/* -*- C++ -*- * * This file is a part of LEMON, a generic C++ optimization library * * Copyright (C) 2003-2006 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_GRAPH_ADAPTOR_H #define LEMON_GRAPH_ADAPTOR_H ///\ingroup graph_adaptors ///\file ///\brief Several graph adaptors. /// ///This file contains several useful graph adaptor functions. /// ///\author Marton Makai #include #include #include #include #include #include #include #include #include #include namespace lemon { ///\brief Base type for the Graph Adaptors ///\ingroup graph_adaptors /// ///Base type for the Graph Adaptors /// ///\warning Graph adaptors are in even ///more experimental state than the other ///parts of the lib. Use them at you own risk. /// ///This is the base type for most of LEMON graph adaptors. ///This class implements a trivial graph adaptor i.e. it only wraps the ///functions and types of the graph. The purpose of this class is to ///make easier implementing graph adaptors. E.g. if an adaptor is ///considered which differs from the wrapped graph only in some of its ///functions or types, then it can be derived from GraphAdaptor, ///and only the ///differences should be implemented. /// ///author Marton Makai template class GraphAdaptorBase { public: typedef _Graph Graph; typedef Graph ParentGraph; protected: Graph* graph; GraphAdaptorBase() : graph(0) { } void setGraph(Graph& _graph) { graph=&_graph; } public: GraphAdaptorBase(Graph& _graph) : graph(&_graph) { } typedef typename Graph::Node Node; typedef typename Graph::Edge Edge; void first(Node& i) const { graph->first(i); } void first(Edge& i) const { graph->first(i); } void firstIn(Edge& i, const Node& n) const { graph->firstIn(i, n); } void firstOut(Edge& i, const Node& n ) const { graph->firstOut(i, n); } void next(Node& i) const { graph->next(i); } void next(Edge& i) const { graph->next(i); } void nextIn(Edge& i) const { graph->nextIn(i); } void nextOut(Edge& i) const { graph->nextOut(i); } Node source(const Edge& e) const { return graph->source(e); } Node target(const Edge& e) const { return graph->target(e); } typedef NodeNumTagIndicator NodeNumTag; int nodeNum() const { return graph->nodeNum(); } typedef EdgeNumTagIndicator EdgeNumTag; int edgeNum() const { return graph->edgeNum(); } typedef FindEdgeTagIndicator FindEdgeTag; Edge findEdge(const Node& source, const Node& target, const Edge& prev = INVALID) { return graph->findEdge(source, target, prev); } Node addNode() const { return Node(graph->addNode()); } Edge addEdge(const Node& source, const Node& target) const { return Edge(graph->addEdge(source, target)); } void erase(const Node& i) const { graph->erase(i); } void erase(const Edge& i) const { graph->erase(i); } void clear() const { graph->clear(); } int id(const Node& v) const { return graph->id(v); } int id(const Edge& e) const { return graph->id(e); } Edge oppositeNode(const Edge& e) const { return Edge(graph->opposite(e)); } template class NodeMap : public _Graph::template NodeMap<_Value> { public: typedef typename _Graph::template NodeMap<_Value> Parent; explicit NodeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { } NodeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value) : Parent(*gw.graph, value) { } }; template class EdgeMap : public _Graph::template EdgeMap<_Value> { public: typedef typename _Graph::template EdgeMap<_Value> Parent; explicit EdgeMap(const GraphAdaptorBase<_Graph>& gw) : Parent(*gw.graph) { } EdgeMap(const GraphAdaptorBase<_Graph>& gw, const _Value& value) : Parent(*gw.graph, value) { } }; }; template class GraphAdaptor : public IterableGraphExtender > { public: typedef _Graph Graph; typedef IterableGraphExtender > Parent; protected: GraphAdaptor() : Parent() { } public: explicit GraphAdaptor(Graph& _graph) { setGraph(_graph); } }; template class RevGraphAdaptorBase : public GraphAdaptorBase<_Graph> { public: typedef _Graph Graph; typedef GraphAdaptorBase<_Graph> Parent; protected: RevGraphAdaptorBase() : Parent() { } public: typedef typename Parent::Node Node; typedef typename Parent::Edge Edge; void firstIn(Edge& i, const Node& n) const { Parent::firstOut(i, n); } void firstOut(Edge& i, const Node& n ) const { Parent::firstIn(i, n); } void nextIn(Edge& i) const { Parent::nextOut(i); } void nextOut(Edge& i) const { Parent::nextIn(i); } Node source(const Edge& e) const { return Parent::target(e); } Node target(const Edge& e) const { return Parent::source(e); } }; ///\brief A graph adaptor which reverses the orientation of the edges. ///\ingroup graph_adaptors /// ///\warning Graph adaptors are in even more experimental ///state than the other ///parts of the lib. Use them at you own risk. /// /// If \c g is defined as ///\code /// ListGraph g; ///\endcode /// then ///\code /// RevGraphAdaptor gw(g); ///\endcode ///implements the graph obtained from \c g by /// reversing the orientation of its edges. template class RevGraphAdaptor : public IterableGraphExtender > { public: typedef _Graph Graph; typedef IterableGraphExtender< RevGraphAdaptorBase<_Graph> > Parent; protected: RevGraphAdaptor() { } public: explicit RevGraphAdaptor(_Graph& _graph) { setGraph(_graph); } }; template class SubGraphAdaptorBase : public GraphAdaptorBase<_Graph> { public: typedef _Graph Graph; typedef GraphAdaptorBase<_Graph> Parent; protected: NodeFilterMap* node_filter_map; EdgeFilterMap* edge_filter_map; SubGraphAdaptorBase() : Parent(), node_filter_map(0), edge_filter_map(0) { } void setNodeFilterMap(NodeFilterMap& _node_filter_map) { node_filter_map=&_node_filter_map; } void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) { edge_filter_map=&_edge_filter_map; } public: typedef typename Parent::Node Node; typedef typename Parent::Edge Edge; void first(Node& i) const { Parent::first(i); while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); } void first(Edge& i) const { Parent::first(i); while (i!