983 | public SubBidirGraphAdaptor< |
---|
984 | Graph, |
---|
985 | ConstMap<typename Graph::Edge, bool>, |
---|
986 | ConstMap<typename Graph::Edge, bool> > { |
---|
987 | public: |
---|
988 | typedef SubBidirGraphAdaptor< |
---|
989 | Graph, |
---|
990 | ConstMap<typename Graph::Edge, bool>, |
---|
991 | ConstMap<typename Graph::Edge, bool> > Parent; |
---|
992 | protected: |
---|
993 | ConstMap<typename Graph::Edge, bool> cm; |
---|
994 | |
---|
995 | BidirGraphAdaptor() : Parent(), cm(true) { |
---|
996 | Parent::setForwardFilterMap(cm); |
---|
997 | Parent::setBackwardFilterMap(cm); |
---|
998 | } |
---|
999 | public: |
---|
1000 | BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { |
---|
1001 | Parent::setGraph(_graph); |
---|
1002 | Parent::setForwardFilterMap(cm); |
---|
1003 | Parent::setBackwardFilterMap(cm); |
---|
1004 | } |
---|
1005 | |
---|
1006 | int edgeNum() const { |
---|
1007 | return 2*this->graph->edgeNum(); |
---|
1008 | } |
---|
1009 | // KEEP_MAPS(Parent, BidirGraphAdaptor); |
---|
1010 | }; |
---|
1011 | |
---|
1012 | |
---|
1013 | template<typename Graph, typename Number, |
---|
1014 | typename CapacityMap, typename FlowMap> |
---|
1015 | class ResForwardFilter { |
---|
1016 | // const Graph* graph; |
---|
1017 | const CapacityMap* capacity; |
---|
1018 | const FlowMap* flow; |
---|
1019 | public: |
---|
1020 | ResForwardFilter(/*const Graph& _graph, */ |
---|
1021 | const CapacityMap& _capacity, const FlowMap& _flow) : |
---|
1022 | /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } |
---|
1023 | ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } |
---|
1024 | void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } |
---|
1025 | void setFlow(const FlowMap& _flow) { flow=&_flow; } |
---|
1026 | bool operator[](const typename Graph::Edge& e) const { |
---|
1027 | return (Number((*flow)[e]) < Number((*capacity)[e])); |
---|
1028 | } |
---|
1029 | }; |
---|
1030 | |
---|
1031 | template<typename Graph, typename Number, |
---|
1032 | typename CapacityMap, typename FlowMap> |
---|
1033 | class ResBackwardFilter { |
---|
1034 | const CapacityMap* capacity; |
---|
1035 | const FlowMap* flow; |
---|
1036 | public: |
---|
1037 | ResBackwardFilter(/*const Graph& _graph,*/ |
---|
1038 | const CapacityMap& _capacity, const FlowMap& _flow) : |
---|
1039 | /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } |
---|
1040 | ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } |
---|
1041 | void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } |
---|
1042 | void setFlow(const FlowMap& _flow) { flow=&_flow; } |
---|
1043 | bool operator[](const typename Graph::Edge& e) const { |
---|
1044 | return (Number(0) < Number((*flow)[e])); |
---|
1045 | } |
---|
1046 | }; |
---|
1047 | |
---|
1048 | |
---|
1049 | /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems. |
---|
1050 | |
---|
1051 | An adaptor for composing the residual graph for directed flow and circulation problems. |
---|
1052 | Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a |
---|
1053 | number type. Let moreover |
---|
1054 | \f$f,c:A\to F\f$, be functions on the edge-set. |
---|
1055 | In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow |
---|
1056 | and \f$c\f$ for a capacity function. |
---|
1057 | Suppose that a graph instange \c g of type |
---|
1058 | \c ListGraph implements \f$G\f$. |
---|
1059 | \code |
---|
1060 | ListGraph g; |
