| 1 | /* -*- C++ -*- |
|---|
| 2 | * lemon/graph_adaptor.h - Part of LEMON, a generic C++ optimization library |
|---|
| 3 | * |
|---|
| 4 | * Copyright (C) 2005 Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
|---|
| 5 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
|---|
| 6 | * |
|---|
| 7 | * Permission to use, modify and distribute this software is granted |
|---|
| 8 | * provided that this copyright notice appears in all copies. For |
|---|
| 9 | * precise terms see the accompanying LICENSE file. |
|---|
| 10 | * |
|---|
| 11 | * This software is provided "AS IS" with no warranty of any kind, |
|---|
| 12 | * express or implied, and with no claim as to its suitability for any |
|---|
| 13 | * purpose. |
|---|
| 14 | * |
|---|
| 15 | */ |
|---|
| 16 | |
|---|
| 17 | #ifndef LEMON_GRAPH_ADAPTOR_H |
|---|
| 18 | #define LEMON_GRAPH_ADAPTOR_H |
|---|
| 19 | |
|---|
| 20 | ///\ingroup graph_adaptors |
|---|
| 21 | ///\file |
|---|
| 22 | ///\brief Several graph adaptors. |
|---|
| 23 | /// |
|---|
| 24 | ///This file contains several useful graph adaptor functions. |
|---|
| 25 | /// |
|---|
| 26 | ///\author Marton Makai |
|---|
| 27 | |
|---|
| 28 | #include <lemon/invalid.h> |
|---|
| 29 | #include <lemon/maps.h> |
|---|
| 30 | #include <lemon/bits/erasable_graph_extender.h> |
|---|
| 31 | #include <lemon/bits/clearable_graph_extender.h> |
|---|
| 32 | #include <lemon/bits/extendable_graph_extender.h> |
|---|
| 33 | #include <lemon/bits/iterable_graph_extender.h> |
|---|
| 34 | #include <lemon/bits/alteration_notifier.h> |
|---|
| 35 | #include <lemon/bits/default_map.h> |
|---|
| 36 | #include <lemon/bits/undir_graph_extender.h> |
|---|
| 37 | #include <iostream> |
|---|
| 38 | |
|---|
| 39 | namespace lemon { |
|---|
| 40 | |
|---|
| 41 | // Graph adaptors |
|---|
| 42 | |
|---|
| 43 | /*! |
|---|
| 44 | \addtogroup graph_adaptors |
|---|
| 45 | @{ |
|---|
| 46 | */ |
|---|
| 47 | |
|---|
| 48 | /*! |
|---|
| 49 | Base type for the Graph Adaptors |
|---|
| 50 | |
|---|
| 51 | \warning Graph adaptors are in even more experimental state than the other |
|---|
| 52 | parts of the lib. Use them at you own risk. |
|---|
| 53 | |
|---|
| 54 | This is the base type for most of LEMON graph adaptors. |
|---|
| 55 | This class implements a trivial graph adaptor i.e. it only wraps the |
|---|
| 56 | functions and types of the graph. The purpose of this class is to |
|---|
| 57 | make easier implementing graph adaptors. E.g. if an adaptor is |
|---|
| 58 | considered which differs from the wrapped graph only in some of its |
|---|
| 59 | functions or types, then it can be derived from GraphAdaptor, and only the |
|---|
| 60 | differences should be implemented. |
|---|
| 61 | |
|---|
| 62 | \author Marton Makai |
|---|
| 63 | */ |
|---|
| 64 | template<typename _Graph> |
|---|
| 65 | class GraphAdaptorBase { |
|---|
| 66 | public: |
|---|
| 67 | typedef _Graph Graph; |
|---|
| 68 | /// \todo Is it needed? |
|---|
| 69 | typedef Graph BaseGraph; |
|---|
| 70 | typedef Graph ParentGraph; |
|---|
| 71 | |
|---|
| 72 | protected: |
|---|
| 73 | Graph* graph; |
|---|
| 74 | GraphAdaptorBase() : graph(0) { } |
|---|
| 75 | void setGraph(Graph& _graph) { graph=&_graph; } |
|---|
| 76 | |
|---|
| 77 | public: |
|---|
| 78 | GraphAdaptorBase(Graph& _graph) : graph(&_graph) { } |
|---|
| 79 | |
|---|
| 80 | typedef typename Graph::Node Node; |
|---|
| 81 | typedef typename Graph::Edge Edge; |
|---|
| 82 | |
|---|
| 83 | void first(Node& i) const { graph->first(i); } |
|---|
| 84 | void first(Edge& i) const { graph->first(i); } |
|---|
| 85 | void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); } |
|---|
| 86 | void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); } |
|---|
| 87 | |
|---|
| 88 | void next(Node& i) const { graph->next(i); } |
|---|
| 89 | void next(Edge& i) const { graph->next(i); } |
|---|
| 90 | void nextIn(Edge& i) const { graph->nextIn(i); } |
|---|
| 91 | void nextOut(Edge& i) const { graph->nextOut(i); } |
|---|
| 92 | |
|---|
| 93 | Node source(const Edge& e) const { return graph->source(e); } |
|---|
| 94 | Node target(const Edge& e) const { return graph->target(e); } |
|---|
| 95 | |
|---|
| 96 | int nodeNum() const { return graph->nodeNum(); } |
|---|
| 97 | int edgeNum() const { return graph->edgeNum(); } |
|---|
| 98 | |
|---|
| 99 | Node addNode() const { return Node(graph->addNode()); } |
|---|
| 100 | Edge addEdge(const Node& source, const Node& target) const { |
|---|
| 101 | return Edge(graph->addEdge(source, target)); } |
|---|
| 102 | |
|---|
| 103 | void erase(const Node& i) const { graph->erase(i); } |
|---|
| 104 | void erase(const Edge& i) const { graph->erase(i); } |
|---|
| 105 | |
|---|
| 106 | void clear() const { graph->clear(); } |
|---|
| 107 | |
|---|
| 108 | int id(const Node& v) const { return graph->id(v); } |
|---|
| 109 | int id(const Edge& e) const { return graph->id(e); } |
|---|
| 110 | |
|---|
| 111 | Edge oppositeNode(const Edge& e) const { |
|---|
| 112 | return Edge(graph->opposite(e)); |
|---|
| 113 | } |
|---|
| 114 | |
|---|
| 115 | template <typename _Value> |
|---|
| 116 | class NodeMap : public _Graph::template NodeMap<_Value> { |
|---|
| 117 | public: |
|---|
| 118 | typedef typename _Graph::template NodeMap<_Value> Parent; |
|---|
| 119 | NodeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { } |
|---|
| 120 | NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value) |
|---|
| 121 | : Parent(*gw.graph, value) { } |
|---|
| 122 | }; |
|---|
| 123 | |
|---|
| 124 | template <typename _Value> |
|---|
| 125 | class EdgeMap : public _Graph::template EdgeMap<_Value> { |
|---|
| 126 | public: |
|---|
| 127 | typedef typename _Graph::template EdgeMap<_Value> Parent; |
|---|
| 128 | EdgeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { } |
|---|
| 129 | EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value) |
|---|
| 130 | : Parent(*gw.graph, value) { } |
|---|
| 131 | }; |
|---|
| 132 | |
|---|
| 133 | }; |
|---|
| 134 | |
|---|
| 135 | template <typename _Graph> |
|---|
| 136 | class GraphAdaptor : |
|---|
| 137 | public IterableGraphExtender<GraphAdaptorBase<_Graph> > { |
|---|
| 138 | public: |
|---|
| 139 | typedef _Graph Graph; |
|---|
| 140 | typedef IterableGraphExtender<GraphAdaptorBase<_Graph> > Parent; |
|---|
| 141 | protected: |
|---|
| 142 | GraphAdaptor() : Parent() { } |
|---|
| 143 | |
|---|
| 144 | public: |
|---|
| 145 | GraphAdaptor(Graph& _graph) { setGraph(_graph); } |
|---|
| 146 | }; |
|---|
| 147 | |
|---|
| 148 | template <typename _Graph> |
|---|
| 149 | class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> { |
|---|
| 150 | public: |
|---|
| 151 | typedef _Graph Graph; |
|---|
| 152 | typedef GraphAdaptorBase<_Graph> Parent; |
|---|
| 153 | protected: |
|---|
| 154 | RevGraphAdaptorBase() : Parent() { } |
|---|
| 155 | public: |
|---|
| 156 | typedef typename Parent::Node Node; |
|---|
| 157 | typedef typename Parent::Edge Edge; |
|---|
| 158 | |
|---|
| 159 | // using Parent::first; |
|---|
| 160 | void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); } |
|---|
| 161 | void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); } |
|---|
| 162 | |
|---|
| 163 | // using Parent::next; |
|---|
| 164 | void nextIn(Edge& i) const { Parent::nextOut(i); } |
|---|
| 165 | void nextOut(Edge& i) const { Parent::nextIn(i); } |
|---|
| 166 | |
|---|
| 167 | Node source(const Edge& e) const { return Parent::target(e); } |
|---|
| 168 | Node target(const Edge& e) const { return Parent::source(e); } |
|---|
| 169 | }; |
|---|
| 170 | |
|---|
| 171 | |
|---|
| 172 | /// A graph adaptor which reverses the orientation of the edges. |
|---|
| 173 | |
|---|
| 174 | ///\warning Graph adaptors are in even more experimental state than the other |
|---|
| 175 | ///parts of the lib. Use them at you own risk. |
|---|
| 176 | /// |
|---|
| 177 | /// Let \f$G=(V, A)\f$ be a directed graph and |
|---|
| 178 | /// suppose that a graph instange \c g of type |
|---|
| 179 | /// \c ListGraph implements \f$G\f$. |
|---|
| 180 | /// \code |
|---|
| 181 | /// ListGraph g; |
|---|
| 182 | /// \endcode |
|---|
| 183 | /// For each directed edge |
|---|
| 184 | /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by |
|---|
| 185 | /// reversing its orientation. |
|---|
| 186 | /// Then RevGraphAdaptor implements the graph structure with node-set |
|---|
| 187 | /// \f$V\f$ and edge-set |
|---|
| 188 | /// \f$\{\bar e : e\in A \}\f$, i.e. the graph obtained from \f$G\f$ be |
|---|
| 189 | /// reversing the orientation of its edges. The following code shows how |
|---|
| 190 | /// such an instance can be constructed. |
|---|
| 191 | /// \code |
|---|
| 192 | /// RevGraphAdaptor<ListGraph> gw(g); |
|---|
| 193 | /// \endcode |
|---|
| 194 | ///\author Marton Makai |
|---|
| 195 | template<typename _Graph> |
|---|
| 196 | class RevGraphAdaptor : |
|---|
| 197 | public IterableGraphExtender<RevGraphAdaptorBase<_Graph> > { |
|---|
| 198 | public: |
|---|
| 199 | typedef _Graph Graph; |
|---|
| 200 | typedef IterableGraphExtender< |
|---|
| 201 | RevGraphAdaptorBase<_Graph> > Parent; |
|---|
| 202 | protected: |
|---|
| 203 | RevGraphAdaptor() { } |
|---|
| 204 | public: |
|---|
| 205 | RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); } |
|---|
| 206 | }; |
|---|
| 207 | |
|---|
| 208 | |
|---|
| 209 | template <typename _Graph, typename NodeFilterMap, |
|---|
| 210 | typename EdgeFilterMap, bool checked = true> |
