1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_GRAPH_UTILS_H |
---|
20 | #define LEMON_GRAPH_UTILS_H |
---|
21 | |
---|
22 | #include <iterator> |
---|
23 | #include <vector> |
---|
24 | #include <map> |
---|
25 | #include <lemon/math.h> |
---|
26 | #include <algorithm> |
---|
27 | |
---|
28 | #include <lemon/bits/invalid.h> |
---|
29 | #include <lemon/bits/utility.h> |
---|
30 | #include <lemon/maps.h> |
---|
31 | #include <lemon/bits/traits.h> |
---|
32 | |
---|
33 | #include <lemon/bits/alteration_notifier.h> |
---|
34 | #include <lemon/bits/default_map.h> |
---|
35 | |
---|
36 | ///\ingroup gutils |
---|
37 | ///\file |
---|
38 | ///\brief Graph utilities. |
---|
39 | |
---|
40 | namespace lemon { |
---|
41 | |
---|
42 | /// \addtogroup gutils |
---|
43 | /// @{ |
---|
44 | |
---|
45 | ///Creates convenience typedefs for the graph types and iterators |
---|
46 | |
---|
47 | ///This \c \#define creates convenience typedefs for the following types |
---|
48 | ///of \c Graph: \c Node, \c NodeIt, \c Edge, \c EdgeIt, \c InEdgeIt, |
---|
49 | ///\c OutEdgeIt |
---|
50 | ///\note If \c G it a template parameter, it should be used in this way. |
---|
51 | ///\code |
---|
52 | /// GRAPH_TYPEDEFS(typename G); |
---|
53 | ///\endcode |
---|
54 | /// |
---|
55 | ///\warning There are no typedefs for the graph maps because of the lack of |
---|
56 | ///template typedefs in C++. |
---|
57 | #define GRAPH_TYPEDEFS(Graph) \ |
---|
58 | typedef Graph:: Node Node; \ |
---|
59 | typedef Graph:: NodeIt NodeIt; \ |
---|
60 | typedef Graph:: Edge Edge; \ |
---|
61 | typedef Graph:: EdgeIt EdgeIt; \ |
---|
62 | typedef Graph:: InEdgeIt InEdgeIt; \ |
---|
63 | typedef Graph::OutEdgeIt OutEdgeIt |
---|
64 | |
---|
65 | ///Creates convenience typedefs for the undirected graph types and iterators |
---|
66 | |
---|
67 | ///This \c \#define creates the same convenience typedefs as defined by |
---|
68 | ///\ref GRAPH_TYPEDEFS(Graph) and three more, namely it creates |
---|
69 | ///\c UEdge, \c UEdgeIt, \c IncEdgeIt, |
---|
70 | /// |
---|
71 | ///\note If \c G it a template parameter, it should be used in this way. |
---|
72 | ///\code |
---|
73 | /// UGRAPH_TYPEDEFS(typename G); |
---|
74 | ///\endcode |
---|
75 | /// |
---|
76 | ///\warning There are no typedefs for the graph maps because of the lack of |
---|
77 | ///template typedefs in C++. |
---|
78 | #define UGRAPH_TYPEDEFS(Graph) \ |
---|
79 | GRAPH_TYPEDEFS(Graph); \ |
---|
80 | typedef Graph:: UEdge UEdge; \ |
---|
81 | typedef Graph:: UEdgeIt UEdgeIt; \ |
---|
82 | typedef Graph:: IncEdgeIt IncEdgeIt |
---|
83 | |
---|
84 | ///\brief Creates convenience typedefs for the bipartite undirected graph |
---|
85 | ///types and iterators |
---|
86 | |
---|
87 | ///This \c \#define creates the same convenience typedefs as defined by |
---|
88 | ///\ref UGRAPH_TYPEDEFS(Graph) and two more, namely it creates |
---|
89 | ///\c ANodeIt, \c BNodeIt, |
---|
90 | /// |
---|
91 | ///\note If \c G it a template parameter, it should be used in this way. |
---|
92 | ///\code |
---|
93 | /// BPUGRAPH_TYPEDEFS(typename G); |
---|
94 | ///\endcode |
---|
95 | /// |
---|
96 | ///\warning There are no typedefs for the graph maps because of the lack of |
---|
97 | ///template typedefs in C++. |
---|
98 | #define BPUGRAPH_TYPEDEFS(Graph) \ |
---|
99 | UGRAPH_TYPEDEFS(Graph); \ |
---|
100 | typedef Graph::ANode ANode; \ |
---|
101 | typedef Graph::BNode BNode; \ |
---|
102 | typedef Graph::ANodeIt ANodeIt; \ |
---|
103 | typedef Graph::BNodeIt BNodeIt |
---|
104 | |
---|
105 | /// \brief Function to count the items in the graph. |