---|
1061 | \endcode |
---|
1062 | Then RevGraphAdaptor implements the graph structure with node-set |
---|
1063 | \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where |
---|
1064 | \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and |
---|
1065 | \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, |
---|
1066 | i.e. the so called residual graph. |
---|
1067 | When we take the union \f$A_{forward}\cup A_{backward}\f$, |
---|
1068 | multilicities are counted, i.e. if an edge is in both |
---|
1069 | \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it |
---|
1070 | appears twice. |
---|
1071 | The following code shows how |
---|
1072 | such an instance can be constructed. |
---|
1073 | \code |
---|
1074 | typedef ListGraph Graph; |
---|
1075 | Graph::EdgeMap<int> f(g); |
---|
1076 | Graph::EdgeMap<int> c(g); |
---|
1077 | ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g); |
---|
1078 | \endcode |
---|
1079 | \author Marton Makai |
---|
1080 | */ |
---|
1081 | template<typename Graph, typename Number, |
---|
1082 | typename CapacityMap, typename FlowMap> |
---|
1083 | class ResGraphAdaptor : |
---|
1084 | public SubBidirGraphAdaptor< |
---|
1085 | Graph, |
---|
1086 | ResForwardFilter<Graph, Number, CapacityMap, FlowMap>, |
---|
1087 | ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > { |
---|
1088 | public: |
---|
1089 | typedef SubBidirGraphAdaptor< |
---|
1090 | Graph, |
---|
1091 | ResForwardFilter<Graph, Number, CapacityMap, FlowMap>, |
---|
1092 | ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent; |
---|
1093 | protected: |
---|
1094 | const CapacityMap* capacity; |
---|
1095 | FlowMap* flow; |
---|
1096 | ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter; |
---|
1097 | ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter; |
---|
1098 | ResGraphAdaptor() : Parent(), |
---|
1099 | capacity(0), flow(0) { } |
---|
1100 | void setCapacityMap(const CapacityMap& _capacity) { |
---|
1101 | capacity=&_capacity; |
---|
1102 | forward_filter.setCapacity(_capacity); |
---|
1103 | backward_filter.setCapacity(_capacity); |
---|
1104 | } |
---|
1105 | void setFlowMap(FlowMap& _flow) { |
---|
1106 | flow=&_flow; |
---|
1107 | forward_filter.setFlow(_flow); |
---|
1108 | backward_filter.setFlow(_flow); |
---|
1109 | } |
---|
1110 | public: |
---|
1111 | ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, |
---|
1112 | FlowMap& _flow) : |
---|
1113 | Parent(), capacity(&_capacity), flow(&_flow), |
---|
1114 | forward_filter(/*_graph,*/ _capacity, _flow), |
---|
1115 | backward_filter(/*_graph,*/ _capacity, _flow) { |
---|
1116 | Parent::setGraph(_graph); |
---|
1117 | Parent::setForwardFilterMap(forward_filter); |
---|
1118 | Parent::setBackwardFilterMap(backward_filter); |
---|
1119 | } |
---|
1120 | |
---|
1121 | typedef typename Parent::Edge Edge; |
---|
1122 | |
---|
1123 | void augment(const Edge& e, Number a) const { |
---|
1124 | if (Parent::forward(e)) |
---|
1125 | flow->set(e, (*flow)[e]+a); |
---|
1126 | else |
---|
1127 | flow->set(e, (*flow)[e]-a); |
---|
1128 | } |
---|
1129 | |
---|
1130 | /// \brief Residual capacity map. |
---|
1131 | /// |
---|
1132 | /// In generic residual graphs the residual capacity can be obtained |
---|
1133 | /// as a map. |
---|
1134 | class ResCap { |
---|
1135 | protected: |
---|
1136 | const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph; |
---|
1137 | public: |