=INVALID && (!(*edge_filter_map)[i] || !(*node_filter_map)[Parent::source(i)] || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); } void firstIn(Edge& i, const Node& n) const { Parent::firstIn(i, n); while (i!=INVALID && (!(*edge_filter_map)[i] || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); } void firstOut(Edge& i, const Node& n) const { Parent::firstOut(i, n); while (i!=INVALID && (!(*edge_filter_map)[i] || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); } void next(Node& i) const { Parent::next(i); while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); } void next(Edge& i) const { Parent::next(i); while (i!=INVALID && (!(*edge_filter_map)[i] || !(*node_filter_map)[Parent::source(i)] || !(*node_filter_map)[Parent::target(i)])) Parent::next(i); } void nextIn(Edge& i) const { Parent::nextIn(i); while (i!=INVALID && (!(*edge_filter_map)[i] || !(*node_filter_map)[Parent::source(i)])) Parent::nextIn(i); } void nextOut(Edge& i) const { Parent::nextOut(i); while (i!=INVALID && (!(*edge_filter_map)[i] || !(*node_filter_map)[Parent::target(i)])) Parent::nextOut(i); } ///\e /// This function hides \c n in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c n /// to be false in the corresponding node-map. void hide(const Node& n) const { node_filter_map->set(n, false); } ///\e /// This function hides \c e in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c e /// to be false in the corresponding edge-map. void hide(const Edge& e) const { edge_filter_map->set(e, false); } ///\e /// The value of \c n is set to be true in the node-map which stores /// hide information. If \c n was hidden previuosly, then it is shown /// again void unHide(const Node& n) const { node_filter_map->set(n, true); } ///\e /// The value of \c e is set to be true in the edge-map which stores /// hide information. If \c e was hidden previuosly, then it is shown /// again void unHide(const Edge& e) const { edge_filter_map->set(e, true); } /// Returns true if \c n is hidden. ///\e /// bool hidden(const Node& n) const { return !(*node_filter_map)[n]; } /// Returns true if \c n is hidden. ///\e /// bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; } typedef False NodeNumTag; typedef False EdgeNumTag; }; template class SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, false> : public GraphAdaptorBase<_Graph> { public: typedef _Graph Graph; typedef GraphAdaptorBase<_Graph> Parent; protected: NodeFilterMap* node_filter_map; EdgeFilterMap* edge_filter_map; SubGraphAdaptorBase() : Parent(), node_filter_map(0), edge_filter_map(0) { } void setNodeFilterMap(NodeFilterMap& _node_filter_map) { node_filter_map=&_node_filter_map; } void setEdgeFilterMap(EdgeFilterMap& _edge_filter_map) { edge_filter_map=&_edge_filter_map; } public: typedef typename Parent::Node Node; typedef typename Parent::Edge Edge; void first(Node& i) const { Parent::first(i); while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); } void first(Edge& i) const { Parent::first(i); while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); } void firstIn(Edge& i, const Node& n) const { Parent::firstIn(i, n); while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); } void firstOut(Edge& i, const Node& n) const { Parent::firstOut(i, n); while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); } void next(Node& i) const { Parent::next(i); while (i!=INVALID && !(*node_filter_map)[i]) Parent::next(i); } void next(Edge& i) const { Parent::next(i); while (i!=INVALID && !(*edge_filter_map)[i]) Parent::next(i); } void nextIn(Edge& i) const { Parent::nextIn(i); while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextIn(i); } void nextOut(Edge& i) const { Parent::nextOut(i); while (i!=INVALID && !(*edge_filter_map)[i]) Parent::nextOut(i); } ///\e /// This function hides \c n in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c n /// to be false in the corresponding node-map. void hide(const Node& n) const { node_filter_map->set(n, false); } ///\e /// This function hides \c e in the graph, i.e. the iteration /// jumps over it. This is done by simply setting the value of \c e /// to be false in the corresponding edge-map. void hide(const Edge& e) const { edge_filter_map->set(e, false); } ///\e /// The value of \c n is set to be true in the node-map which stores /// hide information. If \c n was hidden previuosly, then it is shown /// again void unHide(const Node& n) const { node_filter_map->set(n, true); } ///\e /// The value of \c e is set to be true in the edge-map which stores /// hide information. If \c e was hidden previuosly, then it is shown /// again void unHide(const Edge& e) const { edge_filter_map->set(e, true); } /// Returns true if \c n is hidden. ///\e /// bool hidden(const Node& n) const { return !(*node_filter_map)[n]; } /// Returns true if \c n is hidden. ///\e /// bool hidden(const Edge& e) const { return !