---|
106 | /// |
---|
107 | /// This function counts the items (nodes, edges etc) in the graph. |
---|
108 | /// The complexity of the function is O(n) because |
---|
109 | /// it iterates on all of the items. |
---|
110 | |
---|
111 | template <typename Graph, typename Item> |
---|
112 | inline int countItems(const Graph& g) { |
---|
113 | typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
---|
114 | int num = 0; |
---|
115 | for (ItemIt it(g); it != INVALID; ++it) { |
---|
116 | ++num; |
---|
117 | } |
---|
118 | return num; |
---|
119 | } |
---|
120 | |
---|
121 | // Node counting: |
---|
122 | |
---|
123 | namespace _graph_utils_bits { |
---|
124 | |
---|
125 | template <typename Graph, typename Enable = void> |
---|
126 | struct CountNodesSelector { |
---|
127 | static int count(const Graph &g) { |
---|
128 | return countItems<Graph, typename Graph::Node>(g); |
---|
129 | } |
---|
130 | }; |
---|
131 | |
---|
132 | template <typename Graph> |
---|
133 | struct CountNodesSelector< |
---|
134 | Graph, typename |
---|
135 | enable_if<typename Graph::NodeNumTag, void>::type> |
---|
136 | { |
---|
137 | static int count(const Graph &g) { |
---|
138 | return g.nodeNum(); |
---|
139 | } |
---|
140 | }; |
---|
141 | } |
---|
142 | |
---|
143 | /// \brief Function to count the nodes in the graph. |
---|
144 | /// |
---|
145 | /// This function counts the nodes in the graph. |
---|
146 | /// The complexity of the function is O(n) but for some |
---|
147 | /// graph structures it is specialized to run in O(1). |
---|
148 | /// |
---|
149 | /// If the graph contains a \e nodeNum() member function and a |
---|
150 | /// \e NodeNumTag tag then this function calls directly the member |
---|
151 | /// function to query the cardinality of the node set. |
---|
152 | template <typename Graph> |
---|
153 | inline int countNodes(const Graph& g) { |
---|
154 | return _graph_utils_bits::CountNodesSelector<Graph>::count(g); |
---|
155 | } |
---|
156 | |
---|
157 | namespace _graph_utils_bits { |
---|
158 | |
---|
159 | template <typename Graph, typename Enable = void> |
---|
160 | struct CountANodesSelector { |
---|
161 | static int count(const Graph &g) { |
---|
162 | return countItems<Graph, typename Graph::ANode>(g); |
---|
163 | } |
---|
164 | }; |
---|
165 | |
---|
166 | template <typename Graph> |
---|
167 | struct CountANodesSelector< |
---|
168 | Graph, typename |
---|
169 | enable_if<typename Graph::NodeNumTag, void>::type> |
---|
170 | { |
---|
171 | static int count(const Graph &g) { |
---|
172 | return g.aNodeNum(); |
---|
173 | } |
---|
174 | }; |
---|
175 | } |
---|
176 | |
---|
177 | /// \brief Function to count the anodes in the graph. |
---|
178 | /// |
---|
179 | /// This function counts the anodes in the graph. |
---|
180 | /// The complexity of the function is O(an) but for some |
---|
181 | /// graph structures it is specialized to run in O(1). |
---|
182 | /// |
---|
183 | /// If the graph contains an \e aNodeNum() member function and a |
---|
184 | /// \e NodeNumTag tag then this function calls directly the member |
---|
185 | /// function to query the cardinality of the A-node set. |
---|
186 | template <typename Graph> |
---|
187 | inline int countANodes(const Graph& g) { |
---|
188 | return _graph_utils_bits::CountANodesSelector<Graph>::count(g); |
---|
189 | } |
---|
190 | |
---|
191 | namespace _graph_utils_bits { |
---|
192 | |
---|
193 | template <typename Graph, typename Enable = void> |
---|
194 | struct CountBNodesSelector { |
---|
195 | static int count(const Graph &g) { |
---|
196 | return countItems<Graph, typename Graph::BNode>(g); |