---|
1138 | typedef Number Value; |
---|
1139 | typedef Edge Key; |
---|
1140 | ResCap(const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>& |
---|
1141 | _res_graph) : res_graph(&_res_graph) { } |
---|
1142 | Number operator[](const Edge& e) const { |
---|
1143 | if (res_graph->forward(e)) |
---|
1144 | return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; |
---|
1145 | else |
---|
1146 | return (*(res_graph->flow))[e]; |
---|
1147 | } |
---|
1148 | }; |
---|
1149 | |
---|
1150 | // KEEP_MAPS(Parent, ResGraphAdaptor); |
---|
1151 | }; |
---|
1152 | |
---|
1153 | |
---|
1154 | |
---|
1155 | template <typename _Graph, typename FirstOutEdgesMap> |
---|
1156 | class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> { |
---|
1157 | public: |
---|
1158 | typedef _Graph Graph; |
---|
1159 | typedef GraphAdaptorBase<_Graph> Parent; |
---|
1160 | protected: |
---|
1161 | FirstOutEdgesMap* first_out_edges; |
---|
1162 | ErasingFirstGraphAdaptorBase() : Parent(), |
---|
1163 | first_out_edges(0) { } |
---|
1164 | |
---|
1165 | void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) { |
---|
1166 | first_out_edges=&_first_out_edges; |
---|
1167 | } |
---|
1168 | |
---|
1169 | public: |
---|
1170 | |
---|
1171 | typedef typename Parent::Node Node; |
---|
1172 | typedef typename Parent::Edge Edge; |
---|
1173 | |
---|
1174 | void firstOut(Edge& i, const Node& n) const { |
---|
1175 | i=(*first_out_edges)[n]; |
---|
1176 | } |
---|
1177 | |
---|
1178 | void erase(const Edge& e) const { |
---|
1179 | Node n=source(e); |
---|
1180 | Edge f=e; |
---|
1181 | Parent::nextOut(f); |
---|
1182 | first_out_edges->set(n, f); |
---|
1183 | } |
---|
1184 | }; |
---|
1185 | |
---|
1186 | |
---|
1187 | /// For blocking flows. |
---|
1188 | |
---|
1189 | ///\warning Graph adaptors are in even more experimental state than the other |
---|
1190 | ///parts of the lib. Use them at you own risk. |
---|
1191 | /// |
---|
1192 | /// This graph adaptor is used for on-the-fly |
---|
1193 | /// Dinits blocking flow computations. |
---|
1194 | /// For each node, an out-edge is stored which is used when the |
---|
1195 | /// \code |
---|
1196 | /// OutEdgeIt& first(OutEdgeIt&, const Node&) |
---|
1197 | /// \endcode |
---|
1198 | /// is called. |
---|
1199 | /// |
---|
1200 | /// \author Marton Makai |
---|
1201 | template <typename _Graph, typename FirstOutEdgesMap> |
---|
1202 | class ErasingFirstGraphAdaptor : |
---|
1203 | public IterableGraphExtender< |
---|
1204 | ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > { |
---|
1205 | public: |
---|
1206 | typedef _Graph Graph; |
---|
1207 | typedef IterableGraphExtender< |
---|
1208 | ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent; |
---|
1209 | ErasingFirstGraphAdaptor(Graph& _graph, |
---|
1210 | FirstOutEdgesMap& _first_out_edges) { |
---|
1211 | setGraph(_graph); |
---|
1212 | setFirstOutEdgesMap(_first_out_edges); |
---|
1213 | } |
---|
1214 | |
---|
1215 | }; |
---|
1216 | |
---|
1217 | template <typename _Graph> |
---|
1218 | class NewEdgeSetAdaptorBase { |
---|
1219 | public: |
---|
1220 | |
---|
1221 | typedef _Graph Graph; |
---|
1222 | typedef typename Graph::Node Node; |
---|
1223 | typedef typename Graph::NodeIt NodeIt; |
---|
1224 | |
---|
1225 | protected: |
---|
1226 | |
---|
1227 | struct NodeT { |
---|
1228 | int first_out, first_in; |
---|
1229 | NodeT() : first_out(-1), first_in(-1) {} |