(*edge_filter_map)[e]; } typedef False NodeNumTag; typedef False EdgeNumTag; }; /// \brief A graph adaptor for hiding nodes and edges from a graph. /// \ingroup graph_adaptors /// /// \warning Graph adaptors are in even more experimental state than the /// other parts of the lib. Use them at you own risk. /// /// SubGraphAdaptor shows the graph with filtered node-set and /// edge-set. If the \c checked parameter is true then it filters the edgeset /// to do not get invalid edges without source or target. /// Let \f$ G=(V, A) \f$ be a directed graph /// and suppose that the graph instance \c g of type ListGraph /// implements \f$ G \f$. /// Let moreover \f$ b_V \f$ and \f$ b_A \f$ be bool-valued functions resp. /// on the node-set and edge-set. /// SubGraphAdaptor<...>::NodeIt iterates /// on the node-set \f$ \{v\in V : b_V(v)=true\} \f$ and /// SubGraphAdaptor<...>::EdgeIt iterates /// on the edge-set \f$ \{e\in A : b_A(e)=true\} \f$. Similarly, /// SubGraphAdaptor<...>::OutEdgeIt and /// SubGraphAdaptor<...>::InEdgeIt iterates /// only on edges leaving and entering a specific node which have true value. /// /// If the \c checked template parameter is false then we have to note that /// the node-iterator cares only the filter on the node-set, and the /// edge-iterator cares only the filter on the edge-set. /// This way the edge-map /// should filter all edges which's source or target is filtered by the /// node-filter. ///\code /// typedef ListGraph Graph; /// Graph g; /// typedef Graph::Node Node; /// typedef Graph::Edge Edge; /// Node u=g.addNode(); //node of id 0 /// Node v=g.addNode(); //node of id 1 /// Node e=g.addEdge(u, v); //edge of id 0 /// Node f=g.addEdge(v, u); //edge of id 1 /// Graph::NodeMap nm(g, true); /// nm.set(u, false); /// Graph::EdgeMap em(g, true); /// em.set(e, false); /// typedef SubGraphAdaptor, Graph::EdgeMap > SubGW; /// SubGW gw(g, nm, em); /// for (SubGW::NodeIt n(gw); n!=INVALID; ++n) std::cout << g.id(n) << std::endl; /// std::cout << ":-)" << std::endl; /// for (SubGW::EdgeIt e(gw); e!=INVALID; ++e) std::cout << g.id(e) << std::endl; ///\endcode /// The output of the above code is the following. ///\code /// 1 /// :-) /// 1 ///\endcode /// Note that \c n is of type \c SubGW::NodeIt, but it can be converted to /// \c Graph::Node that is why \c g.id(n) can be applied. /// /// For other examples see also the documentation of NodeSubGraphAdaptor and /// EdgeSubGraphAdaptor. /// /// \author Marton Makai template class SubGraphAdaptor : public IterableGraphExtender< SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap, checked> > { public: typedef _Graph Graph; typedef IterableGraphExtender< SubGraphAdaptorBase<_Graph, NodeFilterMap, EdgeFilterMap> > Parent; protected: SubGraphAdaptor() { } public: SubGraphAdaptor(_Graph& _graph, NodeFilterMap& _node_filter_map, EdgeFilterMap& _edge_filter_map) { setGraph(_graph); setNodeFilterMap(_node_filter_map); setEdgeFilterMap(_edge_filter_map); } }; ///\brief An adaptor for hiding nodes from a graph. ///\ingroup graph_adaptors /// ///\warning Graph adaptors are in even more experimental state ///than the other ///parts of the lib. Use them at you own risk. /// ///An adaptor for hiding nodes from a graph. ///This adaptor specializes SubGraphAdaptor in the way that only ///the node-set ///can be filtered. In usual case the checked parameter is true, we get the ///induced subgraph. But if the checked parameter is false then we can only ///filter only isolated nodes. ///\author Marton Makai template class NodeSubGraphAdaptor : public SubGraphAdaptor, checked> { public: typedef SubGraphAdaptor > Parent; protected: ConstMap const_true_map; public: NodeSubGraphAdaptor(Graph& _graph, NodeFilterMap& _node_filter_map) : Parent(), const_true_map(true) { Parent::setGraph(_graph); Parent::setNodeFilterMap(_node_filter_map); Parent::setEdgeFilterMap(const_true_map); } }; ///\brief An adaptor for hiding edges from a graph. /// ///\warning Graph adaptors are in even more experimental state ///than the other parts of the lib. Use them at you own risk. /// ///An adaptor for hiding edges from a graph. ///This adaptor specializes SubGraphAdaptor in the way that ///only the edge-set ///can be filtered. The usefulness of this adaptor is demonstrated in the ///problem of searching a maximum number of edge-disjoint shortest paths ///between ///two nodes \c s and \c t. Shortest here means being shortest w.r.t. ///non-negative edge-lengths. Note that ///the comprehension of the presented solution ///need's some elementary knowledge from combinatorial optimization. /// ///If a single shortest path is to be ///searched between \c s and \c t, then this can be done easily by ///applying the Dijkstra algorithm. What happens, if a maximum number of ///edge-disjoint shortest paths is to be computed. It can be proved that an ///edge can be in a shortest path if and only ///if it is tight with respect to ///the potential function computed by Dijkstra. ///Moreover, any path containing ///only such edges is a shortest one. ///Thus we have to compute a maximum number ///of edge-disjoint paths between \c s and \c t in ///the graph which has edge-set ///all the tight edges. The computation will be demonstrated ///on the following ///graph, which is read from the dimacs file \c sub_graph_adaptor_demo.dim. ///The full source code is available in \ref sub_graph_adaptor_demo.cc. ///If you are interested in more demo programs, you can use ///\ref dim_to_dot.cc to generate .dot files from dimacs files. ///The .dot file of the following figure was generated by ///the demo program \ref dim_to_dot.cc. /// ///\dot ///digraph lemon_dot_example { ///node [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; ///n0 [ label="0 (s)" ]; ///n1 [ label="1" ]; ///n2 [ label="2" ]; ///n3 [ label="3" ]; ///n4 [ label="4" ]; ///n5 [ label="5" ]; ///n6 [ label="6 (t)" ]; ///edge [ shape=ellipse, fontname=Helvetica, fontsize=10 ]; ///n5 -> n6 [ label="9, length:4" ]; ///n4 -> n6 [ label="8, length:2" ]; ///n3 -> n5 [ label="7, length:1" ]; ///n2 -> n5 [ label="6, length:3" ]; ///n2 -> n6 [ label="5, length:5" ]; ///n2 -> n4 [ label="4, length:2" ]; ///n1 -> n4 [ label="3, length:3" ]; ///n0 -> n3 [ label="2, length:1" ]; ///n0 -> n2 [ label="1, length:2" ]; ///n0 -> n1 [ label="0, length:3" ]; ///} ///\enddot /// ///\code ///Graph g; ///Node s, t; ///LengthMap length(g); /// ///readDimacs(std::cin, g, length, s, t); /// ///cout << "edges with lengths (of form id, source--length->target): " << endl; ///for(EdgeIt e(g); e!=INVALID; ++e) /// cout << g.id(e) << ", " << g.id(g.source(e)) << "--" /// << length[e] << "->" << g.id(g.target(e)) << endl; /// ///cout << "s: " << g.id(s) << " t: " << g.id(t) << endl; ///\endcode ///Next, the potential function is computed with Dijkstra. ///\code ///typedef Dijkstra Dijkstra; ///Dijkstra dijkstra(g, length); ///dijkstra.run(s); ///\endcode ///Next, we consrtruct a map which filters the edge-set to the tight edges. ///\code ///typedef TightEdgeFilterMap /// TightEdgeFilter; ///TightEdgeFilter tight_edge_filter(g, dijkstra.distMap(), length); /// ///typedef EdgeSubGraphAdaptor SubGW; ///SubGW gw(g, tight_edge_filter); ///\endcode ///Then, the maximum nimber of edge-disjoint \c s-\c t paths are computed ///with a max flow algorithm Preflow. ///\code ///ConstMap const_1_map(1); ///Graph::EdgeMap flow(g, 0); /// ///Preflow, Graph::EdgeMap > /// preflow(gw, s, t, const_1_map, flow); ///preflow.run(); ///\endcode ///Last, the output is: ///\code ///cout << "maximum number of edge-disjoint shortest path: " /// << preflow.flowValue() << endl; ///cout << "edges of the maximum number of edge-disjoint shortest s-t paths: " /// << endl; ///for(EdgeIt e(g); e!=INVALID; ++e) /// if (flow[e]) /// cout << " " << g.id(g.source(e)) << "--" /// << length[e] << "->" << g.id(g.target(e)) << endl; ///\endcode ///The program has the following (expected :-)) output: ///\code ///edges with lengths (of form id, source--length->target): /// 9, 5--4->6 /// 8, 4--2->6 /// 7, 3--1->5 /// 6, 2--3->5 /// 5, 2--5->6 /// 4, 2--2->4 /// 3, 1--3->4 /// 2, 0--1->3 /// 1, 0--2->2 /// 0, 0--3->1 ///s: 0 t: 6 ///maximum number of edge-disjoint shortest path: 2 ///edges of the maximum number of edge-disjoint shortest s-t paths: /// 9, 5--4->6 /// 8, 4--2->6 /// 7, 3--1->5 /// 4, 2--2->4 /// 2, 0--1->3 /// 1, 0--2->2 ///\endcode /// ///\author Marton Makai template class EdgeSubGraphAdaptor : public SubGraphAdaptor, EdgeFilterMap, false> { public: typedef SubGraphAdaptor, EdgeFilterMap, false> Parent; protected: ConstMap const_true_map; public: EdgeSubGraphAdaptor(Graph& _graph, EdgeFilterMap& _edge_filter_map) : Parent(), const_true_map(true) { Parent::setGraph(_graph); Parent::setNodeFilterMap(const_true_map); Parent::setEdgeFilterMap(_edge_filter_map); } }; template class UGraphAdaptorBase : public UGraphExtender > { public: typedef _Graph Graph; typedef UGraphExtender > Parent; protected: UGraphAdaptorBase() : Parent() { } public: typedef typename Parent::UEdge UEdge; typedef typename Parent::Edge Edge; template class EdgeMap { protected: const UGraphAdaptorBase<_Graph>* g; template friend class EdgeMap; typename _Graph::template EdgeMap forward_map, backward_map; public: typedef T Value; typedef Edge Key; EdgeMap(const UGraphAdaptorBase<_Graph>& _g) : g(&_g), forward_map(*(g->graph)), backward_map(*(g->graph)) { } EdgeMap(const UGraphAdaptorBase<_Graph>& _g, T a) : g(&_g), forward_map(*(g->graph), a), backward_map(*(g->graph), a) { } void set(Edge e, T a) { if (g->direction(e)) forward_map.set(e, a); else backward_map.set(e, a); } T operator[](Edge e) const { if (g->direction(e)) return forward_map[e]; else return backward_map[e]; } }; template class UEdgeMap { template friend class UEdgeMap; typename _Graph::template EdgeMap map; public: typedef T Value; typedef UEdge Key; UEdgeMap(const UGraphAdaptorBase<_Graph>& g) : map(*(g.graph)) { } UEdgeMap(const UGraphAdaptorBase<_Graph>& g, T a) : map(*(g.graph), a) { } void set(UEdge e, T a) { map.set(e, a); } T operator[](UEdge e) const { return map[e]; } }; }; ///\brief An undirected graph is made from a directed graph by an adaptor ///\ingroup graph_adaptors /// /// Undocumented, untested!!! /// If somebody knows nice demo application, let's polulate it. /// /// \author Marton Makai template class UGraphAdaptor : public IterableUGraphExtender< UGraphAdaptorBase<_Graph> > { public: typedef _Graph Graph; typedef IterableUGraphExtender< UGraphAdaptorBase<_Graph> > Parent; protected: UGraphAdaptor() { } public: UGraphAdaptor(_Graph& _graph) { setGraph(_graph); } }; template class SubBidirGraphAdaptorBase : public GraphAdaptorBase<_Graph> { public: typedef _Graph Graph; typedef GraphAdaptorBase<_Graph> Parent; protected: ForwardFilterMap* forward_filter; BackwardFilterMap* backward_filter; SubBidirGraphAdaptorBase() : Parent(), forward_filter(0), backward_filter(0) { } void setForwardFilterMap(ForwardFilterMap& _forward_filter) { forward_filter=&_forward_filter; } void setBackwardFilterMap(BackwardFilterMap& _backward_filter) { backward_filter=&_backward_filter; } public: // SubGraphAdaptorBase(Graph& _graph, // NodeFilterMap& _node_filter_map, // EdgeFilterMap& _edge_filter_map) : // Parent(&_graph), // node_filter_map(&node_filter_map), // edge_filter_map(&edge_filter_map) { } typedef typename Parent::Node Node; typedef typename _Graph::Edge GraphEdge; template class EdgeMap; // SubBidirGraphAdaptorBase<..., ..., ...