---|
197 | } |
---|
198 | }; |
---|
199 | |
---|
200 | template <typename Graph> |
---|
201 | struct CountBNodesSelector< |
---|
202 | Graph, typename |
---|
203 | enable_if<typename Graph::NodeNumTag, void>::type> |
---|
204 | { |
---|
205 | static int count(const Graph &g) { |
---|
206 | return g.bNodeNum(); |
---|
207 | } |
---|
208 | }; |
---|
209 | } |
---|
210 | |
---|
211 | /// \brief Function to count the bnodes in the graph. |
---|
212 | /// |
---|
213 | /// This function counts the bnodes in the graph. |
---|
214 | /// The complexity of the function is O(bn) but for some |
---|
215 | /// graph structures it is specialized to run in O(1). |
---|
216 | /// |
---|
217 | /// If the graph contains a \e bNodeNum() member function and a |
---|
218 | /// \e NodeNumTag tag then this function calls directly the member |
---|
219 | /// function to query the cardinality of the B-node set. |
---|
220 | template <typename Graph> |
---|
221 | inline int countBNodes(const Graph& g) { |
---|
222 | return _graph_utils_bits::CountBNodesSelector<Graph>::count(g); |
---|
223 | } |
---|
224 | |
---|
225 | |
---|
226 | // Edge counting: |
---|
227 | |
---|
228 | namespace _graph_utils_bits { |
---|
229 | |
---|
230 | template <typename Graph, typename Enable = void> |
---|
231 | struct CountEdgesSelector { |
---|
232 | static int count(const Graph &g) { |
---|
233 | return countItems<Graph, typename Graph::Edge>(g); |
---|
234 | } |
---|
235 | }; |
---|
236 | |
---|
237 | template <typename Graph> |
---|
238 | struct CountEdgesSelector< |
---|
239 | Graph, |
---|
240 | typename enable_if<typename Graph::EdgeNumTag, void>::type> |
---|
241 | { |
---|
242 | static int count(const Graph &g) { |
---|
243 | return g.edgeNum(); |
---|
244 | } |
---|
245 | }; |
---|
246 | } |
---|
247 | |
---|
248 | /// \brief Function to count the edges in the graph. |
---|
249 | /// |
---|
250 | /// This function counts the edges in the graph. |
---|
251 | /// The complexity of the function is O(e) but for some |
---|
252 | /// graph structures it is specialized to run in O(1). |
---|
253 | /// |
---|
254 | /// If the graph contains a \e edgeNum() member function and a |
---|
255 | /// \e EdgeNumTag tag then this function calls directly the member |
---|
256 | /// function to query the cardinality of the edge set. |
---|
257 | template <typename Graph> |
---|
258 | inline int countEdges(const Graph& g) { |
---|
259 | return _graph_utils_bits::CountEdgesSelector<Graph>::count(g); |
---|
260 | } |
---|
261 | |
---|
262 | // Undirected edge counting: |
---|
263 | namespace _graph_utils_bits { |
---|
264 | |
---|
265 | template <typename Graph, typename Enable = void> |
---|
266 | struct CountUEdgesSelector { |
---|
267 | static int count(const Graph &g) { |
---|
268 | return countItems<Graph, typename Graph::UEdge>(g); |
---|
269 | } |
---|
270 | }; |
---|
271 | |
---|
272 | template <typename Graph> |
---|
273 | struct CountUEdgesSelector< |
---|
274 | Graph, |
---|
275 | typename enable_if<typename Graph::EdgeNumTag, void>::type> |
---|
276 | { |
---|
277 | static int count(const Graph &g) { |
---|
278 | return g.uEdgeNum(); |
---|
279 | } |
---|
280 | }; |
---|
281 | } |
---|
282 | |
---|
283 | /// \brief Function to count the undirected edges in the graph. |
---|
284 | /// |
---|
285 | /// This function counts the undirected edges in the graph. |
---|
286 | /// The complexity of the function is O(e) but for some |
---|
287 | /// graph structures it is specialized to run in O(1). |
---|
288 | /// |
---|
289 | /// If the graph contains a \e uEdgeNum() member function and a |