---|
1230 | }; |
---|
1231 | |
---|
1232 | class NodesImpl : protected Graph::template NodeMap<NodeT> { |
---|
1233 | |
---|
1234 | typedef typename Graph::template NodeMap<NodeT> Parent; |
---|
1235 | typedef NewEdgeSetAdaptorBase<Graph> Adaptor; |
---|
1236 | |
---|
1237 | Adaptor& adaptor; |
---|
1238 | |
---|
1239 | public: |
---|
1240 | |
---|
1241 | NodesImpl(Adaptor& _adaptor, const Graph& _graph) |
---|
1242 | : Parent(_graph), adaptor(_adaptor) {} |
---|
1243 | |
---|
1244 | virtual ~NodesImpl() {} |
---|
1245 | |
---|
1246 | virtual void build() { |
---|
1247 | Parent::build(); |
---|
1248 | } |
---|
1249 | |
---|
1250 | virtual void clear() { |
---|
1251 | adaptor._clear(); |
---|
1252 | Parent::clear(); |
---|
1253 | } |
---|
1254 | |
---|
1255 | virtual void add(const Node& node) { |
---|
1256 | Parent::add(node); |
---|
1257 | adaptor._add(node); |
---|
1258 | } |
---|
1259 | |
---|
1260 | virtual void erase(const Node& node) { |
---|
1261 | adaptor._erase(node); |
---|
1262 | Parent::erase(node); |
---|
1263 | } |
---|
1264 | |
---|
1265 | NodeT& operator[](const Node& node) { |
---|
1266 | return Parent::operator[](node); |
---|
1267 | } |
---|
1268 | |
---|
1269 | const NodeT& operator[](const Node& node) const { |
---|
1270 | return Parent::operator[](node); |
---|
1271 | } |
---|
1272 | |
---|
1273 | }; |
---|
1274 | |
---|
1275 | NodesImpl* nodes; |
---|
1276 | |
---|
1277 | struct EdgeT { |
---|
1278 | Node source, target; |
---|
1279 | int next_out, next_in; |
---|
1280 | int prev_out, prev_in; |
---|
1281 | EdgeT() : prev_out(-1), prev_in(-1) {} |
---|
1282 | }; |
---|
1283 | |
---|
1284 | std::vector<EdgeT> edges; |
---|
1285 | |
---|
1286 | int first_edge; |
---|
1287 | int first_free_edge; |
---|
1288 | |
---|
1289 | virtual void _clear() = 0; |
---|
1290 | virtual void _add(const Node& node) = 0; |
---|
1291 | virtual void _erase(const Node& node) = 0; |
---|
1292 | |
---|
1293 | const Graph* graph; |
---|
1294 | |
---|
1295 | void initalize(const Graph& _graph, NodesImpl& _nodes) { |
---|
1296 | graph = &_graph; |
---|
1297 | nodes = &_nodes; |
---|
1298 | } |
---|
1299 | |
---|
1300 | public: |
---|
1301 | |
---|
1302 | class Edge { |
---|
1303 | friend class NewEdgeSetAdaptorBase<Graph>; |
---|
1304 | protected: |
---|
1305 | Edge(int _id) : id(_id) {} |
---|
1306 | int id; |
---|
1307 | public: |
---|
1308 | Edge() {} |
---|
1309 | Edge(Invalid) : id(-1) {} |
---|
1310 | bool operator==(const Edge& edge) const { return id == edge.id; } |
---|
1311 | bool operator!=(const Edge& edge) const { return id != edge.id; } |
---|
1312 | bool operator<(const Edge& edge) const { return id < edge.id; } |
---|
1313 | }; |
---|
1314 | |
---|
1315 | NewEdgeSetAdaptorBase() : first_edge(-1), first_free_edge(-1) {} |
---|
1316 | virtual ~NewEdgeSetAdaptorBase() {} |
---|
1317 | |
---|
1318 | Edge addEdge(const Node& source, const Node& target) { |
---|
1319 | int n; |
---|
1320 | if (first_free_edge == -1) { |
---|
1321 | n = edges.size(); |
---|
1322 | edges.push_back(EdgeT()); |
---|
1323 | } else { |
---|
1324 | n = first_free_edge; |
---|
1325 | first_free_edge = edges[first_free_edge].next_in; |
---|
1326 | } |
---|
1327 | edges[n].next_in = (*nodes)[target].first_in; |
---|
1328 | (*nodes)[target].first_in = n; |
---|
1329 | edges[n].next_out = (*nodes)[source].first_out; |
---|
1330 | (*nodes)[source].first_out = n; |