|---|
| 211 | class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> { |
|---|
| 212 | public: |
|---|
| 213 | typedef _Graph Graph; |
|---|
| 214 | typedef GraphAdaptorBase<_Graph> Parent; |
|---|
| 215 | protected: |
|---|
| 216 | NodeFilterMap* node_filter_map; |
|---|
| 217 | EdgeFilterMap* edge_filter_map; |
|---|
| 218 | SubGraphAdaptorBase() : Parent(), |
|---|
| 219 | node_filter_map(0), edge_filter_map(0) { } |
|---|
| 220 | |
|---|
| 221 | void setNodeFilterMap(NodeFilterMap& _node_filter_map) { |
|---|
| 222 | node_filter_map=&_node_filter_map; |
|---|
| 223 | } |
|---|
| 224 | void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) { |
|---|
| 225 | edge_filter_map=&_edge_filter_map; |
|---|
| 226 | } |
|---|
| 227 | |
|---|
| 228 | public: |
|---|
| 229 | |
|---|
| 230 | typedef typename Parent::Node Node; |
|---|
| 231 | typedef typename Parent::Edge Edge; |
|---|
| 232 | |
|---|
| 233 | void first(Node& i) const { |
|---|
| 234 | Parent::first(i); |
|---|
| 235 | while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); |
|---|
| 236 | } |
|---|
| 237 | |
|---|
| 238 | void first(Edge& i) const { |
|---|
| 239 | Parent::first(i); |
|---|
| 240 | while (i!=INVALID && (!(*edge_filter_map)[i] |
|---|
| 241 | || !(*node_filter_map)[Parent::source(i)] |
|---|
| 242 | || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); |
|---|
| 243 | } |
|---|
| 244 | |
|---|
| 245 | void firstIn(Edge& i, const Node& n) const { |
|---|
| 246 | Parent::firstIn(i, n); |
|---|
| 247 | while (i!=INVALID && (!(*edge_filter_map)[i] |
|---|
| 248 | || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); |
|---|
| 249 | } |
|---|
| 250 | |
|---|
| 251 | void firstOut(Edge& i, const Node& n) const { |
|---|
| 252 | Parent::firstOut(i, n); |
|---|
| 253 | while (i!=INVALID && (!(*edge_filter_map)[i] |
|---|
| 254 | || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); |
|---|
| 255 | } |
|---|
| 256 | |
|---|
| 257 | void next(Node& i) const { |
|---|
| 258 | Parent::next(i); |
|---|
| 259 | while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); |
|---|
| 260 | } |
|---|
| 261 | |
|---|
| 262 | void next(Edge& i) const { |
|---|
| 263 | Parent::next(i); |
|---|
| 264 | while (i!=INVALID && (!(*edge_filter_map)[i] |
|---|
| 265 | || !(*node_filter_map)[Parent::source(i)] |
|---|
| 266 | || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); |
|---|
| 267 | } |
|---|
| 268 | |
|---|
| 269 | void nextIn(Edge& i) const { |
|---|
| 270 | Parent::nextIn(i); |
|---|
| 271 | while (i!=INVALID && (!(*edge_filter_map)[i] |
|---|
| 272 | || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); |
|---|
| 273 | } |
|---|
| 274 | |
|---|
| 275 | void nextOut(Edge& i) const { |
|---|
| 276 | Parent::nextOut(i); |
|---|
| 277 | while (i!=INVALID && (!(*edge_filter_map)[i] |
|---|
| 278 | || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); |
|---|
| 279 | } |
|---|
| 280 | |
|---|
| 281 | /// This function hides \c n in the graph, i.e. the iteration |
|---|
| 282 | /// jumps over it. This is done by simply setting the value of \c n |
|---|
| 283 | /// to be false in the corresponding node-map. |
|---|
| 284 | void hide(const Node& n) const { node_filter_map->set(n, false); } |
|---|
| 285 | |
|---|
| 286 | /// This function hides \c e in the graph, i.e. the iteration |
|---|
| 287 | /// jumps over it. This is done by simply setting the value of \c e |
|---|
| 288 | /// to be false in the corresponding edge-map. |
|---|
| 289 | void hide(const Edge& e) const { edge_filter_map->set(e, false); } |
|---|
| 290 | |
|---|
| 291 | /// The value of \c n is set to be true in the node-map which stores |
|---|
| 292 | /// hide information. If \c n was hidden previuosly, then it is shown |
|---|
| 293 | /// again |
|---|
| 294 | void unHide(const Node& n) const { node_filter_map->set(n, true); } |
|---|
| 295 | |
|---|
| 296 | /// The value of \c e is set to be true in the edge-map which stores |
|---|
| 297 | /// hide information. If \c e was hidden previuosly, then it is shown |
|---|
| 298 | /// again |
|---|
| 299 | void unHide(const Edge& e) const { edge_filter_map->set(e, true); } |
|---|
| 300 | |
|---|
| 301 | /// Returns true if \c n is hidden. |
|---|
| 302 | bool hidden(const Node& n) const { return !(*node_filter_map)[n]; } |
|---|
| 303 | |
|---|
| 304 | /// Returns true if \c n is hidden. |
|---|
| 305 | bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; } |
|---|
| 306 | |
|---|
| 307 | /// \warning This is a linear time operation and works only if s |
|---|
| 308 | /// \c Graph::NodeIt is defined. |
|---|
| 309 | /// \todo assign tags. |
|---|
| 310 | int nodeNum() const { |
|---|
| 311 | int i=0; |
|---|
| 312 | Node n; |
|---|
| 313 | for (first(n); n!=INVALID; next(n)) ++i; |
|---|
| 314 | return i; |
|---|
| 315 | } |
|---|
| 316 | |
|---|
| 317 | /// \warning This is a linear time operation and works only if |
|---|
| 318 | /// \c Graph::EdgeIt is defined. |
|---|
| 319 | /// \todo assign tags. |
|---|
| 320 | int edgeNum() const { |
|---|
| 321 | int i=0; |
|---|
| 322 | Edge e; |
|---|
| 323 | for (first(e); e!=INVALID; next(e)) ++i; |
|---|
| 324 | return i; |
|---|
| 325 | } |
|---|
| 326 | }; |
|---|
| 327 | |
|---|
| 328 | template <typename _Graph, typename NodeFilterMap, typename EdgeFilterMap> |
|---|
| 329 | class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> |
|---|
| 330 | : public GraphAdaptorBase<_Graph> { |
|---|
| 331 | public: |
|---|
| 332 | typedef _Graph Graph; |
|---|
| 333 | typedef GraphAdaptorBase<_Graph> Parent; |
|---|
| 334 | protected: |
|---|
| 335 | NodeFilterMap* node_filter_map; |
|---|
| 336 | EdgeFilterMap* edge_filter_map; |
|---|
| 337 | SubGraphAdaptorBase() : Parent(), |
|---|
| 338 | node_filter_map(0), edge_filter_map(0) { } |
|---|
| 339 | |
|---|
| 340 | void setNodeFilterMap(NodeFilterMap& _node_filter_map) { |
|---|
| 341 | node_filter_map=&_node_filter_map; |
|---|
| 342 | } |
|---|
| 343 | void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) { |
|---|
| 344 | edge_filter_map=&_edge_filter_map; |
|---|
| 345 | } |
|---|
| 346 | |
|---|
| 347 | public: |
|---|
| 348 | |
|---|
| 349 | typedef typename Parent::Node Node; |
|---|
| 350 | typedef typename Parent::Edge Edge; |
|---|
| 351 | |
|---|
| 352 | void first(Node& i) const { |
|---|
| 353 | Parent::first(i); |
|---|
| 354 | while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); |
|---|
| 355 | } |
|---|
| 356 | |
|---|
| 357 | void first(Edge& i) const { |
|---|
| 358 | Parent::first(i); |
|---|
| 359 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); |
|---|
| 360 | } |
|---|
| 361 | |
|---|
| 362 | void firstIn(Edge& i, const Node& n) const { |
|---|
| 363 | Parent::firstIn(i, n); |
|---|
| 364 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); |
|---|
| 365 | } |
|---|
| 366 | |
|---|
| 367 | void firstOut(Edge& i, const Node& n) const { |
|---|
| 368 | Parent::firstOut(i, n); |
|---|
| 369 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); |
|---|
| 370 | } |
|---|
| 371 | |
|---|
| 372 | void next(Node& i) const { |
|---|
| 373 | Parent::next(i); |
|---|
| 374 | while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); |
|---|
| 375 | } |
|---|
| 376 | void next(Edge& i) const { |
|---|
| 377 | Parent::next(i); |
|---|
| 378 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); |
|---|
| 379 | } |
|---|
| 380 | void nextIn(Edge& i) const { |
|---|
| 381 | Parent::nextIn(i); |
|---|
| 382 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); |
|---|
| 383 | } |
|---|
| 384 | |
|---|
| 385 | void nextOut(Edge& i) const { |
|---|
| 386 | Parent::nextOut(i); |
|---|
| 387 | while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); |
|---|
| 388 | } |
|---|
| 389 | |
|---|
| 390 | /// This function hides \c n in the graph, i.e. the iteration |
|---|
| 391 | /// jumps over it. This is done by simply setting the value of \c n |
|---|
| 392 | /// to be false in the corresponding node-map. |
|---|
| 393 | void hide(const Node& n) const { node_filter_map->set(n, false); } |
|---|
| 394 | |
|---|
| 395 | /// This function hides \c e in the graph, i.e. the iteration |
|---|
| 396 | /// jumps over it. This is done by simply setting the value of \c e |
|---|
| 397 | /// to be false in the corresponding edge-map. |
|---|
| 398 | void hide(const Edge& e) const { edge_filter_map->set(e, false); } |
|---|
| 399 | |
|---|
| 400 | /// The value of \c n is set to be true in the node-map which stores |
|---|
| 401 | /// hide information. If \c n was hidden previuosly, then it is shown |
|---|
| 402 | /// again |
|---|
| 403 | void unHide(const Node& n) const { node_filter_map->set(n, true); } |
|---|
| 404 | |
|---|
| 405 | /// The value of \c e is set to be true in the edge-map which stores |
|---|
| 406 | /// hide information. If \c e was hidden previuosly, then it is shown |
|---|
| 407 | /// again |
|---|
| 408 | void unHide(const Edge& e) const { edge_filter_map->set(e, true); } |
|---|
| 409 | |
|---|
| 410 | /// Returns true if \c n is hidden. |
|---|
| 411 | bool hidden(const Node& n) const { return !(*node_filter_map)[n]; } |
|---|
| 412 | |
|---|
| 413 | /// Returns true if \c n is hidden. |
|---|
| 414 | bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; } |
|---|
| 415 | |
|---|
| 416 | /// \warning This is a linear time operation and works only if s |
|---|
| 417 | /// \c Graph::NodeIt is defined. |
|---|
| 418 | /// \todo assign tags. |