---|
290 | /// \e EdgeNumTag tag then this function calls directly the member |
---|
291 | /// function to query the cardinality of the undirected edge set. |
---|
292 | template <typename Graph> |
---|
293 | inline int countUEdges(const Graph& g) { |
---|
294 | return _graph_utils_bits::CountUEdgesSelector<Graph>::count(g); |
---|
295 | |
---|
296 | } |
---|
297 | |
---|
298 | |
---|
299 | template <typename Graph, typename DegIt> |
---|
300 | inline int countNodeDegree(const Graph& _g, const typename Graph::Node& _n) { |
---|
301 | int num = 0; |
---|
302 | for (DegIt it(_g, _n); it != INVALID; ++it) { |
---|
303 | ++num; |
---|
304 | } |
---|
305 | return num; |
---|
306 | } |
---|
307 | |
---|
308 | /// \brief Function to count the number of the out-edges from node \c n. |
---|
309 | /// |
---|
310 | /// This function counts the number of the out-edges from node \c n |
---|
311 | /// in the graph. |
---|
312 | template <typename Graph> |
---|
313 | inline int countOutEdges(const Graph& _g, const typename Graph::Node& _n) { |
---|
314 | return countNodeDegree<Graph, typename Graph::OutEdgeIt>(_g, _n); |
---|
315 | } |
---|
316 | |
---|
317 | /// \brief Function to count the number of the in-edges to node \c n. |
---|
318 | /// |
---|
319 | /// This function counts the number of the in-edges to node \c n |
---|
320 | /// in the graph. |
---|
321 | template <typename Graph> |
---|
322 | inline int countInEdges(const Graph& _g, const typename Graph::Node& _n) { |
---|
323 | return countNodeDegree<Graph, typename Graph::InEdgeIt>(_g, _n); |
---|
324 | } |
---|
325 | |
---|
326 | /// \brief Function to count the number of the inc-edges to node \c n. |
---|
327 | /// |
---|
328 | /// This function counts the number of the inc-edges to node \c n |
---|
329 | /// in the graph. |
---|
330 | template <typename Graph> |
---|
331 | inline int countIncEdges(const Graph& _g, const typename Graph::Node& _n) { |
---|
332 | return countNodeDegree<Graph, typename Graph::IncEdgeIt>(_g, _n); |
---|
333 | } |
---|
334 | |
---|
335 | namespace _graph_utils_bits { |
---|
336 | |
---|
337 | template <typename Graph, typename Enable = void> |
---|
338 | struct FindEdgeSelector { |
---|
339 | typedef typename Graph::Node Node; |
---|
340 | typedef typename Graph::Edge Edge; |
---|
341 | static Edge find(const Graph &g, Node u, Node v, Edge e) { |
---|
342 | if (e == INVALID) { |
---|
343 | g.firstOut(e, u); |
---|
344 | } else { |
---|
345 | g.nextOut(e); |
---|
346 | } |
---|
347 | while (e != INVALID && g.target(e) != v) { |
---|
348 | g.nextOut(e); |
---|
349 | } |
---|
350 | return e; |
---|
351 | } |
---|
352 | }; |
---|
353 | |
---|
354 | template <typename Graph> |
---|
355 | struct FindEdgeSelector< |
---|
356 | Graph, |
---|
357 | typename enable_if<typename Graph::FindEdgeTag, void>::type> |
---|
358 | { |
---|
359 | typedef typename Graph::Node Node; |
---|
360 | typedef typename Graph::Edge Edge; |
---|
361 | static Edge find(const Graph &g, Node u, Node v, Edge prev) { |
---|
362 | return g.findEdge(u, v, prev); |
---|
363 | } |
---|
364 | }; |
---|
365 | } |
---|
366 | |
---|
367 | /// \brief Finds an edge between two nodes of a graph. |
---|
368 | /// |
---|
369 | /// Finds an edge from node \c u to node \c v in graph \c g. |
---|
370 | /// |
---|
371 | /// If \c prev is \ref INVALID (this is the default value), then |
---|
372 | /// it finds the first edge from \c u to \c v. Otherwise it looks for |
---|
373 | /// the next edge from \c u to \c v after \c prev. |
---|
374 | /// \return The found edge or \ref INVALID if there is no such an edge. |