---|
1331 | edges[n].source = source; |
---|
1332 | edges[n].target = target; |
---|
1333 | return Edge(n); |
---|
1334 | } |
---|
1335 | |
---|
1336 | void erase(const Edge& edge) { |
---|
1337 | int n = edge.id; |
---|
1338 | if (edges[n].prev_in != -1) { |
---|
1339 | edges[edges[n].prev_in].next_in = edges[n].next_in; |
---|
1340 | } else { |
---|
1341 | (*nodes)[edges[n].target].first_in = edges[n].next_in; |
---|
1342 | } |
---|
1343 | if (edges[n].next_in != -1) { |
---|
1344 | edges[edges[n].next_in].prev_in = edges[n].prev_in; |
---|
1345 | } |
---|
1346 | |
---|
1347 | if (edges[n].prev_out != -1) { |
---|
1348 | edges[edges[n].prev_out].next_out = edges[n].next_out; |
---|
1349 | } else { |
---|
1350 | (*nodes)[edges[n].source].first_out = edges[n].next_out; |
---|
1351 | } |
---|
1352 | if (edges[n].next_out != -1) { |
---|
1353 | edges[edges[n].next_out].prev_out = edges[n].prev_out; |
---|
1354 | } |
---|
1355 | |
---|
1356 | } |
---|
1357 | |
---|
1358 | void first(Node& node) const { |
---|
1359 | graph->first(node); |
---|
1360 | } |
---|
1361 | |
---|
1362 | void next(Node& node) const { |
---|
1363 | graph->next(node); |
---|
1364 | } |
---|
1365 | |
---|
1366 | void first(Edge& edge) const { |
---|
1367 | Node node; |
---|
1368 | for (first(node); node != INVALID && (*nodes)[node].first_in == -1; |
---|
1369 | next(node)); |
---|
1370 | edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in; |
---|
1371 | } |
---|
1372 | |
---|
1373 | void next(Edge& edge) const { |
---|
1374 | if (edges[edge.id].next_in != -1) { |
---|
1375 | edge.id = edges[edge.id].next_in; |
---|
1376 | } else { |
---|
1377 | Node node = edges[edge.id].target; |
---|
1378 | for (next(node); node != INVALID && (*nodes)[node].first_in == -1; |
---|
1379 | next(node)); |
---|
1380 | edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in; |
---|
1381 | } |
---|
1382 | } |
---|
1383 | |
---|
1384 | void firstOut(Edge& edge, const Node& node) const { |
---|
1385 | edge.id = (*nodes)[node].first_out; |
---|
1386 | } |
---|
1387 | |
---|
1388 | void nextOut(Edge& edge) const { |
---|
1389 | edge.id = edges[edge.id].next_out; |
---|
1390 | } |
---|
1391 | |
---|
1392 | void firstIn(Edge& edge, const Node& node) const { |
---|
1393 | edge.id = (*nodes)[node].first_in; |
---|
1394 | } |
---|
1395 | |
---|
1396 | void nextIn(Edge& edge) const { |
---|
1397 | edge.id = edges[edge.id].next_in; |
---|
1398 | } |
---|
1399 | |
---|
1400 | int id(const Node& node) const { return graph->id(node); } |
---|
1401 | int id(const Edge& edge) const { return edge.id; } |
---|
1402 | |
---|
1403 | Node fromId(int id, Node) const { return graph->fromId(id, Node()); } |
---|
1404 | Edge fromId(int id, Edge) const { return Edge(id); } |
---|
1405 | |
---|
1406 | int maxId(Node) const { return graph->maxId(Node()); }; |
---|
1407 | int maxId(Edge) const { return edges.size() - 1; } |
---|
1408 | |
---|
1409 | Node source(const Edge& edge) const { return edges[edge.id].source;} |
---|
1410 | Node target(const Edge& edge) const { return edges[edge.id].target;} |
---|
1411 | |
---|
1412 | }; |
---|
1413 | |
---|
1414 | |
---|
1415 | /// \brief Graph adaptor using a node set of another graph and an |
---|
1416 | /// own edge set. |
---|
1417 | /// |
---|
1418 | /// This structure can be used to establish another graph over a node set |
---|
1419 | /// of an existing one. The node iterator will go through the nodes of the |