|---|
| 419 | int nodeNum() const { |
|---|
| 420 | int i=0; |
|---|
| 421 | Node n; |
|---|
| 422 | for (first(n); n!=INVALID; next(n)) ++i; |
|---|
| 423 | return i; |
|---|
| 424 | } |
|---|
| 425 | |
|---|
| 426 | /// \warning This is a linear time operation and works only if |
|---|
| 427 | /// \c Graph::EdgeIt is defined. |
|---|
| 428 | /// \todo assign tags. |
|---|
| 429 | int edgeNum() const { |
|---|
| 430 | int i=0; |
|---|
| 431 | Edge e; |
|---|
| 432 | for (first(e); e!=INVALID; next(e)) ++i; |
|---|
| 433 | return i; |
|---|
| 434 | } |
|---|
| 435 | }; |
|---|
| 436 | |
|---|
| 437 | /*! \brief A graph adaptor for hiding nodes and edges from a graph. |
|---|
| 438 | |
|---|
| 439 | \warning Graph adaptors are in even more experimental state than the other |
|---|
| 440 | parts of the lib. Use them at you own risk. |
|---|
| 441 | |
|---|
| 442 | SubGraphAdaptor shows the graph with filtered node-set and |
|---|
| 443 | edge-set. |
|---|
| 444 | Let \f$G=(V, A)\f$ be a directed graph |
|---|
| 445 | and suppose that the graph instance \c g of type ListGraph implements |
|---|
| 446 | \f$G\f$. |
|---|
| 447 | Let moreover \f$b_V\f$ and |
|---|
| 448 | \f$b_A\f$ be bool-valued functions resp. on the node-set and edge-set. |
|---|
| 449 | SubGraphAdaptor<...>::NodeIt iterates |
|---|
| 450 | on the node-set \f$\{v\in V : b_V(v)=true\}\f$ and |
|---|
| 451 | SubGraphAdaptor<...>::EdgeIt iterates |
|---|
| 452 | on the edge-set \f$\{e\in A : b_A(e)=true\}\f$. Similarly, |
|---|
| 453 | SubGraphAdaptor<...>::OutEdgeIt and SubGraphAdaptor<...>::InEdgeIt iterates |
|---|
| 454 | only on edges leaving and entering a specific node which have true value. |
|---|
| 455 | |
|---|
| 456 | We have to note that this does not mean that an |
|---|
| 457 | induced subgraph is obtained, the node-iterator cares only the filter |
|---|
| 458 | on the node-set, and the edge-iterators care only the filter on the |
|---|
| 459 | edge-set. |
|---|
| 460 | \code |
|---|
| 461 | typedef ListGraph Graph; |
|---|
| 462 | Graph g; |
|---|
| 463 | typedef Graph::Node Node; |
|---|
| 464 | typedef Graph::Edge Edge; |
|---|
| 465 | Node u=g.addNode(); //node of id 0 |
|---|
| 466 | Node v=g.addNode(); //node of id 1 |
|---|
| 467 | Node e=g.addEdge(u, v); //edge of id 0 |
|---|
| 468 | Node f=g.addEdge(v, u); //edge of id 1 |
|---|
| 469 | Graph::NodeMap<bool> nm(g, true); |
|---|
| 470 | nm.set(u, false); |
|---|
| 471 | Graph::EdgeMap<bool> em(g, true); |
|---|
| 472 | em.set(e, false); |
|---|
| 473 | typedef SubGraphAdaptor<Graph, Graph::NodeMap<bool>, Graph::EdgeMap<bool> > SubGW; |
|---|
| 474 | SubGW gw(g, nm, em); |
|---|
| 475 | for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl; |
|---|
| 476 | std::cout << ":-)" << std::endl; |
|---|
| 477 | for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl; |
|---|
| 478 | \endcode |
|---|
| 479 | The output of the above code is the following. |
|---|
| 480 | \code |
|---|
| 481 | 1 |
|---|
| 482 | :-) |
|---|
| 483 | 1 |
|---|
| 484 | \endcode |
|---|
| 485 | Note that \c n is of type \c SubGW::NodeIt, but it can be converted to |
|---|
| 486 | \c Graph::Node that is why \c g.id(n) can be applied. |
|---|
| 487 | |
|---|
| 488 | For other examples see also the documentation of NodeSubGraphAdaptor and |
|---|
| 489 | EdgeSubGraphAdaptor. |
|---|
| 490 | |
|---|
| 491 | \author Marton Makai |
|---|
| 492 | */ |
|---|
| 493 | template<typename _Graph, typename NodeFilterMap, |
|---|
| 494 | typename EdgeFilterMap, bool checked = true> |
|---|
| 495 | class SubGraphAdaptor : |
|---|
| 496 | public IterableGraphExtender< |
|---|
| 497 | SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > { |
|---|
| 498 | public: |
|---|
| 499 | typedef _Graph Graph; |
|---|
| 500 | typedef IterableGraphExtender< |
|---|
| 501 | SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent; |
|---|
| 502 | protected: |
|---|
| 503 | SubGraphAdaptor() { } |
|---|
| 504 | public: |
|---|
| 505 | SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, |
|---|
| 506 | EdgeFilterMap& _edge_filter_map) { |
|---|
| 507 | setGraph(_graph); |
|---|
| 508 | setNodeFilterMap(_node_filter_map); |
|---|
| 509 | setEdgeFilterMap(_edge_filter_map); |
|---|
| 510 | } |
|---|
| 511 | }; |
|---|
| 512 | |
|---|
| 513 | |
|---|
| 514 | |
|---|
| 515 | /*! \brief An adaptor for hiding nodes from a graph. |
|---|
| 516 | |
|---|
| 517 | \warning Graph adaptors are in even more experimental state than the other |
|---|
| 518 | parts of the lib. Use them at you own risk. |
|---|
| 519 | |
|---|
| 520 | An adaptor for hiding nodes from a graph. |
|---|
| 521 | This adaptor specializes SubGraphAdaptor in the way that only the node-set |
|---|
| 522 | can be filtered. Note that this does not mean of considering induced |
|---|
| 523 | subgraph, the edge-iterators consider the original edge-set. |
|---|
| 524 | \author Marton Makai |
|---|
| 525 | */ |
|---|
| 526 | template<typename Graph, typename NodeFilterMap, bool checked = true> |
|---|
| 527 | class NodeSubGraphAdaptor : |
|---|
| 528 | public SubGraphAdaptor<Graph, NodeFilterMap, |
|---|
| 529 | ConstMap<typename Graph::Edge,bool>, checked> { |
|---|
| 530 | public: |
|---|
| 531 | typedef SubGraphAdaptor<Graph, NodeFilterMap, |
|---|
| 532 | ConstMap<typename Graph::Edge,bool> > Parent; |
|---|
| 533 | protected: |
|---|
| 534 | ConstMap<typename Graph::Edge, bool> const_true_map; |
|---|
| 535 | public: |
|---|
| 536 | NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : |
|---|
| 537 | Parent(), const_true_map(true) { |
|---|
| 538 | Parent::setGraph(_graph); |
|---|
| 539 | Parent::setNodeFilterMap(_node_filter_map); |
|---|
| 540 | Parent::setEdgeFilterMap(const_true_map); |
|---|
| 541 | } |
|---|
| 542 | }; |
|---|
| 543 | |
|---|
| 544 | |
|---|
| 545 | /*! \brief An adaptor for hiding edges from a graph. |
|---|
| 546 | |
|---|
| 547 | \warning Graph adaptors are in even more experimental state than the other |
|---|
| 548 | parts of the lib. Use them at you own risk. |
|---|
| 549 | |
|---|
| 550 | An adaptor for hiding edges from a graph. |
|---|
| 551 | This adaptor specializes SubGraphAdaptor in the way that only the edge-set |
|---|
| 552 | can be filtered. The usefulness of this adaptor is demonstrated in the |
|---|
| 553 | problem of searching a maximum number of edge-disjoint shortest paths |
|---|
| 554 | between |
|---|
| 555 | two nodes \c s and \c t. Shortest here means being shortest w.r.t. |
|---|
| 556 | non-negative edge-lengths. Note that |
|---|
| 557 | the comprehension of the presented solution |
|---|
| 558 | need's some elementary knowledge from combinatorial optimization. |
|---|
| 559 | |
|---|
| 560 | If a single shortest path is to be |
|---|
| 561 | searched between \c s and \c t, then this can be done easily by |
|---|
| 562 | applying the Dijkstra algorithm. What happens, if a maximum number of |
|---|
| 563 | edge-disjoint shortest paths is to be computed. It can be proved that an |
|---|
| 564 | edge can be in a shortest path if and only if it is tight with respect to |
|---|
| 565 | the potential function computed by Dijkstra. Moreover, any path containing |
|---|
| 566 | only such edges is a shortest one. Thus we have to compute a maximum number |
|---|
| 567 | of edge-disjoint paths between \c s and \c t in the graph which has edge-set |
|---|
| 568 | all the tight edges. The computation will be demonstrated on the following |
|---|
| 569 | graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. |
|---|
| 570 | The full source code is available in \ref sub_graph_adaptor_demo.cc. |
|---|
| 571 | If you are interested in more demo programs, you can use |
|---|
| 572 | \ref dim_to_dot.cc to generate .dot files from dimacs files. |
|---|
| 573 | The .dot file of the following figure was generated by |
|---|
| 574 | the demo program \ref dim_to_dot.cc. |
|---|
| 575 | |
|---|
| 576 | \dot |
|---|
| 577 | digraph lemon_dot_example { |
|---|
| 578 | node [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; |
|---|
| 579 | n0 [ label="0 (s)" ]; |
|---|
| 580 | n1 [ label="1" ]; |
|---|
| 581 | n2 [ label="2" ]; |
|---|
| 582 | n3 [ label="3" ]; |
|---|
| 583 | n4 [ label="4" ]; |
|---|
| 584 | n5 [ label="5" ]; |
|---|
| 585 | n6 [ label="6 (t)" ]; |
|---|
| 586 | edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; |
|---|
| 587 | n5 -> n6 [ label="9, length:4" ]; |
|---|
| 588 | n4 -> n6 [ label="8, length:2" ]; |
|---|
| 589 | n3 -> n5 [ label="7, length:1" ]; |
|---|
| 590 | n2 -> n5 [ label="6, length:3" ]; |
|---|
| 591 | n2 -> n6 [ label="5, length:5" ]; |
|---|
| 592 | n2 -> n4 [ label="4, length:2" ]; |
|---|
| 593 | n1 -> n4 [ label="3, length:3" ]; |
|---|
| 594 | n0 -> n3 [ label="2, length:1" ]; |
|---|
| 595 | n0 -> n2 [ label="1, length:2" ]; |
|---|
| 596 | n0 -> n1 [ label="0, length:3" ]; |
|---|
| 597 | } |
|---|
| 598 | \enddot |
|---|
| 599 | |
|---|
| 600 | \code |
|---|
| 601 | Graph g; |
|---|
| 602 | Node s, t; |
|---|
| 603 | LengthMap length(g); |
|---|
| 604 | |
|---|
| 605 | readDimacs(std::cin, g, length, s, t); |
|---|
| 606 | |
|---|
| 607 | cout << "edges with lengths (of form id, source--length->target): " << endl; |
|---|
| 608 | for(EdgeIt e(g); e!=INVALID; ++e) |
|---|
| 609 | cout << g.id(e) << ", " << g.id(g.source(e)) << "--" |
|---|
| 610 | << length[e] << "->" << g.id(g.target(e)) << endl; |
|---|
| 611 | |
|---|
| 612 | cout << "s: " << g.id(s) << " t: " << g.id(t) << endl; |