---|
375 | /// |
---|
376 | /// Thus you can iterate through each edge from \c u to \c v as it follows. |
---|
377 | ///\code |
---|
378 | /// for(Edge e=findEdge(g,u,v);e!=INVALID;e=findEdge(g,u,v,e)) { |
---|
379 | /// ... |
---|
380 | /// } |
---|
381 | ///\endcode |
---|
382 | /// |
---|
383 | ///\sa EdgeLookUp |
---|
384 | ///\sa AllEdgeLookUp |
---|
385 | ///\sa DynEdgeLookUp |
---|
386 | ///\sa ConEdgeIt |
---|
387 | template <typename Graph> |
---|
388 | inline typename Graph::Edge |
---|
389 | findEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
---|
390 | typename Graph::Edge prev = INVALID) { |
---|
391 | return _graph_utils_bits::FindEdgeSelector<Graph>::find(g, u, v, prev); |
---|
392 | } |
---|
393 | |
---|
394 | /// \brief Iterator for iterating on edges connected the same nodes. |
---|
395 | /// |
---|
396 | /// Iterator for iterating on edges connected the same nodes. It is |
---|
397 | /// higher level interface for the findEdge() function. You can |
---|
398 | /// use it the following way: |
---|
399 | ///\code |
---|
400 | /// for (ConEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
---|
401 | /// ... |
---|
402 | /// } |
---|
403 | ///\endcode |
---|
404 | /// |
---|
405 | ///\sa findEdge() |
---|
406 | ///\sa EdgeLookUp |
---|
407 | ///\sa AllEdgeLookUp |
---|
408 | ///\sa DynEdgeLookUp |
---|
409 | /// |
---|
410 | /// \author Balazs Dezso |
---|
411 | template <typename _Graph> |
---|
412 | class ConEdgeIt : public _Graph::Edge { |
---|
413 | public: |
---|
414 | |
---|
415 | typedef _Graph Graph; |
---|
416 | typedef typename Graph::Edge Parent; |
---|
417 | |
---|
418 | typedef typename Graph::Edge Edge; |
---|
419 | typedef typename Graph::Node Node; |
---|
420 | |
---|
421 | /// \brief Constructor. |
---|
422 | /// |
---|
423 | /// Construct a new ConEdgeIt iterating on the edges which |
---|
424 | /// connects the \c u and \c v node. |
---|
425 | ConEdgeIt(const Graph& g, Node u, Node v) : graph(g) { |
---|
426 | Parent::operator=(findEdge(graph, u, v)); |
---|
427 | } |
---|
428 | |
---|
429 | /// \brief Constructor. |
---|
430 | /// |
---|
431 | /// Construct a new ConEdgeIt which continues the iterating from |
---|
432 | /// the \c e edge. |
---|
433 | ConEdgeIt(const Graph& g, Edge e) : Parent(e), graph(g) {} |
---|
434 | |
---|
435 | /// \brief Increment operator. |
---|
436 | /// |
---|
437 | /// It increments the iterator and gives back the next edge. |
---|
438 | ConEdgeIt& operator++() { |
---|
439 | Parent::operator=(findEdge(graph, graph.source(*this), |
---|
440 | graph.target(*this), *this)); |
---|
441 | return *this; |
---|
442 | } |
---|
443 | private: |
---|
444 | const Graph& graph; |
---|
445 | }; |
---|
446 | |
---|
447 | namespace _graph_utils_bits { |
---|
448 | |
---|
449 | template <typename Graph, typename Enable = void> |
---|
450 | struct FindUEdgeSelector { |
---|
451 | typedef typename Graph::Node Node; |
---|
452 | typedef typename Graph::UEdge UEdge; |
---|
453 | static UEdge find(const Graph &g, Node u, Node v, UEdge e) { |
---|
454 | bool b; |
---|
455 | if (u != v) { |
---|
456 | if (e == INVALID) { |
---|
457 | g.firstInc(e, b, u); |
---|
458 | } else { |
---|
459 | b = g.source(e) == u; |
---|
460 | g.nextInc(e, b); |
---|
461 | } |
---|
462 | while (e != INVALID && (b ? g.target(e) : g.source(e)) != v) { |
---|
463 | g.nextInc(e, b); |
---|
464 | } |
---|
465 | } else { |
---|
466 | if (e == INVALID) { |
---|
467 | g.firstInc(e, b, u); |
---|
468 | } else { |
---|
469 | b = true; |
---|
470 | g.nextInc(e, b); |
---|
471 | } |
---|
472 | while (e != INVALID && (!b || g.target(e) != v)) { |