---|
1420 | /// original graph. |
---|
1421 | /// |
---|
1422 | /// \param _Graph The type of the graph which shares its node set with |
---|
1423 | /// this class. Its interface must conform to the \ref concept::StaticGraph |
---|
1424 | /// "StaticGraph" concept. |
---|
1425 | /// |
---|
1426 | /// In the edge extension and removing it conforms to the |
---|
1427 | /// \ref concept::ExtendableGraph "ExtendableGraph" concept. |
---|
1428 | template <typename _Graph> |
---|
1429 | class NewEdgeSetAdaptor : |
---|
1430 | public ErasableGraphExtender< |
---|
1431 | ClearableGraphExtender< |
---|
1432 | ExtendableGraphExtender< |
---|
1433 | DefaultMappableGraphExtender< |
---|
1434 | IterableGraphExtender< |
---|
1435 | AlterableGraphExtender< |
---|
1436 | NewEdgeSetAdaptorBase<_Graph> > > > > > > { |
---|
1437 | |
---|
1438 | public: |
---|
1439 | |
---|
1440 | typedef ErasableGraphExtender< |
---|
1441 | ClearableGraphExtender< |
---|
1442 | ExtendableGraphExtender< |
---|
1443 | DefaultMappableGraphExtender< |
---|
1444 | IterableGraphExtender< |
---|
1445 | AlterableGraphExtender< |
---|
1446 | NewEdgeSetAdaptorBase<_Graph> > > > > > > Parent; |
---|
1447 | |
---|
1448 | |
---|
1449 | typedef typename Parent::Node Node; |
---|
1450 | typedef typename Parent::Edge Edge; |
---|
1451 | |
---|
1452 | private: |
---|
1453 | |
---|
1454 | virtual void _clear() { |
---|
1455 | Parent::edges.clear(); |
---|
1456 | Parent::first_edge = -1; |
---|
1457 | Parent::first_free_edge = -1; |
---|
1458 | Parent::getNotifier(Edge()).clear(); |
---|
1459 | Parent::getNotifier(Node()).clear(); |
---|
1460 | } |
---|
1461 | |
---|
1462 | virtual void _add(const Node& node) { |
---|
1463 | Parent::getNotifier(Node()).add(node); |
---|
1464 | } |
---|
1465 | |
---|
1466 | virtual void _erase(const Node& node) { |
---|
1467 | Edge edge; |
---|
1468 | Parent::firstOut(edge, node); |
---|
1469 | while (edge != INVALID) { |
---|
1470 | Parent::erase(edge); |
---|
1471 | Parent::firstOut(edge, node); |
---|
1472 | } |
---|
1473 | |
---|
1474 | Parent::firstIn(edge, node); |
---|
1475 | while (edge != INVALID) { |
---|
1476 | Parent::erase(edge); |
---|
1477 | Parent::firstIn(edge, node); |
---|
1478 | } |
---|
1479 | |
---|
1480 | Parent::getNotifier(Node()).erase(node); |
---|
1481 | } |
---|
1482 | |
---|
1483 | |
---|
1484 | typedef typename Parent::NodesImpl NodesImpl; |
---|
1485 | |
---|
1486 | NodesImpl nodes; |
---|
1487 | |
---|
1488 | public: |
---|
1489 | |
---|
1490 | /// \brief Constructor of the adaptor. |
---|
1491 | /// |
---|
1492 | /// Constructor of the adaptor. |
---|
1493 | NewEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) { |
---|
1494 | Parent::initalize(_graph, nodes); |
---|
1495 | } |
---|
1496 | |
---|
1497 | void clear() { |
---|
1498 | Parent::getNotifier(Edge()).clear(); |
---|
1499 | |
---|
1500 | Parent::edges.clear(); |
---|
1501 | Parent::first_edge = -1; |
---|
1502 | Parent::first_free_edge = -1; |
---|
1503 | } |
---|
1504 | |
---|
1505 | }; |
---|
1506 | |
---|
1507 | /// \brief Graph adaptor using a node set of another graph and an |
---|
1508 | /// own undir edge set. |
---|
1509 | /// |
---|
1510 | /// This structure can be used to establish another undirected graph over |
---|
1511 | /// a node set of an existing one. The node iterator will go through the |
---|