>::Edge is inherited from // _Graph::Edge. It contains an extra bool flag which is true // if and only if the // edge is the backward version of the original edge. class Edge : public _Graph::Edge { friend class SubBidirGraphAdaptorBase< Graph, ForwardFilterMap, BackwardFilterMap>; template friend class EdgeMap; protected: bool backward; //true, iff backward public: Edge() { } // \todo =false is needed, or causes problems? // If \c _backward is false, then we get an edge corresponding to the // original one, otherwise its oppositely directed pair is obtained. Edge(const typename _Graph::Edge& e, bool _backward/*=false*/) : _Graph::Edge(e), backward(_backward) { } Edge(Invalid i) : _Graph::Edge(i), backward(true) { } bool operator==(const Edge& v) const { return (this->backward==v.backward && static_cast(*this)== static_cast(v)); } bool operator!=(const Edge& v) const { return (this->backward!=v.backward || static_cast(*this)!= static_cast(v)); } }; void first(Node& i) const { Parent::first(i); } void first(Edge& i) const { Parent::first(i); i.backward=false; while (*static_cast(&i)!=INVALID && !(*forward_filter)[i]) Parent::next(i); if (*static_cast(&i)==INVALID) { Parent::first(i); i.backward=true; while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::next(i); } } void firstIn(Edge& i, const Node& n) const { Parent::firstIn(i, n); i.backward=false; while (*static_cast(&i)!=INVALID && !(*forward_filter)[i]) Parent::nextIn(i); if (*static_cast(&i)==INVALID) { Parent::firstOut(i, n); i.backward=true; while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::nextOut(i); } } void firstOut(Edge& i, const Node& n) const { Parent::firstOut(i, n); i.backward=false; while (*static_cast(&i)!=INVALID && !(*forward_filter)[i]) Parent::nextOut(i); if (*static_cast(&i)==INVALID) { Parent::firstIn(i, n); i.backward=true; while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::nextIn(i); } } void next(Node& i) const { Parent::next(i); } void next(Edge& i) const { if (!(i.backward)) { Parent::next(i); while (*static_cast(&i)!=INVALID && !(*forward_filter)[i]) Parent::next(i); if (*static_cast(&i)==INVALID) { Parent::first(i); i.backward=true; while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::next(i); } } else { Parent::next(i); while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::next(i); } } void nextIn(Edge& i) const { if (!(i.backward)) { Node n=Parent::target(i); Parent::nextIn(i); while (*static_cast(&i)!=INVALID && !(*forward_filter)[i]) Parent::nextIn(i); if (*static_cast(&i)==INVALID) { Parent::firstOut(i, n); i.backward=true; while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::nextOut(i); } } else { Parent::nextOut(i); while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::nextOut(i); } } void nextOut(Edge& i) const { if (!(i.backward)) { Node n=Parent::source(i); Parent::nextOut(i); while (*static_cast(&i)!=INVALID && !(*forward_filter)[i]) Parent::nextOut(i); if (*static_cast(&i)==INVALID) { Parent::firstIn(i, n); i.backward=true; while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::nextIn(i); } } else { Parent::nextIn(i); while (*static_cast(&i)!=INVALID && !(*backward_filter)[i]) Parent::nextIn(i); } } Node source(Edge e) const { return ((!e.backward) ? this->graph->source(e) : this->graph->target(e)); } Node target(Edge e) const { return ((!e.backward) ? this->graph->target(e) : this->graph->source(e)); } /// Gives back the opposite edge. ///\e /// Edge opposite(const Edge& e) const { Edge f=e; f.backward=!f.backward; return f; } ///\e /// \warning This is a linear time operation and works only if /// \c Graph::EdgeIt is defined. /// \todo hmm int edgeNum() const { int i=0; Edge e; for (first(e); e!=INVALID; next(e)) ++i; return i; } bool forward(const Edge& e) const { return !e.backward; } bool backward(const Edge& e) const { return e.backward; } ///\e /// \c SubBidirGraphAdaptorBase<..., ..., ...>::EdgeMap contains two /// _Graph::EdgeMap one for the forward edges and /// one for the backward edges. template class EdgeMap { template friend class EdgeMap; typename _Graph::template EdgeMap forward_map, backward_map; public: typedef T Value; typedef Edge Key; EdgeMap(const SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap>& g) : forward_map(*(g.graph)), backward_map(*(g.graph)) { } EdgeMap(const SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap>& g, T a) : forward_map(*(g.graph), a), backward_map(*(g.graph), a) { } void set(Edge e, T a) { if (!e.backward) forward_map.set(e, a); else backward_map.set(e, a); } // typename _Graph::template EdgeMap::ConstReference // operator[](Edge e) const { // if (!e.backward) // return forward_map[e]; // else // return backward_map[e]; // } // typename _Graph::template EdgeMap::Reference T operator[](Edge e) const { if (!e.backward) return forward_map[e]; else return backward_map[e]; } void update() { forward_map.update(); backward_map.update(); } }; }; ///\brief An adaptor for composing a subgraph of a /// bidirected graph made from a directed one. ///\ingroup graph_adaptors /// /// An adaptor for composing a subgraph of a /// bidirected graph