---|
473 | g.nextInc(e, b); |
---|
474 | } |
---|
475 | } |
---|
476 | return e; |
---|
477 | } |
---|
478 | }; |
---|
479 | |
---|
480 | template <typename Graph> |
---|
481 | struct FindUEdgeSelector< |
---|
482 | Graph, |
---|
483 | typename enable_if<typename Graph::FindEdgeTag, void>::type> |
---|
484 | { |
---|
485 | typedef typename Graph::Node Node; |
---|
486 | typedef typename Graph::UEdge UEdge; |
---|
487 | static UEdge find(const Graph &g, Node u, Node v, UEdge prev) { |
---|
488 | return g.findUEdge(u, v, prev); |
---|
489 | } |
---|
490 | }; |
---|
491 | } |
---|
492 | |
---|
493 | /// \brief Finds an uedge between two nodes of a graph. |
---|
494 | /// |
---|
495 | /// Finds an uedge from node \c u to node \c v in graph \c g. |
---|
496 | /// If the node \c u and node \c v is equal then each loop edge |
---|
497 | /// will be enumerated. |
---|
498 | /// |
---|
499 | /// If \c prev is \ref INVALID (this is the default value), then |
---|
500 | /// it finds the first edge from \c u to \c v. Otherwise it looks for |
---|
501 | /// the next edge from \c u to \c v after \c prev. |
---|
502 | /// \return The found edge or \ref INVALID if there is no such an edge. |
---|
503 | /// |
---|
504 | /// Thus you can iterate through each edge from \c u to \c v as it follows. |
---|
505 | ///\code |
---|
506 | /// for(UEdge e = findUEdge(g,u,v); e != INVALID; |
---|
507 | /// e = findUEdge(g,u,v,e)) { |
---|
508 | /// ... |
---|
509 | /// } |
---|
510 | ///\endcode |
---|
511 | /// |
---|
512 | ///\sa ConEdgeIt |
---|
513 | |
---|
514 | template <typename Graph> |
---|
515 | inline typename Graph::UEdge |
---|
516 | findUEdge(const Graph &g, typename Graph::Node u, typename Graph::Node v, |
---|
517 | typename Graph::UEdge p = INVALID) { |
---|
518 | return _graph_utils_bits::FindUEdgeSelector<Graph>::find(g, u, v, p); |
---|
519 | } |
---|
520 | |
---|
521 | /// \brief Iterator for iterating on uedges connected the same nodes. |
---|
522 | /// |
---|
523 | /// Iterator for iterating on uedges connected the same nodes. It is |
---|
524 | /// higher level interface for the findUEdge() function. You can |
---|
525 | /// use it the following way: |
---|
526 | ///\code |
---|
527 | /// for (ConUEdgeIt<Graph> it(g, src, trg); it != INVALID; ++it) { |
---|
528 | /// ... |
---|
529 | /// } |
---|
530 | ///\endcode |
---|
531 | /// |
---|
532 | ///\sa findUEdge() |
---|
533 | /// |
---|
534 | /// \author Balazs Dezso |
---|
535 | template <typename _Graph> |
---|
536 | class ConUEdgeIt : public _Graph::UEdge { |
---|
537 | public: |
---|
538 | |
---|
539 | typedef _Graph Graph; |
---|
540 | typedef typename Graph::UEdge Parent; |
---|
541 | |
---|
542 | typedef typename Graph::UEdge UEdge; |
---|
543 | typedef typename Graph::Node Node; |
---|
544 | |
---|
545 | /// \brief Constructor. |
---|
546 | /// |
---|
547 | /// Construct a new ConUEdgeIt iterating on the edges which |
---|
548 | /// connects the \c u and \c v node. |
---|
549 | ConUEdgeIt(const Graph& g, Node u, Node v) : graph(g) { |
---|
550 | Parent::operator=(findUEdge(graph, u, v)); |
---|
551 | } |
---|
552 | |
---|
553 | /// \brief Constructor. |
---|
554 | /// |
---|
555 | /// Construct a new ConUEdgeIt which continues the iterating from |
---|
556 | /// the \c e edge. |
---|
557 | ConUEdgeIt(const Graph& g, UEdge e) : Parent(e), graph(g) {} |
---|
558 | |
---|
559 | /// \brief Increment operator. |
---|
560 | /// |
---|
561 | /// It increments the iterator and gives back the next edge. |
---|
562 | ConUEdgeIt& operator++() { |
---|