|---|
| 613 | \endcode |
|---|
| 614 | Next, the potential function is computed with Dijkstra. |
|---|
| 615 | \code |
|---|
| 616 | typedef Dijkstra<Graph, LengthMap> Dijkstra; |
|---|
| 617 | Dijkstra dijkstra(g, length); |
|---|
| 618 | dijkstra.run(s); |
|---|
| 619 | \endcode |
|---|
| 620 | Next, we consrtruct a map which filters the edge-set to the tight edges. |
|---|
| 621 | \code |
|---|
| 622 | typedef TightEdgeFilterMap<Graph, const Dijkstra::DistMap, LengthMap> |
|---|
| 623 | TightEdgeFilter; |
|---|
| 624 | TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length); |
|---|
| 625 | |
|---|
| 626 | typedef EdgeSubGraphAdaptor<Graph, TightEdgeFilter> SubGW; |
|---|
| 627 | SubGW gw(g, tight_edge_filter); |
|---|
| 628 | \endcode |
|---|
| 629 | Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed |
|---|
| 630 | with a max flow algorithm Preflow. |
|---|
| 631 | \code |
|---|
| 632 | ConstMap<Edge, int> const_1_map(1); |
|---|
| 633 | Graph::EdgeMap<int> flow(g, 0); |
|---|
| 634 | |
|---|
| 635 | Preflow<SubGW, int, ConstMap<Edge, int>, Graph::EdgeMap<int> > |
|---|
| 636 | preflow(gw, s, t, const_1_map, flow); |
|---|
| 637 | preflow.run(); |
|---|
| 638 | \endcode |
|---|
| 639 | Last, the output is: |
|---|
| 640 | \code |
|---|
| 641 | cout << "maximum number of edge-disjoint shortest path: " |
|---|
| 642 | << preflow.flowValue() << endl; |
|---|
| 643 | cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " |
|---|
| 644 | << endl; |
|---|
| 645 | for(EdgeIt e(g); e!=INVALID; ++e) |
|---|
| 646 | if (flow[e]) |
|---|
| 647 | cout << " " << g.id(g.source(e)) << "--" |
|---|
| 648 | << length[e] << "->" << g.id(g.target(e)) << endl; |
|---|
| 649 | \endcode |
|---|
| 650 | The program has the following (expected :-)) output: |
|---|
| 651 | \code |
|---|
| 652 | edges with lengths (of form id, source--length->target): |
|---|
| 653 | 9, 5--4->6 |
|---|
| 654 | 8, 4--2->6 |
|---|
| 655 | 7, 3--1->5 |
|---|
| 656 | 6, 2--3->5 |
|---|
| 657 | 5, 2--5->6 |
|---|
| 658 | 4, 2--2->4 |
|---|
| 659 | 3, 1--3->4 |
|---|
| 660 | 2, 0--1->3 |
|---|
| 661 | 1, 0--2->2 |
|---|
| 662 | 0, 0--3->1 |
|---|
| 663 | s: 0 t: 6 |
|---|
| 664 | maximum number of edge-disjoint shortest path: 2 |
|---|
| 665 | edges of the maximum number of edge-disjoint shortest s-t paths: |
|---|
| 666 | 9, 5--4->6 |
|---|
| 667 | 8, 4--2->6 |
|---|
| 668 | 7, 3--1->5 |
|---|
| 669 | 4, 2--2->4 |
|---|
| 670 | 2, 0--1->3 |
|---|
| 671 | 1, 0--2->2 |
|---|
| 672 | \endcode |
|---|
| 673 | |
|---|
| 674 | \author Marton Makai |
|---|
| 675 | */ |
|---|
| 676 | template<typename Graph, typename EdgeFilterMap> |
|---|
| 677 | class EdgeSubGraphAdaptor : |
|---|
| 678 | public SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, |
|---|
| 679 | EdgeFilterMap, false> { |
|---|
| 680 | public: |
|---|
| 681 | typedef SubGraphAdaptor<Graph, ConstMap<typename Graph::Node,bool>, |
|---|
| 682 | EdgeFilterMap, false> Parent; |
|---|
| 683 | protected: |
|---|
| 684 | ConstMap<typename Graph::Node, bool> const_true_map; |
|---|
| 685 | public: |
|---|
| 686 | EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : |
|---|
| 687 | Parent(), const_true_map(true) { |
|---|
| 688 | Parent::setGraph(_graph); |
|---|
| 689 | Parent::setNodeFilterMap(const_true_map); |
|---|
| 690 | Parent::setEdgeFilterMap(_edge_filter_map); |
|---|
| 691 | } |
|---|
| 692 | }; |
|---|
| 693 | |
|---|
| 694 | template <typename _Graph> |
|---|
| 695 | class UndirGraphAdaptorBase : |
|---|
| 696 | public UndirGraphExtender<GraphAdaptorBase<_Graph> > { |
|---|
| 697 | public: |
|---|
| 698 | typedef _Graph Graph; |
|---|
| 699 | typedef UndirGraphExtender<GraphAdaptorBase<_Graph> > Parent; |
|---|
| 700 | protected: |
|---|
| 701 | UndirGraphAdaptorBase() : Parent() { } |
|---|
| 702 | public: |
|---|
| 703 | typedef typename Parent::UndirEdge UndirEdge; |
|---|
| 704 | typedef typename Parent::Edge Edge; |
|---|
| 705 | |
|---|
| 706 | /// \bug Why cant an edge say that it is forward or not??? |
|---|
| 707 | /// By this, a pointer to the graph have to be stored |
|---|
| 708 | /// The implementation |
|---|
| 709 | template <typename T> |
|---|
| 710 | class EdgeMap { |
|---|
| 711 | protected: |
|---|
| 712 | const UndirGraphAdaptorBase<_Graph>* g; |
|---|
| 713 | template <typename TT> friend class EdgeMap; |
|---|
| 714 | typename _Graph::template EdgeMap<T> forward_map, backward_map; |
|---|
| 715 | public: |
|---|
| 716 | typedef T Value; |
|---|
| 717 | typedef Edge Key; |
|---|
| 718 | |
|---|
| 719 | EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g) : g(&_g), |
|---|
| 720 | forward_map(*(g->graph)), backward_map(*(g->graph)) { } |
|---|
| 721 | |
|---|
| 722 | EdgeMap(const UndirGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), |
|---|
| 723 | forward_map(*(g->graph), a), backward_map(*(g->graph), a) { } |
|---|
| 724 | |
|---|
| 725 | void set(Edge e, T a) { |
|---|
| 726 | if (g->direction(e)) |
|---|
| 727 | forward_map.set(e, a); |
|---|
| 728 | else |
|---|
| 729 | backward_map.set(e, a); |
|---|
| 730 | } |
|---|
| 731 | |
|---|
| 732 | T operator[](Edge e) const { |
|---|
| 733 | if (g->direction(e)) |
|---|
| 734 | return forward_map[e]; |
|---|
| 735 | else |
|---|
| 736 | return backward_map[e]; |
|---|
| 737 | } |
|---|
| 738 | }; |
|---|
| 739 | |
|---|
| 740 | template <typename T> |
|---|
| 741 | class UndirEdgeMap { |
|---|
| 742 | template <typename TT> friend class UndirEdgeMap; |
|---|
| 743 | typename _Graph::template EdgeMap<T> map; |
|---|
| 744 | public: |
|---|
| 745 | typedef T Value; |
|---|
| 746 | typedef UndirEdge Key; |
|---|
| 747 | |
|---|
| 748 | UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g) : |
|---|
| 749 | map(*(g.graph)) { } |
|---|
| 750 | |
|---|
| 751 | UndirEdgeMap(const UndirGraphAdaptorBase<_Graph>& g, T a) : |
|---|
| 752 | map(*(g.graph), a) { } |
|---|
| 753 | |
|---|
| 754 | void set(UndirEdge e, T a) { |
|---|
| 755 | map.set(e, a); |
|---|
| 756 | } |
|---|
| 757 | |
|---|
| 758 | T operator[](UndirEdge e) const { |
|---|
| 759 | return map[e]; |
|---|
| 760 | } |
|---|
| 761 | }; |
|---|
| 762 | |
|---|
| 763 | }; |
|---|
| 764 | |
|---|
| 765 | /// \brief An undirected graph is made from a directed graph by an adaptor |
|---|
| 766 | /// |
|---|
| 767 | /// Undocumented, untested!!! |
|---|
| 768 | /// If somebody knows nice demo application, let's polulate it. |
|---|
| 769 | /// |
|---|
| 770 | /// \author Marton Makai |
|---|
| 771 | template<typename _Graph> |
|---|
| 772 | class UndirGraphAdaptor : |
|---|
| 773 | public IterableUndirGraphExtender< |
|---|
| 774 | UndirGraphAdaptorBase<_Graph> > { |
|---|
| 775 | public: |
|---|
| 776 | typedef _Graph Graph; |
|---|
| 777 | typedef IterableUndirGraphExtender< |
|---|
| 778 | UndirGraphAdaptorBase<_Graph> > Parent; |
|---|
| 779 | protected: |
|---|
| 780 | UndirGraphAdaptor() { } |
|---|
| 781 | public: |
|---|
| 782 | UndirGraphAdaptor(_Graph& _graph) { |
|---|
| 783 | setGraph(_graph); |
|---|
| 784 | } |
|---|
| 785 | }; |
|---|
| 786 | |
|---|
| 787 | |
|---|
| 788 | template <typename _Graph, |
|---|
| 789 | typename ForwardFilterMap, typename BackwardFilterMap> |
|---|
| 790 | class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> { |
|---|
| 791 | public: |
|---|
| 792 | typedef _Graph Graph; |
|---|
| 793 | typedef GraphAdaptorBase<_Graph> Parent; |
|---|
| 794 | protected: |
|---|
| 795 | ForwardFilterMap* forward_filter; |
|---|
| 796 | BackwardFilterMap* backward_filter; |
|---|
| 797 | SubBidirGraphAdaptorBase() : Parent(), |
|---|
| 798 | forward_filter(0), backward_filter(0) { } |
|---|
| 799 | |
|---|
| 800 | void setForwardFilterMap(ForwardFilterMap& _forward_filter) { |
|---|
| 801 | forward_filter=&_forward_filter; |
|---|
| 802 | } |
|---|
| 803 | void setBackwardFilterMap(BackwardFilterMap& _backward_filter) { |
|---|
| 804 | backward_filter=&_backward_filter; |
|---|
| 805 | } |
|---|
| 806 | |
|---|
| 807 | public: |
|---|
| 808 | // SubGraphAdaptorBase(Graph& _graph, |
|---|
| 809 | // NodeFilterMap& _node_filter_map, |
|---|
| 810 | // EdgeFilterMap& _edge_filter_map) : |
|---|
| 811 | // Parent(&_graph), |
|---|
| 812 | // node_filter_map(&node_filter_map), |
|---|
| 813 | // edge_filter_map(&edge_filter_map) { } |
|---|
| 814 | |
|---|
| 815 | typedef typename Parent::Node Node; |
|---|
| 816 | typedef typename _Graph::Edge GraphEdge; |
|---|
| 817 | template <typename T> class EdgeMap; |
|---|
| 818 | /// SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from |
|---|
| 819 | /// _Graph::Edge. It contains an extra bool flag which is true |
|---|
| 820 | /// if and only if the |
|---|
| 821 | /// edge is the backward version of the original edge. |
|---|
| 822 | class Edge : public _Graph::Edge { |
|---|
| 823 | friend class SubBidirGraphAdaptorBase< |
|---|
| 824 | Graph, ForwardFilterMap, BackwardFilterMap>; |
|---|
| 825 | template<typename T> friend class EdgeMap; |
|---|
| 826 | protected: |
|---|
| 827 | bool backward; //true, iff backward |
|---|
| 828 | public: |
|---|
| 829 | Edge() { } |
|---|
| 830 | /// \todo =false is needed, or causes problems? |
|---|
| 831 | /// If \c _backward is false, then we get an edge corresponding to the |
|---|
| 832 | /// original one, otherwise its oppositely directed pair is obtained. |
|---|
| 833 | Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : |
|---|
| 834 | _Graph::Edge(e), backward(_backward) { } |