made from a directed one. /// ///\warning Graph adaptors are in even more experimental state ///than the other ///parts of the lib. Use them at you own risk. /// /// Let \f$ G=(V, A) \f$ be a directed graph and for each directed edge ///\f$ e\in A \f$, let \f$ \bar e \f$ denote the edge obtained by /// reversing its orientation. We are given moreover two bool valued /// maps on the edge-set, ///\f$ forward\_filter \f$, and \f$ backward\_filter \f$. /// SubBidirGraphAdaptor implements the graph structure with node-set ///\f$ V \f$ and edge-set ///\f$ \{e : e\in A \mbox{ and } forward\_filter(e) \mbox{ is true}\}+\{\bar e : e\in A \mbox{ and } backward\_filter(e) \mbox{ is true}\} \f$. /// The purpose of writing + instead of union is because parallel /// edges can arise. (Similarly, antiparallel edges also can arise). /// In other words, a subgraph of the bidirected graph obtained, which /// is given by orienting the edges of the original graph in both directions. /// As the oppositely directed edges are logically different, /// the maps are able to attach different values for them. /// /// An example for such a construction is \c RevGraphAdaptor where the /// forward_filter is everywhere false and the backward_filter is /// everywhere true. We note that for sake of efficiency, /// \c RevGraphAdaptor is implemented in a different way. /// But BidirGraphAdaptor is obtained from /// SubBidirGraphAdaptor by considering everywhere true /// valued maps both for forward_filter and backward_filter. /// /// The most important application of SubBidirGraphAdaptor /// is ResGraphAdaptor, which stands for the residual graph in directed /// flow and circulation problems. /// As adaptors usually, the SubBidirGraphAdaptor implements the /// above mentioned graph structure without its physical storage, /// that is the whole stuff is stored in constant memory. template class SubBidirGraphAdaptor : public IterableGraphExtender< SubBidirGraphAdaptorBase<_Graph, ForwardFilterMap, BackwardFilterMap> > { public: typedef _Graph Graph; typedef IterableGraphExtender< SubBidirGraphAdaptorBase< _Graph, ForwardFilterMap, BackwardFilterMap> > Parent; protected: SubBidirGraphAdaptor() { } public: SubBidirGraphAdaptor(_Graph& _graph, ForwardFilterMap& _forward_filter, BackwardFilterMap& _backward_filter) { setGraph(_graph); setForwardFilterMap(_forward_filter); setBackwardFilterMap(_backward_filter); } }; ///\brief An adaptor for composing bidirected graph from a directed one. ///\ingroup graph_adaptors /// ///\warning Graph adaptors are in even more experimental state ///than the other ///parts of the lib. Use them at you own risk. /// /// An adaptor for composing bidirected graph from a directed one. /// A bidirected graph is composed over the directed one without physical /// storage. As the oppositely directed edges are logically different ones /// the maps are able to attach different values for them. template class BidirGraphAdaptor : public SubBidirGraphAdaptor< Graph, ConstMap, ConstMap > { public: typedef SubBidirGraphAdaptor< Graph, ConstMap, ConstMap > Parent; protected: ConstMap cm; BidirGraphAdaptor() : Parent(), cm(true) { Parent::setForwardFilterMap(cm); Parent::setBackwardFilterMap(cm); } public: BidirGraphAdaptor(Graph& _graph) : Parent(), cm(true) { Parent::setGraph(_graph); Parent::setForwardFilterMap(cm); Parent::setBackwardFilterMap(cm); } int edgeNum() const { return 2*this->graph->edgeNum(); } }; template class ResForwardFilter { // const Graph* graph; const CapacityMap* capacity; const FlowMap* flow; public: ResForwardFilter(/*const Graph& _graph, */ const CapacityMap& _capacity, const FlowMap& _flow) : /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } ResForwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } void setFlow(const FlowMap& _flow) { flow=&_flow; } bool operator[](const typename Graph::Edge& e) const { return (Number((*flow)[e]) < Number((*capacity)[e])); } }; template class ResBackwardFilter { const CapacityMap* capacity; const FlowMap* flow; public: ResBackwardFilter(/*const Graph& _graph,*/ const CapacityMap& _capacity, const FlowMap& _flow) : /*graph(&_graph),*/ capacity(&_capacity), flow(&_flow) { } ResBackwardFilter() : /*graph(0),*/ capacity(0), flow(0) { } void setCapacity(const CapacityMap& _capacity) { capacity=&_capacity; } void setFlow(const FlowMap& _flow) { flow=&_flow; } bool operator[](const typename Graph::Edge& e) const { return (Number(0) < Number((*flow)[e])); } }; ///\brief An adaptor for composing the residual ///graph for directed flow and circulation problems. ///\ingroup graph_adaptors /// ///An adaptor for composing the residual graph for ///directed flow and circulation problems. ///Let \f$ G=(V, A) \f$ be a directed graph and let \f$ F \f$ be a ///number type. Let moreover ///\f$ f,c:A\to F \f$, be functions on the edge-set. ///In the appications of ResGraphAdaptor, \f$ f \f$ usually stands for a flow ///and \f$ c \f$ for a capacity function. ///Suppose that a graph instange \c g of type ///\c ListGraph implements \f$ G \f$. ///\code /// ListGraph g; ///\endcode ///Then RevGraphAdaptor implements the graph structure with node-set ///\f$ V \f$ and edge-set \f$ A_{forward}\cup A_{backward} \f$, where ///\f$ A_{forward}=\{uv : uv\in A, f(uv)0\} \f$, ///i.e. the so called residual graph. ///When we take the union \f$ A_{forward}\cup A_{backward} \f$, ///multilicities are counted, i.e. if an edge is in both ///\f$ A_{forward} \f$ and \f$ A_{backward} \f$, then in the adaptor it ///appears twice. ///The following code shows how ///such an instance can be constructed. ///\code ///typedef ListGraph Graph; ///Graph::EdgeMap f(g); ///Graph::EdgeMap c(g); ///ResGraphAdaptor, Graph::EdgeMap > gw(g); ///\endcode ///\author Marton Makai /// template class ResGraphAdaptor : public SubBidirGraphAdaptor< Graph, ResForwardFilter, ResBackwardFilter > { public: typedef SubBidirGraphAdaptor< Graph, ResForwardFilter, ResBackwardFilter > Parent; protected: const CapacityMap* capacity; FlowMap* flow; ResForwardFilter forward_filter; ResBackwardFilter backward_filter; ResGraphAdaptor() : Parent(), capacity(0), flow(0) { } void setCapacityMap(const CapacityMap& _capacity) { capacity=&_capacity; forward_filter.setCapacity(_capacity); backward_filter.setCapacity(_capacity); } void setFlowMap(FlowMap& _flow) { flow=&_flow; forward_filter.setFlow(_flow); backward_filter.setFlow(_flow); } public: ResGraphAdaptor(Graph& _graph, const CapacityMap& _capacity, FlowMap& _flow) : Parent(), capacity(&_capacity), flow(&_flow), forward_filter(/*_graph,*/ _capacity, _flow), backward_filter(/*_graph,*/ _capacity, _flow) { Parent::setGraph(_graph); Parent::setForwardFilterMap(forward_filter); Parent::setBackwardFilterMap(backward_filter); } typedef typename Parent::Edge Edge; void augment(const Edge& e, Number a) const { if (Parent::forward(e)) flow->set(e, (*flow)[e]+a); else flow->set(e, (*flow)[e]-a); } /// \brief Residual capacity map. /// /// In generic residual graphs the residual capacity can be obtained /// as a map. class ResCap { protected: const ResGraphAdaptor* res_graph; public: typedef Number Value; typedef Edge Key; ResCap(const ResGraphAdaptor& _res_graph) : res_graph(&_res_graph) { } Number operator[](const Edge& e) const { if (res_graph->forward(e)) return (*(res_graph->capacity))[e]-(*(res_graph->flow))[e]; else return (*(res_graph->flow))[e]; } }; // KEEP_MAPS(Parent, ResGraphAdaptor); }; template class ErasingFirstGraphAdaptorBase : public GraphAdaptorBase<_Graph> { public: typedef _Graph Graph; typedef GraphAdaptorBase<_Graph> Parent; protected: FirstOutEdgesMap* first_out_edges; ErasingFirstGraphAdaptorBase() : Parent(), first_out_edges(0) { } void setFirstOutEdgesMap(FirstOutEdgesMap& _first_out_edges) { first_out_edges=&_first_out_edges; } public: typedef typename Parent::Node Node; typedef typename Parent::Edge Edge; void firstOut(Edge& i, const Node& n) const { i=(*first_out_edges)[n]; } void erase(const Edge& e) const { Node n=source(e); Edge f=e; Parent::nextOut(f); first_out_edges->set(n, f); } }; ///\brief For blocking flows. ///\ingroup graph_adaptors /// ///\warning Graph adaptors are in even more ///experimental state than the other ///parts of the lib. Use them at you own risk. /// ///This graph adaptor is used for on-the-fly ///Dinits blocking flow computations. ///For each node, an out-edge is stored which is used when the ///\code ///OutEdgeIt& first(OutEdgeIt&, const Node&) ///\endcode ///is called. /// ///\author Marton Makai /// template class ErasingFirstGraphAdaptor : public IterableGraphExtender< ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > { public: typedef _Graph Graph; typedef IterableGraphExtender< ErasingFirstGraphAdaptorBase<_Graph, FirstOutEdgesMap> > Parent; ErasingFirstGraphAdaptor(Graph& _graph, FirstOutEdgesMap& _first_out_edges) { setGraph(_graph); setFirstOutEdgesMap(_first_out_edges); } }; template class SplitGraphAdaptorBase : public GraphAdaptorBase<_Graph> { public: typedef GraphAdaptorBase<_Graph> Parent; class Node; class Edge; template class NodeMap; template class EdgeMap; class Node : public Parent::Node { friend class SplitGraphAdaptorBase; template friend class NodeMap; typedef typename Parent::Node NodeParent; private: bool entry; Node(typename Parent::Node _node, bool _entry) : Parent::Node(_node), entry(_entry) {} public: Node() {} Node(Invalid) : NodeParent(INVALID), entry(true) {} bool operator==(const Node& node) const { return NodeParent::operator==(node) && entry == node.entry; } bool operator!=(const Node& node) const { return !(*this == node); } bool operator<(const Node& node) const { return NodeParent::operator<(node) || (NodeParent::operator==(node) && entry < node.entry); } }; /// \todo May we want VARIANT/union type class Edge : public Parent::Edge { friend class SplitGraphAdaptorBase; template friend class EdgeMap; private: typedef typename Parent::Edge EdgeParent; typedef typename Parent::Node NodeParent; NodeParent bind; Edge(const EdgeParent& edge, const NodeParent& node) : EdgeParent(edge), bind(node) {} public: Edge() {} Edge(Invalid) : EdgeParent(INVALID), bind(INVALID) {} bool operator==(const Edge& edge) const { return EdgeParent::operator==(edge) && bind == edge.bind; } bool operator!=(const Edge& edge) const { return !