563 | Parent::operator=(findUEdge(graph, graph.source(*this), |
---|
564 | graph.target(*this), *this)); |
---|
565 | return *this; |
---|
566 | } |
---|
567 | private: |
---|
568 | const Graph& graph; |
---|
569 | }; |
---|
570 | |
---|
571 | /// \brief Copy a map. |
---|
572 | /// |
---|
573 | /// This function copies the \c from map to the \c to map. It uses the |
---|
574 | /// given iterator to iterate on the data structure and it uses the \c ref |
---|
575 | /// mapping to convert the from's keys to the to's keys. |
---|
576 | template <typename To, typename From, |
---|
577 | typename ItemIt, typename Ref> |
---|
578 | void copyMap(To& to, const From& from, |
---|
579 | ItemIt it, const Ref& ref) { |
---|
580 | for (; it != INVALID; ++it) { |
---|
581 | to[ref[it]] = from[it]; |
---|
582 | } |
---|
583 | } |
---|
584 | |
---|
585 | /// \brief Copy the from map to the to map. |
---|
586 | /// |
---|
587 | /// Copy the \c from map to the \c to map. It uses the given iterator |
---|
588 | /// to iterate on the data structure. |
---|
589 | template <typename To, typename From, typename ItemIt> |
---|
590 | void copyMap(To& to, const From& from, ItemIt it) { |
---|
591 | for (; it != INVALID; ++it) { |
---|
592 | to[it] = from[it]; |
---|
593 | } |
---|
594 | } |
---|
595 | |
---|
596 | namespace _graph_utils_bits { |
---|
597 | |
---|
598 | template <typename Graph, typename Item, typename RefMap> |
---|
599 | class MapCopyBase { |
---|
600 | public: |
---|
601 | virtual void copy(const Graph& from, const RefMap& refMap) = 0; |
---|
602 | |
---|
603 | virtual ~MapCopyBase() {} |
---|
604 | }; |
---|
605 | |
---|
606 | template <typename Graph, typename Item, typename RefMap, |
---|
607 | typename ToMap, typename FromMap> |
---|
608 | class MapCopy : public MapCopyBase<Graph, Item, RefMap> { |
---|
609 | public: |
---|
610 | |
---|
611 | MapCopy(ToMap& tmap, const FromMap& map) |
---|
612 | : _tmap(tmap), _map(map) {} |
---|
613 | |
---|
614 | virtual void copy(const Graph& graph, const RefMap& refMap) { |
---|
615 | typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
---|
616 | for (ItemIt it(graph); it != INVALID; ++it) { |
---|
617 | _tmap.set(refMap[it], _map[it]); |
---|
618 | } |
---|
619 | } |
---|
620 | |
---|
621 | private: |
---|
622 | ToMap& _tmap; |
---|
623 | const FromMap& _map; |
---|
624 | }; |
---|
625 | |
---|
626 | template <typename Graph, typename Item, typename RefMap, typename It> |
---|
627 | class ItemCopy : public MapCopyBase<Graph, Item, RefMap> { |
---|
628 | public: |
---|
629 | |
---|
630 | ItemCopy(It& it, const Item& item) : _it(it), _item(item) {} |
---|
631 | |
---|
632 | virtual void copy(const Graph&, const RefMap& refMap) { |
---|
633 | _it = refMap[_item]; |
---|
634 | } |
---|
635 | |
---|
636 | private: |
---|
637 | It& _it; |
---|
638 | Item _item; |
---|
639 | }; |
---|
640 | |
---|
641 | template <typename Graph, typename Item, typename RefMap, typename Ref> |
---|
642 | class RefCopy : public MapCopyBase<Graph, Item, RefMap> { |
---|
643 | public: |
---|
644 | |
---|
645 | RefCopy(Ref& map) : _map(map) {} |
---|
646 | |
---|
647 | virtual void copy(const Graph& graph, const RefMap& refMap) { |
---|
648 | typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
---|
649 | for (ItemIt it(graph); it != INVALID; ++it) { |
---|
650 | _map.set(it, refMap[it]); |
---|
651 | } |
---|
652 | } |
---|
653 | |
---|
654 | private: |
---|
655 | Ref& _map; |
---|
656 | }; |
---|
657 | |
---|
658 | template <typename Graph, typename Item, typename RefMap, |
---|
659 | typename CrossRef> |
---|
660 | class CrossRefCopy : public MapCopyBase<Graph, Item, RefMap> { |