|---|
| 835 | Edge(Invalid i) : _Graph::Edge(i), backward(true) { } |
|---|
| 836 | bool operator==(const Edge& v) const { |
|---|
| 837 | return (this->backward==v.backward && |
|---|
| 838 | static_cast<typename _Graph::Edge>(*this)== |
|---|
| 839 | static_cast<typename _Graph::Edge>(v)); |
|---|
| 840 | } |
|---|
| 841 | bool operator!=(const Edge& v) const { |
|---|
| 842 | return (this->backward!=v.backward || |
|---|
| 843 | static_cast<typename _Graph::Edge>(*this)!= |
|---|
| 844 | static_cast<typename _Graph::Edge>(v)); |
|---|
| 845 | } |
|---|
| 846 | }; |
|---|
| 847 | |
|---|
| 848 | void first(Node& i) const { |
|---|
| 849 | Parent::first(i); |
|---|
| 850 | } |
|---|
| 851 | |
|---|
| 852 | void first(Edge& i) const { |
|---|
| 853 | Parent::first(i); |
|---|
| 854 | i.backward=false; |
|---|
| 855 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 856 | !(*forward_filter)[i]) Parent::next(i); |
|---|
| 857 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
|---|
| 858 | Parent::first(i); |
|---|
| 859 | i.backward=true; |
|---|
| 860 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 861 | !(*backward_filter)[i]) Parent::next(i); |
|---|
| 862 | } |
|---|
| 863 | } |
|---|
| 864 | |
|---|
| 865 | void firstIn(Edge& i, const Node& n) const { |
|---|
| 866 | Parent::firstIn(i, n); |
|---|
| 867 | i.backward=false; |
|---|
| 868 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 869 | !(*forward_filter)[i]) Parent::nextIn(i); |
|---|
| 870 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
|---|
| 871 | Parent::firstOut(i, n); |
|---|
| 872 | i.backward=true; |
|---|
| 873 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 874 | !(*backward_filter)[i]) Parent::nextOut(i); |
|---|
| 875 | } |
|---|
| 876 | } |
|---|
| 877 | |
|---|
| 878 | void firstOut(Edge& i, const Node& n) const { |
|---|
| 879 | Parent::firstOut(i, n); |
|---|
| 880 | i.backward=false; |
|---|
| 881 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 882 | !(*forward_filter)[i]) Parent::nextOut(i); |
|---|
| 883 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
|---|
| 884 | Parent::firstIn(i, n); |
|---|
| 885 | i.backward=true; |
|---|
| 886 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 887 | !(*backward_filter)[i]) Parent::nextIn(i); |
|---|
| 888 | } |
|---|
| 889 | } |
|---|
| 890 | |
|---|
| 891 | void next(Node& i) const { |
|---|
| 892 | Parent::next(i); |
|---|
| 893 | } |
|---|
| 894 | |
|---|
| 895 | void next(Edge& i) const { |
|---|
| 896 | if (!(i.backward)) { |
|---|
| 897 | Parent::next(i); |
|---|
| 898 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 899 | !(*forward_filter)[i]) Parent::next(i); |
|---|
| 900 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
|---|
| 901 | Parent::first(i); |
|---|
| 902 | i.backward=true; |
|---|
| 903 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 904 | !(*backward_filter)[i]) Parent::next(i); |
|---|
| 905 | } |
|---|
| 906 | } else { |
|---|
| 907 | Parent::next(i); |
|---|
| 908 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 909 | !(*backward_filter)[i]) Parent::next(i); |
|---|
| 910 | } |
|---|
| 911 | } |
|---|
| 912 | |
|---|
| 913 | void nextIn(Edge& i) const { |
|---|
| 914 | if (!(i.backward)) { |
|---|
| 915 | Node n=Parent::target(i); |
|---|
| 916 | Parent::nextIn(i); |
|---|
| 917 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 918 | !(*forward_filter)[i]) Parent::nextIn(i); |
|---|
| 919 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
|---|
| 920 | Parent::firstOut(i, n); |
|---|
| 921 | i.backward=true; |
|---|
| 922 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 923 | !(*backward_filter)[i]) Parent::nextOut(i); |
|---|
| 924 | } |
|---|
| 925 | } else { |
|---|
| 926 | Parent::nextOut(i); |
|---|
| 927 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 928 | !(*backward_filter)[i]) Parent::nextOut(i); |
|---|
| 929 | } |
|---|
| 930 | } |
|---|
| 931 | |
|---|
| 932 | void nextOut(Edge& i) const { |
|---|
| 933 | if (!(i.backward)) { |
|---|
| 934 | Node n=Parent::source(i); |
|---|
| 935 | Parent::nextOut(i); |
|---|
| 936 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 937 | !(*forward_filter)[i]) Parent::nextOut(i); |
|---|
| 938 | if (*static_cast<GraphEdge*>(&i)==INVALID) { |
|---|
| 939 | Parent::firstIn(i, n); |
|---|
| 940 | i.backward=true; |
|---|
| 941 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 942 | !(*backward_filter)[i]) Parent::nextIn(i); |
|---|
| 943 | } |
|---|
| 944 | } else { |
|---|
| 945 | Parent::nextIn(i); |
|---|
| 946 | while (*static_cast<GraphEdge*>(&i)!=INVALID && |
|---|
| 947 | !(*backward_filter)[i]) Parent::nextIn(i); |
|---|
| 948 | } |
|---|
| 949 | } |
|---|
| 950 | |
|---|
| 951 | Node source(Edge e) const { |
|---|
| 952 | return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); } |
|---|
| 953 | Node target(Edge e) const { |
|---|
| 954 | return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); } |
|---|
| 955 | |
|---|
| 956 | /// Gives back the opposite edge. |
|---|
| 957 | Edge opposite(const Edge& e) const { |
|---|
| 958 | Edge f=e; |
|---|
| 959 | f.backward=!f.backward; |
|---|
| 960 | return f; |
|---|
| 961 | } |
|---|
| 962 | |
|---|
| 963 | /// \warning This is a linear time operation and works only if |
|---|
| 964 | /// \c Graph::EdgeIt is defined. |
|---|
| 965 | /// \todo hmm |
|---|
| 966 | int edgeNum() const { |
|---|
| 967 | int i=0; |
|---|
| 968 | Edge e; |
|---|
| 969 | for (first(e); e!=INVALID; next(e)) ++i; |
|---|
| 970 | return i; |
|---|
| 971 | } |
|---|
| 972 | |
|---|
| 973 | bool forward(const Edge& e) const { return !e.backward; } |
|---|
| 974 | bool backward(const Edge& e) const { return e.backward; } |
|---|
| 975 | |
|---|
| 976 | template <typename T> |
|---|
| 977 | /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two |
|---|
| 978 | /// _Graph::EdgeMap one for the forward edges and |
|---|
| 979 | /// one for the backward edges. |
|---|
| 980 | class EdgeMap { |
|---|
| 981 | template <typename TT> friend class EdgeMap; |
|---|
| 982 | typename _Graph::template EdgeMap<T> forward_map, backward_map; |
|---|
| 983 | public: |
|---|
| 984 | typedef T Value; |
|---|
| 985 | typedef Edge Key; |
|---|
| 986 | |
|---|
| 987 | EdgeMap(const SubBidirGraphAdaptorBase<_Graph, |
|---|
| 988 | ForwardFilterMap, BackwardFilterMap>& g) : |
|---|
| 989 | forward_map(*(g.graph)), backward_map(*(g.graph)) { } |
|---|
| 990 | |
|---|
| 991 | EdgeMap(const SubBidirGraphAdaptorBase<_Graph, |
|---|
| 992 | ForwardFilterMap, BackwardFilterMap>& g, T a) : |
|---|
| 993 | forward_map(*(g.graph), a), backward_map(*(g.graph), a) { } |
|---|
| 994 | |
|---|
| 995 | void set(Edge e, T a) { |
|---|
| 996 | if (!e.backward) |
|---|
| 997 | forward_map.set(e, a); |
|---|
| 998 | else |
|---|
| 999 | backward_map.set(e, a); |
|---|
| 1000 | } |
|---|
| 1001 | |
|---|
| 1002 | // typename _Graph::template EdgeMap<T>::ConstReference |
|---|
| 1003 | // operator[](Edge e) const { |
|---|
| 1004 | // if (!e.backward) |
|---|
| 1005 | // return forward_map[e]; |
|---|
| 1006 | // else |
|---|
| 1007 | // return backward_map[e]; |
|---|
| 1008 | // } |
|---|
| 1009 | |
|---|
| 1010 | // typename _Graph::template EdgeMap<T>::Reference |
|---|
| 1011 | T operator[](Edge e) const { |
|---|
| 1012 | if (!e.backward) |
|---|
| 1013 | return forward_map[e]; |
|---|
| 1014 | else |
|---|
| 1015 | return backward_map[e]; |
|---|
| 1016 | } |
|---|
| 1017 | |
|---|
| 1018 | void update() { |
|---|
| 1019 | forward_map.update(); |
|---|
| 1020 | backward_map.update(); |
|---|
| 1021 | } |
|---|
| 1022 | }; |
|---|
| 1023 | |
|---|
| 1024 | }; |
|---|
| 1025 | |
|---|
| 1026 | |
|---|
| 1027 | ///\brief An adaptor for composing a subgraph of a |
|---|
| 1028 | /// bidirected graph made from a directed one. |
|---|
| 1029 | /// |
|---|
| 1030 | /// An adaptor for composing a subgraph of a |
|---|
| 1031 | /// bidirected graph made from a directed one. |
|---|
| 1032 | /// |
|---|
| 1033 | ///\warning Graph adaptors are in even more experimental state than the other |
|---|
| 1034 | ///parts of the lib. Use them at you own risk. |
|---|
| 1035 | /// |
|---|
| 1036 | /// Let \f$G=(V, A)\f$ be a directed graph and for each directed edge |
|---|
| 1037 | /// \f$e\in A\f$, let \f$\bar e\f$ denote the edge obtained by |
|---|
| 1038 | /// reversing its orientation. We are given moreover two bool valued |
|---|
| 1039 | /// maps on the edge-set, |
|---|
| 1040 | /// \f$forward\_filter\f$, and \f$backward\_filter\f$. |
|---|
| 1041 | /// SubBidirGraphAdaptor implements the graph structure with node-set |
|---|
| 1042 | /// \f$V\f$ and edge-set |
|---|
| 1043 | /// \f$\{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\}\f$. |
|---|
| 1044 | /// The purpose of writing + instead of union is because parallel |
|---|
| 1045 | /// edges can arise. (Similarly, antiparallel edges also can arise). |
|---|
| 1046 | /// In other words, a subgraph of the bidirected graph obtained, which |
|---|
| 1047 | /// is given by orienting the edges of the original graph in both directions. |
|---|
| 1048 | /// As the oppositely directed edges are logically different, |
|---|
| 1049 | /// the maps are able to attach different values for them. |
|---|
| 1050 | /// |
|---|
| 1051 | /// An example for such a construction is \c RevGraphAdaptor where the |
|---|
| 1052 | /// forward_filter is everywhere false and the backward_filter is |