(*this == edge); } bool operator<(const Edge& edge) const { return EdgeParent::operator<(edge) || (EdgeParent::operator==(edge) && bind < edge.bind); } }; void first(Node& node) const { Parent::first(node); node.entry = true; } void next(Node& node) const { if (node.entry) { node.entry = false; } else { node.entry = true; Parent::next(node); } } void first(Edge& edge) const { Parent::first(edge); if ((typename Parent::Edge&)edge == INVALID) { Parent::first(edge.bind); } else { edge.bind = INVALID; } } void next(Edge& edge) const { if ((typename Parent::Edge&)edge != INVALID) { Parent::next(edge); if ((typename Parent::Edge&)edge == INVALID) { Parent::first(edge.bind); } } else { Parent::next(edge.bind); } } void firstIn(Edge& edge, const Node& node) const { if (node.entry) { Parent::firstIn(edge, node); edge.bind = INVALID; } else { (typename Parent::Edge&)edge = INVALID; edge.bind = node; } } void nextIn(Edge& edge) const { if ((typename Parent::Edge&)edge != INVALID) { Parent::nextIn(edge); } else { edge.bind = INVALID; } } void firstOut(Edge& edge, const Node& node) const { if (!node.entry) { Parent::firstOut(edge, node); edge.bind = INVALID; } else { (typename Parent::Edge&)edge = INVALID; edge.bind = node; } } void nextOut(Edge& edge) const { if ((typename Parent::Edge&)edge != INVALID) { Parent::nextOut(edge); } else { edge.bind = INVALID; } } Node source(const Edge& edge) const { if ((typename Parent::Edge&)edge != INVALID) { return Node(Parent::source(edge), false); } else { return Node(edge.bind, true); } } Node target(const Edge& edge) const { if ((typename Parent::Edge&)edge != INVALID) { return Node(Parent::target(edge), true); } else { return Node(edge.bind, false); } } static bool entryNode(const Node& node) { return node.entry; } static bool exitNode(const Node& node) { return !node.entry; } static Node getEntry(const typename Parent::Node& node) { return Node(node, true); } static Node getExit(const typename Parent::Node& node) { return Node(node, false); } static bool originalEdge(const Edge& edge) { return (typename Parent::Edge&)edge != INVALID; } static bool bindingEdge(const Edge& edge) { return edge.bind != INVALID; } static Node getBindedNode(const Edge& edge) { return edge.bind; } int nodeNum() const { return Parent::nodeNum() * 2; } typedef CompileTimeAnd EdgeNumTag; int edgeNum() const { return Parent::edgeNum() + Parent::nodeNum(); } Edge findEdge(const Node& source, const Node& target, const Edge& prev = INVALID) const { if (exitNode(source) && entryNode(target)) { return Parent::findEdge(source, target, prev); } else { if (prev == INVALID && entryNode(source) && exitNode(target) && (typename Parent::Node&)source == (typename Parent::Node&)target) { return Edge(INVALID, source); } else { return INVALID; } } } template class NodeMap : public MapBase { typedef typename Parent::template NodeMap NodeImpl; public: NodeMap(const SplitGraphAdaptorBase& _graph) : entry(_graph), exit(_graph) {} NodeMap(const SplitGraphAdaptorBase& _graph, const T& t) : entry(_graph, t), exit(_graph, t) {} void set(const Node& key, const T& val) { if (key.entry) { entry.set(key, val); } else {exit.set(key, val); } } typename MapTraits::ReturnValue operator[](const Node& key) { if (key.entry) { return entry[key]; } else { return exit[key]; } } typename MapTraits::ConstReturnValue operator[](const Node& key) const { if (key.entry) { return entry[key]; } else { return exit[key]; } } private: NodeImpl entry, exit; }; template class EdgeMap : public MapBase { typedef typename Parent::template NodeMap NodeImpl; typedef typename Parent::template EdgeMap EdgeImpl; public: EdgeMap(const SplitGraphAdaptorBase& _graph) : bind(_graph), orig(_graph) {} EdgeMap(const SplitGraphAdaptorBase& _graph, const T& t) : bind(_graph, t), orig(_graph, t) {} void set(const Edge& key, const T& val) { if ((typename Parent::Edge&)key != INVALID) { orig.set(key, val); } else {bind.set(key.bind, val); } } typename MapTraits::ReturnValue operator[](const Edge& key) { if ((typename Parent::Edge&)key != INVALID) { return orig[key]; } else {return bind[key.bind]; } } typename MapTraits::ConstReturnValue operator[](const Edge& key) const { if ((typename Parent::Edge&)key != INVALID) { return orig[key]; } else {return bind[key.bind]; } } private: typename Parent::template NodeMap bind; typename Parent::template EdgeMap orig; }; template class CombinedNodeMap : public MapBase { public: typedef MapBase Parent; typedef typename Parent::Key Key; typedef typename Parent::Value Value; CombinedNodeMap(EntryMap& _entryMap, ExitMap& _exitMap) : entryMap(_entryMap), exitMap(_exitMap) {} Value& operator[](const Key& key) { if (key.entry) { return entryMap[key]; } else { return exitMap[key]; } } Value operator[](const Key& key) const { if (key.entry) { return entryMap[key]; } else { return exitMap[key]; } } void set(const Key& key, const Value& value) { if (key.entry) { entryMap.set(key, value); } else { exitMap.set(key, value); } } private: EntryMap& entryMap; ExitMap& exitMap; }; template class CombinedEdgeMap : public MapBase { public: typedef MapBase Parent; typedef typename Parent::Key Key; typedef typename Parent::Value Value; CombinedEdgeMap(EdgeMap& _edgeMap, NodeMap& _nodeMap) : edgeMap(_edgeMap), nodeMap(_nodeMap) {} void set(const Edge& edge, const Value& val) { if (SplitGraphAdaptorBase::originalEdge(edge)) { edgeMap.set(edge, val); } else { nodeMap.set(SplitGraphAdaptorBase::bindedNode(edge), val); } } Value operator[](const Key& edge) const { if (SplitGraphAdaptorBase::originalEdge(edge)) { return edgeMap[edge]; } else { return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)]; } } Value& operator[](const Key& edge) { if (SplitGraphAdaptorBase::originalEdge(edge)) { return edgeMap[edge]; } else { return nodeMap[SplitGraphAdaptorBase::bindedNode(edge)]; } } private: EdgeMap& edgeMap; NodeMap& nodeMap; }; }; template class SplitGraphAdaptor : public IterableGraphExtender > { public: typedef IterableGraphExtender > Parent; SplitGraphAdaptor(_Graph& graph) { Parent::setGraph(graph); } }; } //namespace lemon #endif //LEMON_GRAPH_ADAPTOR_H