1512 | /// nodes of the original graph. |
---|
1513 | /// |
---|
1514 | /// \param _Graph The type of the graph which shares its node set with |
---|
1515 | /// this class. Its interface must conform to the \ref concept::StaticGraph |
---|
1516 | /// "StaticGraph" concept. |
---|
1517 | /// |
---|
1518 | /// In the edge extension and removing it conforms to the |
---|
1519 | /// \ref concept::ExtendableGraph "ExtendableGraph" concept. |
---|
1520 | template <typename _Graph> |
---|
1521 | class NewUndirEdgeSetAdaptor : |
---|
1522 | public ErasableUndirGraphExtender< |
---|
1523 | ClearableUndirGraphExtender< |
---|
1524 | ExtendableUndirGraphExtender< |
---|
1525 | MappableUndirGraphExtender< |
---|
1526 | IterableUndirGraphExtender< |
---|
1527 | AlterableUndirGraphExtender< |
---|
1528 | UndirGraphExtender< |
---|
1529 | NewEdgeSetAdaptorBase<_Graph> > > > > > > > { |
---|
1530 | |
---|
1531 | public: |
---|
1532 | |
---|
1533 | typedef ErasableUndirGraphExtender< |
---|
1534 | ClearableUndirGraphExtender< |
---|
1535 | ExtendableUndirGraphExtender< |
---|
1536 | MappableUndirGraphExtender< |
---|
1537 | IterableUndirGraphExtender< |
---|
1538 | AlterableUndirGraphExtender< |
---|
1539 | UndirGraphExtender< |
---|
1540 | NewEdgeSetAdaptorBase<_Graph> > > > > > > > Parent; |
---|
1541 | |
---|
1542 | |
---|
1543 | typedef typename Parent::Node Node; |
---|
1544 | typedef typename Parent::Edge Edge; |
---|
1545 | typedef typename Parent::UndirEdge UndirEdge; |
---|
1546 | |
---|
1547 | private: |
---|
1548 | |
---|
1549 | virtual void _clear() { |
---|
1550 | Parent::edges.clear(); |
---|
1551 | Parent::first_edge = -1; |
---|
1552 | Parent::first_free_edge = -1; |
---|
1553 | Parent::getNotifier(Edge()).clear(); |
---|
1554 | Parent::getNotifier(Node()).clear(); |
---|
1555 | } |
---|
1556 | |
---|
1557 | virtual void _add(const Node& node) { |
---|
1558 | Parent::getNotifier(Node()).add(node); |
---|
1559 | } |
---|
1560 | |
---|
1561 | virtual void _erase(const Node& node) { |
---|
1562 | Edge edge; |
---|
1563 | Parent::firstOut(edge, node); |
---|
1564 | while (edge != INVALID) { |
---|
1565 | Parent::erase(edge); |
---|
1566 | Parent::firstOut(edge, node); |
---|
1567 | } |
---|
1568 | |
---|
1569 | Parent::firstIn(edge, node); |
---|
1570 | while (edge != INVALID) { |
---|
1571 | Parent::erase(edge); |
---|
1572 | Parent::firstIn(edge, node); |
---|
1573 | } |
---|
1574 | |
---|
1575 | Parent::getNotifier(Node()).erase(node); |
---|
1576 | } |
---|
1577 | |
---|
1578 | typedef typename Parent::NodesImpl NodesImpl; |
---|
1579 | |
---|
1580 | NodesImpl nodes; |
---|
1581 | |
---|
1582 | public: |
---|
1583 | |
---|
1584 | |
---|
1585 | /// \brief Constructor of the adaptor. |
---|
1586 | /// |
---|
1587 | /// Constructor of the adaptor. |
---|
1588 | NewUndirEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) { |
---|
1589 | Parent::initalize(_graph, nodes); |
---|
1590 | } |
---|
1591 | |
---|
1592 | void clear() { |
---|
1593 | Parent::getNotifier(Edge()).clear(); |
---|
1594 | Parent::getNotifier(UndirEdge()).clear(); |
---|
1595 | |
---|
1596 | Parent::edges.clear(); |
---|
1597 | Parent::first_edge = -1; |
---|
1598 | Parent::first_free_edge = -1; |
---|
1599 | } |
---|
1600 | |
---|
1601 | }; |
---|
1602 | |
---|
1603 | ///@} |
---|
1604 | |
---|
1605 | } //namespace lemon |
---|
1606 | |
---|
1607 | #endif //LEMON_GRAPH_ADAPTOR_H |
---|
1608 | |
---|