|---|
| 1053 | /// everywhere true. We note that for sake of efficiency, |
|---|
| 1054 | /// \c RevGraphAdaptor is implemented in a different way. |
|---|
| 1055 | /// But BidirGraphAdaptor is obtained from |
|---|
| 1056 | /// SubBidirGraphAdaptor by considering everywhere true |
|---|
| 1057 | /// valued maps both for forward_filter and backward_filter. |
|---|
| 1058 | /// |
|---|
| 1059 | /// The most important application of SubBidirGraphAdaptor |
|---|
| 1060 | /// is ResGraphAdaptor, which stands for the residual graph in directed |
|---|
| 1061 | /// flow and circulation problems. |
|---|
| 1062 | /// As adaptors usually, the SubBidirGraphAdaptor implements the |
|---|
| 1063 | /// above mentioned graph structure without its physical storage, |
|---|
| 1064 | /// that is the whole stuff is stored in constant memory. |
|---|
| 1065 | template<typename _Graph, |
|---|
| 1066 | typename ForwardFilterMap, typename BackwardFilterMap> |
|---|
| 1067 | class SubBidirGraphAdaptor : |
|---|
| 1068 | public IterableGraphExtender< |
|---|
| 1069 | SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > { |
|---|
| 1070 | public: |
|---|
| 1071 | typedef _Graph Graph; |
|---|
| 1072 | typedef IterableGraphExtender< |
|---|
| 1073 | SubBidirGraphAdaptorBase< |
|---|
| 1074 | _Graph, ForwardFilterMap, BackwardFilterMap> > Parent; |
|---|
| 1075 | protected: |
|---|
| 1076 | SubBidirGraphAdaptor() { } |
|---|
| 1077 | public: |
|---|
| 1078 | SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, |
|---|
| 1079 | BackwardFilterMap& _backward_filter) { |
|---|
| 1080 | setGraph(_graph); |
|---|
| 1081 | setForwardFilterMap(_forward_filter); |
|---|
| 1082 | setBackwardFilterMap(_backward_filter); |
|---|
| 1083 | } |
|---|
| 1084 | }; |
|---|
| 1085 | |
|---|
| 1086 | |
|---|
| 1087 | |
|---|
| 1088 | ///\brief An adaptor for composing bidirected graph from a directed one. |
|---|
| 1089 | /// |
|---|
| 1090 | ///\warning Graph adaptors are in even more experimental state than the other |
|---|
| 1091 | ///parts of the lib. Use them at you own risk. |
|---|
| 1092 | /// |
|---|
| 1093 | /// An adaptor for composing bidirected graph from a directed one. |
|---|
| 1094 | /// A bidirected graph is composed over the directed one without physical |
|---|
| 1095 | /// storage. As the oppositely directed edges are logically different ones |
|---|
| 1096 | /// the maps are able to attach different values for them. |
|---|
| 1097 | template<typename Graph> |
|---|
| 1098 | class BidirGraphAdaptor : |
|---|
| 1099 | public SubBidirGraphAdaptor< |
|---|
| 1100 | Graph, |
|---|
| 1101 | ConstMap<typename Graph::Edge, bool>, |
|---|
| 1102 | ConstMap<typename Graph::Edge, bool> > { |
|---|
| 1103 | public: |
|---|
| 1104 | typedef SubBidirGraphAdaptor< |
|---|
| 1105 | Graph, |
|---|
| 1106 | ConstMap<typename Graph::Edge, bool>, |
|---|
| 1107 | ConstMap<typename Graph::Edge, bool> > Parent; |
|---|
| 1108 | protected: |
|---|
| 1109 | ConstMap<typename Graph::Edge, bool> cm; |
|---|
| 1110 | |
|---|
| 1111 | BidirGraphAdaptor() : Parent(), cm(true) { |
|---|
| 1112 | Parent::setForwardFilterMap(cm); |
|---|
| 1113 | Parent::setBackwardFilterMap(cm); |
|---|
| 1114 | } |
|---|
| 1115 | public: |
|---|
| 1116 | BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { |
|---|
| 1117 | Parent::setGraph(_graph); |
|---|
| 1118 | Parent::setForwardFilterMap(cm); |
|---|
| 1119 | Parent::setBackwardFilterMap(cm); |
|---|
| 1120 | } |
|---|
| 1121 | |
|---|
| 1122 | int edgeNum() const { |
|---|
| 1123 | return 2*this->graph->edgeNum(); |
|---|
| 1124 | } |
|---|
| 1125 | // KEEP_MAPS(Parent, BidirGraphAdaptor); |
|---|
| 1126 | }; |
|---|
| 1127 | |
|---|
| 1128 | |
|---|
| 1129 | template<typename Graph, typename Number, |
|---|
| 1130 | typename CapacityMap, typename FlowMap> |
|---|
| 1131 | class ResForwardFilter { |
|---|
| 1132 | // const Graph* graph; |
|---|
| 1133 | const CapacityMap* capacity; |
|---|
| 1134 | const FlowMap* flow; |
|---|
| 1135 | public: |
|---|
| 1136 | ResForwardFilter(/*const Graph& _graph, */ |
|---|
| 1137 | const CapacityMap& _capacity, const FlowMap& _flow) : |
|---|
| 1138 | /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } |
|---|
| 1139 | ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } |
|---|
| 1140 | void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } |
|---|
| 1141 | void setFlow(const FlowMap& _flow) { flow=&_flow; } |
|---|
| 1142 | bool operator[](const typename Graph::Edge& e) const { |
|---|
| 1143 | return (Number((*flow)[e]) < Number((*capacity)[e])); |
|---|
| 1144 | } |
|---|
| 1145 | }; |
|---|
| 1146 | |
|---|
| 1147 | template<typename Graph, typename Number, |
|---|
| 1148 | typename CapacityMap, typename FlowMap> |
|---|
| 1149 | class ResBackwardFilter { |
|---|
| 1150 | const CapacityMap* capacity; |
|---|
| 1151 | const FlowMap* flow; |
|---|
| 1152 | public: |
|---|
| 1153 | ResBackwardFilter(/*const Graph& _graph,*/ |
|---|
| 1154 | const CapacityMap& _capacity, const FlowMap& _flow) : |
|---|
| 1155 | /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } |
|---|
| 1156 | ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } |
|---|
| 1157 | void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } |
|---|
| 1158 | void setFlow(const FlowMap& _flow) { flow=&_flow; } |
|---|
| 1159 | bool operator[](const typename Graph::Edge& e) const { |
|---|
| 1160 | return (Number(0) < Number((*flow)[e])); |
|---|
| 1161 | } |
|---|
| 1162 | }; |
|---|
| 1163 | |
|---|
| 1164 | |
|---|
| 1165 | /*! \brief An adaptor for composing the residual graph for directed flow and circulation problems. |
|---|
| 1166 | |
|---|
| 1167 | An adaptor for composing the residual graph for directed flow and circulation problems. |
|---|
| 1168 | Let \f$G=(V, A)\f$ be a directed graph and let \f$F\f$ be a |
|---|
| 1169 | number type. Let moreover |
|---|
| 1170 | \f$f,c:A\to F\f$, be functions on the edge-set. |
|---|
| 1171 | In the appications of ResGraphAdaptor, \f$f\f$ usually stands for a flow |
|---|
| 1172 | and \f$c\f$ for a capacity function. |
|---|
| 1173 | Suppose that a graph instange \c g of type |
|---|
| 1174 | \c ListGraph implements \f$G\f$. |
|---|
| 1175 | \code |
|---|
| 1176 | ListGraph g; |
|---|
| 1177 | \endcode |
|---|
| 1178 | Then RevGraphAdaptor implements the graph structure with node-set |
|---|
| 1179 | \f$V\f$ and edge-set \f$A_{forward}\cup A_{backward}\f$, where |
|---|
| 1180 | \f$A_{forward}=\{uv : uv\in A, f(uv)<c(uv)\}\f$ and |
|---|
| 1181 | \f$A_{backward}=\{vu : uv\in A, f(uv)>0\}\f$, |
|---|
| 1182 | i.e. the so called residual graph. |
|---|
| 1183 | When we take the union \f$A_{forward}\cup A_{backward}\f$, |
|---|
| 1184 | multilicities are counted, i.e. if an edge is in both |
|---|
| 1185 | \f$A_{forward}\f$ and \f$A_{backward}\f$, then in the adaptor it |
|---|
| 1186 | appears twice. |
|---|
| 1187 | The following code shows how |
|---|
| 1188 | such an instance can be constructed. |
|---|
| 1189 | \code |
|---|
| 1190 | typedef ListGraph Graph; |
|---|
| 1191 | Graph::EdgeMap<int> f(g); |
|---|
| 1192 | Graph::EdgeMap<int> c(g); |
|---|
| 1193 | ResGraphAdaptor<Graph, int, Graph::EdgeMap<int>, Graph::EdgeMap<int> > gw(g); |
|---|
| 1194 | \endcode |
|---|
| 1195 | \author Marton Makai |
|---|
| 1196 | */ |
|---|
| 1197 | template<typename Graph, typename Number, |
|---|
| 1198 | typename CapacityMap, typename FlowMap> |
|---|
| 1199 | class ResGraphAdaptor : |
|---|
| 1200 | public SubBidirGraphAdaptor< |
|---|
| 1201 | Graph, |
|---|
| 1202 | ResForwardFilter<Graph, Number, CapacityMap, FlowMap>, |
|---|
| 1203 | ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > { |
|---|
| 1204 | public: |
|---|
| 1205 | typedef SubBidirGraphAdaptor< |
|---|
| 1206 | Graph, |
|---|
| 1207 | ResForwardFilter<Graph, Number, CapacityMap, FlowMap>, |
|---|
| 1208 | ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> > Parent; |
|---|
| 1209 | protected: |
|---|
| 1210 | const CapacityMap* capacity; |
|---|
| 1211 | FlowMap* flow; |
|---|
| 1212 | ResForwardFilter<Graph, Number, CapacityMap, FlowMap> forward_filter; |
|---|
| 1213 | ResBackwardFilter<Graph, Number, CapacityMap, FlowMap> backward_filter; |
|---|
| 1214 | ResGraphAdaptor() : Parent(), |
|---|
| 1215 | capacity(0), flow(0) { } |
|---|
| 1216 | void setCapacityMap(const CapacityMap& _capacity) { |
|---|
| 1217 | capacity=&_capacity; |
|---|
| 1218 | forward_filter.setCapacity(_capacity); |
|---|
| 1219 | backward_filter.setCapacity(_capacity); |
|---|
| 1220 | } |
|---|
| 1221 | void setFlowMap(FlowMap& _flow) { |
|---|
| 1222 | flow=&_flow; |
|---|
| 1223 | forward_filter.setFlow(_flow); |
|---|
| 1224 | backward_filter.setFlow(_flow); |
|---|
| 1225 | } |
|---|
| 1226 | public: |
|---|
| 1227 | ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, |
|---|
| 1228 | FlowMap& _flow) : |
|---|
| 1229 | Parent(), capacity(&_capacity), flow(&_flow), |
|---|
| 1230 | forward_filter(/*_graph,*/ _capacity, _flow), |
|---|
| 1231 | backward_filter(/*_graph,*/ _capacity, _flow) { |
|---|
| 1232 | Parent::setGraph(_graph); |
|---|
| 1233 | Parent::setForwardFilterMap(forward_filter); |
|---|
| 1234 | Parent::setBackwardFilterMap(backward_filter); |
|---|
| 1235 | } |
|---|
| 1236 | |
|---|
| 1237 | typedef typename Parent::Edge Edge; |
|---|
| 1238 | |
|---|
| 1239 | void augment(const Edge& e, Number a) const { |
|---|
| 1240 | if (Parent::forward(e)) |
|---|
| 1241 | flow->set(e, (*flow)[e]+a); |
|---|
| 1242 | else |
|---|
| 1243 | flow->set(e, (*flow)[e]-a); |
|---|
| 1244 | } |
|---|
| 1245 | |
|---|
| 1246 | /// \brief Residual capacity map. |
|---|
| 1247 | /// |
|---|
| 1248 | /// In generic residual graphs the residual capacity can be obtained |
|---|
| 1249 | /// as a map. |
|---|
| 1250 | class ResCap { |
|---|
| 1251 | protected: |
|---|
| 1252 | const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>* res_graph; |
|---|
| 1253 | public: |
|---|
| 1254 | typedef Number Value; |
|---|
| 1255 | typedef Edge Key; |
|---|
| 1256 | ResCap(const ResGraphAdaptor<Graph, Number, CapacityMap, FlowMap>& |
|---|
| 1257 | _res_graph) : res_graph(&_res_graph) { } |
|---|
| 1258 | Number operator[](const Edge& e) const { |
|---|
| 1259 | if (res_graph->forward(e)) |
|---|
| 1260 | return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; |
|---|
| 1261 | else |
|---|
| 1262 | return (*(res_graph->flow))[e]; |
|---|
| 1263 | } |
|---|
| 1264 | }; |
|---|
| 1265 | |
|---|
| 1266 | // KEEP_MAPS(Parent, ResGraphAdaptor); |
|---|
| 1267 | }; |
|---|
| 1268 | |
|---|
| 1269 | |
|---|
| 1270 | |
|---|
| 1271 | template <typename _Graph, typename FirstOutEdgesMap> |
|---|
| 1272 | class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> { |
|---|
| 1273 | public: |
|---|
| 1274 | typedef _Graph Graph; |
|---|
| 1275 | typedef GraphAdaptorBase<_Graph> Parent; |
|---|
| 1276 | protected: |
|---|
| 1277 | FirstOutEdgesMap* first_out_edges; |
|---|
| 1278 | ErasingFirstGraphAdaptorBase() : Parent(), |
|---|
| 1279 | first_out_edges(0) { } |
|---|
| 1280 | |
|---|
| 1281 | void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) { |
|---|
| 1282 | first_out_edges=&_first_out_edges; |
|---|
| 1283 | } |
|---|
| 1284 | |
|---|
| 1285 | public: |
|---|
| 1286 | |
|---|
| 1287 | typedef typename Parent::Node Node; |
|---|
| 1288 | typedef typename Parent::Edge Edge; |
|---|
| 1289 | |
|---|
| 1290 | void firstOut(Edge& i, const Node& n) const { |
|---|
| 1291 | i=(*first_out_edges)[n]; |
|---|
| 1292 | } |
|---|
| 1293 | |
|---|
| 1294 | void erase(const Edge& e) const { |
|---|
| 1295 | Node n=source(e); |
|---|
| 1296 | Edge f=e; |
|---|
| 1297 | Parent::nextOut(f); |
|---|
| 1298 | first_out_edges->set(n, f); |
|---|
| 1299 | } |
|---|
| 1300 | }; |
|---|
| 1301 | |
|---|
| 1302 | |
|---|
| 1303 | /// For blocking flows. |
|---|
| 1304 | |
|---|
| 1305 | ///\warning Graph adaptors are in even more experimental state than the other |
|---|
| 1306 | ///parts of the lib. Use them at you own risk. |
|---|
| 1307 | /// |
|---|
| 1308 | /// This graph adaptor is used for on-the-fly |
|---|
| 1309 | /// Dinits blocking flow computations. |
|---|
| 1310 | /// For each node, an out-edge is stored which is used when the |
|---|
| 1311 | /// \code |
|---|
| 1312 | /// OutEdgeIt& first(OutEdgeIt&, const Node&) |
|---|
| 1313 | /// \endcode |
|---|
| 1314 | /// is called. |
|---|
| 1315 | /// |
|---|
| 1316 | /// \author Marton Makai |
|---|
| 1317 | template <typename _Graph, typename FirstOutEdgesMap> |
|---|
| 1318 | class ErasingFirstGraphAdaptor : |
|---|
| 1319 | public IterableGraphExtender< |
|---|
| 1320 | ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > { |
|---|
| 1321 | public: |
|---|
| 1322 | typedef _Graph Graph; |
|---|
| 1323 | typedef IterableGraphExtender< |
|---|
| 1324 | ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent; |
|---|
| 1325 | ErasingFirstGraphAdaptor(Graph& _graph, |
|---|
| 1326 | FirstOutEdgesMap& _first_out_edges) { |
|---|
| 1327 | setGraph(_graph); |
|---|
| 1328 | setFirstOutEdgesMap(_first_out_edges); |
|---|
| 1329 | } |
|---|
| 1330 | |
|---|
| 1331 | }; |
|---|
| 1332 | |
|---|
| 1333 | template <typename _Graph> |
|---|
| 1334 | class NewEdgeSetAdaptorBase { |
|---|
| 1335 | public: |
|---|
| 1336 | |
|---|
| 1337 | typedef _Graph Graph; |
|---|
| 1338 | typedef typename Graph::Node Node; |
|---|
| 1339 | typedef typename Graph::NodeIt NodeIt; |
|---|
| 1340 | |
|---|
| 1341 | protected: |
|---|
| 1342 | |
|---|
| 1343 | struct NodeT { |
|---|
| 1344 | int first_out, first_in; |
|---|
| 1345 | NodeT() : first_out(-1), first_in(-1) {} |
|---|
| 1346 | }; |
|---|
| 1347 | |
|---|
| 1348 | class NodesImpl : protected Graph::template NodeMap<NodeT> { |
|---|
| 1349 | |
|---|
| 1350 | typedef typename Graph::template NodeMap<NodeT> Parent; |
|---|
| 1351 | typedef NewEdgeSetAdaptorBase<Graph> Adaptor; |
|---|
| 1352 | |
|---|
| 1353 | Adaptor& adaptor; |
|---|
| 1354 | |
|---|
| 1355 | public: |
|---|
| 1356 | |
|---|
| 1357 | NodesImpl(Adaptor& _adaptor, const Graph& _graph) |
|---|
| 1358 | : Parent(_graph), adaptor(_adaptor) {} |
|---|
| 1359 | |
|---|
| 1360 | virtual ~NodesImpl() {} |
|---|
| 1361 | |
|---|
| 1362 | virtual void build() { |
|---|
| 1363 | Parent::build(); |
|---|
| 1364 | } |
|---|
| 1365 | |
|---|
| 1366 | virtual void clear() { |
|---|
| 1367 | adaptor._clear(); |
|---|
| 1368 | Parent::clear(); |
|---|
| 1369 | } |
|---|
| 1370 | |
|---|
| 1371 | virtual void add(const Node& node) { |
|---|
| 1372 | Parent::add(node); |
|---|
| 1373 | adaptor._add(node); |
|---|
| 1374 | } |
|---|
| 1375 | |
|---|
| 1376 | virtual void erase(const Node& node) { |
|---|
| 1377 | adaptor._erase(node); |
|---|
| 1378 | Parent::erase(node); |
|---|
| 1379 | } |
|---|
| 1380 | |
|---|
| 1381 | NodeT& operator[](const Node& node) { |
|---|
| 1382 | return Parent::operator[](node); |
|---|
| 1383 | } |
|---|
| 1384 | |
|---|
| 1385 | const NodeT& operator[](const Node& node) const { |
|---|
| 1386 | return Parent::operator[](node); |
|---|
| 1387 | } |
|---|
| 1388 | |
|---|
| 1389 | }; |
|---|
| 1390 | |
|---|
| 1391 | NodesImpl* nodes; |
|---|
| 1392 | |
|---|
| 1393 | struct EdgeT { |
|---|
| 1394 | Node source, target; |
|---|
| 1395 | int next_out, next_in; |
|---|
| 1396 | int prev_out, prev_in; |
|---|
| 1397 | EdgeT() : prev_out(-1), prev_in(-1) {} |
|---|
| 1398 | }; |
|---|
| 1399 | |
|---|
| 1400 | std::vector<EdgeT> edges; |
|---|
| 1401 | |
|---|
| 1402 | int first_edge; |
|---|
| 1403 | int first_free_edge; |
|---|
| 1404 | |
|---|
| 1405 | virtual void _clear() = 0; |
|---|
| 1406 | virtual void _add(const Node& node) = 0; |
|---|
| 1407 | virtual void _erase(const Node& node) = 0; |
|---|
| 1408 | |
|---|
| 1409 | const Graph* graph; |
|---|
| 1410 | |
|---|
| 1411 | void initalize(const Graph& _graph, NodesImpl& _nodes) { |
|---|
| 1412 | graph = &_graph; |
|---|
| 1413 | nodes = &_nodes; |
|---|
| 1414 | } |
|---|
| 1415 | |
|---|
| 1416 | public: |
|---|
| 1417 | |
|---|
| 1418 | class Edge { |
|---|
| 1419 | friend class NewEdgeSetAdaptorBase<Graph>; |
|---|
| 1420 | protected: |
|---|
| 1421 | Edge(int _id) : id(_id) {} |
|---|
| 1422 | int id; |
|---|
| 1423 | public: |
|---|
| 1424 | Edge() {} |
|---|
| 1425 | Edge(Invalid) : id(-1) {} |
|---|
| 1426 | bool operator==(const Edge& edge) const { return id == edge.id; } |
|---|
| 1427 | bool operator!=(const Edge& edge) const { return id != edge.id; } |
|---|
| 1428 | bool operator<(const Edge& edge) const { return id < edge.id; } |
|---|
| 1429 | }; |
|---|
| 1430 | |
|---|
| 1431 | NewEdgeSetAdaptorBase() : first_edge(-1), first_free_edge(-1) {} |
|---|
| 1432 | virtual ~NewEdgeSetAdaptorBase() {} |
|---|
| 1433 | |
|---|
| 1434 | Edge addEdge(const Node& source, const Node& target) { |
|---|
| 1435 | int n; |
|---|
| 1436 | if (first_free_edge == -1) { |
|---|
| 1437 | n = edges.size(); |
|---|
| 1438 | edges.push_back(EdgeT()); |
|---|
| 1439 | } else { |
|---|
| 1440 | n = first_free_edge; |
|---|
| 1441 | first_free_edge = edges[first_free_edge].next_in; |
|---|
| 1442 | } |
|---|
| 1443 | edges[n].next_in = (*nodes)[target].first_in; |
|---|
| 1444 | (*nodes)[target].first_in = n; |
|---|
| 1445 | edges[n].next_out = (*nodes)[source].first_out; |
|---|
| 1446 | (*nodes)[source].first_out = n; |
|---|
| 1447 | edges[n].source = source; |
|---|
| 1448 | edges[n].target = target; |
|---|
| 1449 | return Edge(n); |
|---|
| 1450 | } |
|---|
| 1451 | |
|---|
| 1452 | void erase(const Edge& edge) { |
|---|
| 1453 | int n = edge.id; |
|---|
| 1454 | if (edges[n].prev_in != -1) { |
|---|
| 1455 | edges[edges[n].prev_in].next_in = edges[n].next_in; |
|---|
| 1456 | } else { |
|---|
| 1457 | (*nodes)[edges[n].target].first_in = edges[n].next_in; |
|---|
| 1458 | } |
|---|
| 1459 | if (edges[n].next_in != -1) { |
|---|
| 1460 | edges[edges[n].next_in].prev_in = edges[n].prev_in; |
|---|
| 1461 | } |
|---|
| 1462 | |
|---|
| 1463 | if (edges[n].prev_out != -1) { |
|---|
| 1464 | edges[edges[n].prev_out].next_out = edges[n].next_out; |
|---|
| 1465 | } else { |
|---|
| 1466 | (*nodes)[edges[n].source].first_out = edges[n].next_out; |
|---|
| 1467 | } |
|---|
| 1468 | if (edges[n].next_out != -1) { |
|---|
| 1469 | edges[edges[n].next_out].prev_out = edges[n].prev_out; |
|---|
| 1470 | } |
|---|
| 1471 | |
|---|
| 1472 | } |
|---|
| 1473 | |
|---|
| 1474 | void first(Node& node) const { |
|---|
| 1475 | graph->first(node); |
|---|
| 1476 | } |
|---|
| 1477 | |
|---|
| 1478 | void next(Node& node) const { |
|---|
| 1479 | graph->next(node); |
|---|
| 1480 | } |
|---|
| 1481 | |
|---|
| 1482 | void first(Edge& edge) const { |
|---|
| 1483 | Node node; |
|---|
| 1484 | for (first(node); node != INVALID && (*nodes)[node].first_in == -1; |
|---|
| 1485 | next(node)); |
|---|
| 1486 | edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in; |
|---|
| 1487 | } |
|---|
| 1488 | |
|---|
| 1489 | void next(Edge& edge) const { |
|---|
| 1490 | if (edges[edge.id].next_in != -1) { |
|---|
| 1491 | edge.id = edges[edge.id].next_in; |
|---|
| 1492 | } else { |
|---|
| 1493 | Node node = edges[edge.id].target; |
|---|
| 1494 | for (next(node); node != INVALID && (*nodes)[node].first_in == -1; |
|---|
| 1495 | next(node)); |
|---|
| 1496 | edge.id = (node == INVALID) ? -1 : (*nodes)[node].first_in; |
|---|
| 1497 | } |
|---|
| 1498 | } |
|---|
| 1499 | |
|---|
| 1500 | void firstOut(Edge& edge, const Node& node) const { |
|---|
| 1501 | edge.id = (*nodes)[node].first_out; |
|---|
| 1502 | } |
|---|
| 1503 | |
|---|
| 1504 | void nextOut(Edge& edge) const { |
|---|
| 1505 | edge.id = edges[edge.id].next_out; |
|---|
| 1506 | } |
|---|
| 1507 | |
|---|
| 1508 | void firstIn(Edge& edge, const Node& node) const { |
|---|
| 1509 | edge.id = (*nodes)[node].first_in; |
|---|
| 1510 | } |
|---|
| 1511 | |
|---|
| 1512 | void nextIn(Edge& edge) const { |
|---|
| 1513 | edge.id = edges[edge.id].next_in; |
|---|
| 1514 | } |
|---|
| 1515 | |
|---|
| 1516 | int id(const Node& node) const { return graph->id(node); } |
|---|
| 1517 | int id(const Edge& edge) const { return edge.id; } |
|---|
| 1518 | |
|---|
| 1519 | Node fromId(int id, Node) const { return graph->fromId(id, Node()); } |
|---|
| 1520 | Edge fromId(int id, Edge) const { return Edge(id); } |
|---|
| 1521 | |
|---|
| 1522 | int maxId(Node) const { return graph->maxId(Node()); }; |
|---|
| 1523 | int maxId(Edge) const { return edges.size() - 1; } |
|---|
| 1524 | |
|---|
| 1525 | Node source(const Edge& edge) const { return edges[edge.id].source;} |
|---|
| 1526 | Node target(const Edge& edge) const { return edges[edge.id].target;} |
|---|
| 1527 | |
|---|
| 1528 | }; |
|---|
| 1529 | |
|---|
| 1530 | |
|---|
| 1531 | /// \brief Graph adaptor using a node set of another graph and an |
|---|
| 1532 | /// own edge set. |
|---|
| 1533 | /// |
|---|
| 1534 | /// This structure can be used to establish another graph over a node set |
|---|
| 1535 | /// of an existing one. The node iterator will go through the nodes of the |
|---|
| 1536 | /// original graph. |
|---|
| 1537 | /// |
|---|
| 1538 | /// \param _Graph The type of the graph which shares its node set with |
|---|
| 1539 | /// this class. Its interface must conform to the \ref concept::StaticGraph |
|---|
| 1540 | /// "StaticGraph" concept. |
|---|
| 1541 | /// |
|---|
| 1542 | /// In the edge extension and removing it conforms to the |
|---|
| 1543 | /// \ref concept::ExtendableGraph "ExtendableGraph" concept. |
|---|
| 1544 | template <typename _Graph> |
|---|
| 1545 | class NewEdgeSetAdaptor : |
|---|
| 1546 | public ErasableGraphExtender< |
|---|
| 1547 | ClearableGraphExtender< |
|---|
| 1548 | ExtendableGraphExtender< |
|---|
| 1549 | MappableGraphExtender< |
|---|
| 1550 | IterableGraphExtender< |
|---|
| 1551 | AlterableGraphExtender< |
|---|
| 1552 | NewEdgeSetAdaptorBase<_Graph> > > > > > > { |
|---|
| 1553 | |
|---|
| 1554 | public: |
|---|
| 1555 | |
|---|
| 1556 | typedef ErasableGraphExtender< |
|---|
| 1557 | ClearableGraphExtender< |
|---|
| 1558 | ExtendableGraphExtender< |
|---|
| 1559 | MappableGraphExtender< |
|---|
| 1560 | IterableGraphExtender< |
|---|
| 1561 | AlterableGraphExtender< |
|---|
| 1562 | NewEdgeSetAdaptorBase<_Graph> > > > > > > Parent; |
|---|
| 1563 | |
|---|
| 1564 | |
|---|
| 1565 | typedef typename Parent::Node Node; |
|---|
| 1566 | typedef typename Parent::Edge Edge; |
|---|
| 1567 | |
|---|
| 1568 | private: |
|---|
| 1569 | |
|---|
| 1570 | virtual void _clear() { |
|---|
| 1571 | Parent::edges.clear(); |
|---|
| 1572 | Parent::first_edge = -1; |
|---|
| 1573 | Parent::first_free_edge = -1; |
|---|
| 1574 | Parent::getNotifier(Edge()).clear(); |
|---|
| 1575 | Parent::getNotifier(Node()).clear(); |
|---|
| 1576 | } |
|---|
| 1577 | |
|---|
| 1578 | virtual void _add(const Node& node) { |
|---|
| 1579 | Parent::getNotifier(Node()).add(node); |
|---|
| 1580 | } |
|---|
| 1581 | |
|---|
| 1582 | virtual void _erase(const Node& node) { |
|---|
| 1583 | Edge edge; |
|---|
| 1584 | Parent::firstOut(edge, node); |
|---|
| 1585 | while (edge != INVALID) { |
|---|
| 1586 | Parent::erase(edge); |
|---|
| 1587 | Parent::firstOut(edge, node); |
|---|
| 1588 | } |
|---|
| 1589 | |
|---|
| 1590 | Parent::firstIn(edge, node); |
|---|
| 1591 | while (edge != INVALID) { |
|---|
| 1592 | Parent::erase(edge); |
|---|
| 1593 | Parent::firstIn(edge, node); |
|---|
| 1594 | } |
|---|
| 1595 | |
|---|
| 1596 | Parent::getNotifier(Node()).erase(node); |
|---|
| 1597 | } |
|---|
| 1598 | |
|---|
| 1599 | |
|---|
| 1600 | typedef typename Parent::NodesImpl NodesImpl; |
|---|
| 1601 | |
|---|
| 1602 | NodesImpl nodes; |
|---|
| 1603 | |
|---|
| 1604 | public: |
|---|
| 1605 | |
|---|
| 1606 | /// \brief Constructor of the adaptor. |
|---|
| 1607 | /// |
|---|
| 1608 | /// Constructor of the adaptor. |
|---|
| 1609 | NewEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) { |
|---|
| 1610 | Parent::initalize(_graph, nodes); |
|---|
| 1611 | } |
|---|
| 1612 | |
|---|
| 1613 | void clear() { |
|---|
| 1614 | Parent::getNotifier(Edge()).clear(); |
|---|
| 1615 | |
|---|
| 1616 | Parent::edges.clear(); |
|---|
| 1617 | Parent::first_edge = -1; |
|---|
| 1618 | Parent::first_free_edge = -1; |
|---|
| 1619 | } |
|---|
| 1620 | |
|---|
| 1621 | }; |
|---|
| 1622 | |
|---|
| 1623 | /// \brief Graph adaptor using a node set of another graph and an |
|---|
| 1624 | /// own undir edge set. |
|---|
| 1625 | /// |
|---|
| 1626 | /// This structure can be used to establish another undirected graph over |
|---|
| 1627 | /// a node set of an existing one. The node iterator will go through the |
|---|
| 1628 | /// nodes of the original graph. |
|---|
| 1629 | /// |
|---|
| 1630 | /// \param _Graph The type of the graph which shares its node set with |
|---|
| 1631 | /// this class. Its interface must conform to the \ref concept::StaticGraph |
|---|
| 1632 | /// "StaticGraph" concept. |
|---|
| 1633 | /// |
|---|
| 1634 | /// In the edge extension and removing it conforms to the |
|---|
| 1635 | /// \ref concept::ExtendableGraph "ExtendableGraph" concept. |
|---|
| 1636 | template <typename _Graph> |
|---|
| 1637 | class NewUndirEdgeSetAdaptor : |
|---|
| 1638 | public ErasableUndirGraphExtender< |
|---|
| 1639 | ClearableUndirGraphExtender< |
|---|
| 1640 | ExtendableUndirGraphExtender< |
|---|
| 1641 | MappableUndirGraphExtender< |
|---|
| 1642 | IterableUndirGraphExtender< |
|---|
| 1643 | AlterableUndirGraphExtender< |
|---|
| 1644 | UndirGraphExtender< |
|---|
| 1645 | NewEdgeSetAdaptorBase<_Graph> > > > > > > > { |
|---|
| 1646 | |
|---|
| 1647 | public: |
|---|
| 1648 | |
|---|
| 1649 | typedef ErasableUndirGraphExtender< |
|---|
| 1650 | ClearableUndirGraphExtender< |
|---|
| 1651 | ExtendableUndirGraphExtender< |
|---|
| 1652 | MappableUndirGraphExtender< |
|---|
| 1653 | IterableUndirGraphExtender< |
|---|
| 1654 | AlterableUndirGraphExtender< |
|---|
| 1655 | UndirGraphExtender< |
|---|
| 1656 | NewEdgeSetAdaptorBase<_Graph> > > > > > > > Parent; |
|---|
| 1657 | |
|---|
| 1658 | |
|---|
| 1659 | typedef typename Parent::Node Node; |
|---|
| 1660 | typedef typename Parent::Edge Edge; |
|---|
| 1661 | typedef typename Parent::UndirEdge UndirEdge; |
|---|
| 1662 | |
|---|
| 1663 | private: |
|---|
| 1664 | |
|---|
| 1665 | virtual void _clear() { |
|---|
| 1666 | Parent::edges.clear(); |
|---|
| 1667 | Parent::first_edge = -1; |
|---|
| 1668 | Parent::first_free_edge = -1; |
|---|
| 1669 | Parent::getNotifier(Edge()).clear(); |
|---|
| 1670 | Parent::getNotifier(Node()).clear(); |
|---|
| 1671 | } |
|---|
| 1672 | |
|---|
| 1673 | virtual void _add(const Node& node) { |
|---|
| 1674 | Parent::getNotifier(Node()).add(node); |
|---|
| 1675 | } |
|---|
| 1676 | |
|---|
| 1677 | virtual void _erase(const Node& node) { |
|---|
| 1678 | Edge edge; |
|---|
| 1679 | Parent::firstOut(edge, node); |
|---|
| 1680 | while (edge != INVALID) { |
|---|
| 1681 | Parent::erase(edge); |
|---|
| 1682 | Parent::firstOut(edge, node); |
|---|
| 1683 | } |
|---|
| 1684 | |
|---|
| 1685 | Parent::firstIn(edge, node); |
|---|
| 1686 | while (edge != INVALID) { |
|---|
| 1687 | Parent::erase(edge); |
|---|
| 1688 | Parent::firstIn(edge, node); |
|---|
| 1689 | } |
|---|
| 1690 | |
|---|
| 1691 | Parent::getNotifier(Node()).erase(node); |
|---|
| 1692 | } |
|---|
| 1693 | |
|---|
| 1694 | typedef typename Parent::NodesImpl NodesImpl; |
|---|
| 1695 | |
|---|
| 1696 | NodesImpl nodes; |
|---|
| 1697 | |
|---|
| 1698 | public: |
|---|
| 1699 | |
|---|
| 1700 | |
|---|
| 1701 | /// \brief Constructor of the adaptor. |
|---|
| 1702 | /// |
|---|
| 1703 | /// Constructor of the adaptor. |
|---|
| 1704 | NewUndirEdgeSetAdaptor(const _Graph& _graph) : nodes(*this, _graph) { |
|---|
| 1705 | Parent::initalize(_graph, nodes); |
|---|
| 1706 | } |
|---|
| 1707 | |
|---|
| 1708 | void clear() { |
|---|
| 1709 | Parent::getNotifier(Edge()).clear(); |
|---|
| 1710 | Parent::getNotifier(UndirEdge()).clear(); |
|---|
| 1711 | |
|---|
| 1712 | Parent::edges.clear(); |
|---|
| 1713 | Parent::first_edge = -1; |
|---|
| 1714 | Parent::first_free_edge = -1; |
|---|
| 1715 | } |
|---|
| 1716 | |
|---|
| 1717 | }; |
|---|
| 1718 | |
|---|
| 1719 | ///@} |
|---|
| 1720 | |
|---|
| 1721 | } //namespace lemon |
|---|
| 1722 | |
|---|
| 1723 | #endif //LEMON_GRAPH_ADAPTOR_H |
|---|
| 1724 | |
|---|