---|
661 | public: |
---|
662 | |
---|
663 | CrossRefCopy(CrossRef& cmap) : _cmap(cmap) {} |
---|
664 | |
---|
665 | virtual void copy(const Graph& graph, const RefMap& refMap) { |
---|
666 | typedef typename ItemSetTraits<Graph, Item>::ItemIt ItemIt; |
---|
667 | for (ItemIt it(graph); it != INVALID; ++it) { |
---|
668 | _cmap.set(refMap[it], it); |
---|
669 | } |
---|
670 | } |
---|
671 | |
---|
672 | private: |
---|
673 | CrossRef& _cmap; |
---|
674 | }; |
---|
675 | |
---|
676 | template <typename Graph, typename Enable = void> |
---|
677 | struct GraphCopySelector { |
---|
678 | template <typename From, typename NodeRefMap, typename EdgeRefMap> |
---|
679 | static void copy(Graph &to, const From& from, |
---|
680 | NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
---|
681 | for (typename From::NodeIt it(from); it != INVALID; ++it) { |
---|
682 | nodeRefMap[it] = to.addNode(); |
---|
683 | } |
---|
684 | for (typename From::EdgeIt it(from); it != INVALID; ++it) { |
---|
685 | edgeRefMap[it] = to.addEdge(nodeRefMap[from.source(it)], |
---|
686 | nodeRefMap[from.target(it)]); |
---|
687 | } |
---|
688 | } |
---|
689 | }; |
---|
690 | |
---|
691 | template <typename Graph> |
---|
692 | struct GraphCopySelector< |
---|
693 | Graph, |
---|
694 | typename enable_if<typename Graph::BuildTag, void>::type> |
---|
695 | { |
---|
696 | template <typename From, typename NodeRefMap, typename EdgeRefMap> |
---|
697 | static void copy(Graph &to, const From& from, |
---|
698 | NodeRefMap& nodeRefMap, EdgeRefMap& edgeRefMap) { |
---|
699 | to.build(from, nodeRefMap, edgeRefMap); |
---|
700 | } |
---|
701 | }; |
---|
702 | |
---|
703 | template <typename UGraph, typename Enable = void> |
---|
704 | struct UGraphCopySelector { |
---|
705 | template <typename From, typename NodeRefMap, typename UEdgeRefMap> |
---|
706 | static void copy(UGraph &to, const From& from, |
---|
707 | NodeRefMap& nodeRefMap, UEdgeRefMap& uEdgeRefMap) { |
---|
708 | for (typename From::NodeIt it(from); it != INVALID; ++it) { |
---|
709 | nodeRefMap[it] = to.addNode(); |
---|
710 | } |
---|
711 | for (typename From::UEdgeIt it(from); it != INVALID; ++it) { |
---|
712 | uEdgeRefMap[it] = to.addEdge(nodeRefMap[from.source(it)], |
---|
713 | nodeRefMap[from.target(it)]); |
---|
714 | } |
---|
715 | } |
---|
716 | }; |
---|
717 | |
---|
718 | template <typename UGraph> |
---|
719 | struct UGraphCopySelector< |
---|
720 | UGraph, |
---|
721 | typename enable_if<typename UGraph::BuildTag, void>::type> |
---|
722 | { |
---|
723 | template <typename From, typename NodeRefMap, typename UEdgeRefMap> |
---|
724 | static void copy(UGraph &to, const From& from, |
---|
725 | NodeRefMap& nodeRefMap, UEdgeRefMap& uEdgeRefMap) { |
---|
726 | to.build(from, nodeRefMap, uEdgeRefMap); |
---|
727 | } |
---|
728 | }; |
---|
729 | |
---|
730 | template <typename BpUGraph, typename Enable = void> |
---|
731 | struct BpUGraphCopySelector { |
---|
732 | template <typename From, typename ANodeRefMap, |
---|
733 | typename BNodeRefMap, typename UEdgeRefMap> |
---|
734 | static void copy(BpUGraph &to, const From& from, |
---|
735 | ANodeRefMap& aNodeRefMap, BNodeRefMap& bNodeRefMap, |
---|
736 | UEdgeRefMap& uEdgeRefMap) { |
---|
737 | for (typename From::ANodeIt it(from); it != INVALID; ++it) { |
---|
738 | aNodeRefMap[it] = to.addANode(); |
---|
739 | } |
---|
740 | for (typename From::BNodeIt it(from); it != INVALID; ++it) { |
---|
741 | bNodeRefMap[it] = to.addBNode(); |
---|
742 | } |
---|
743 | for (typename From::UEdgeIt it(from); it != INVALID; ++it) { |
---|
744 | uEdgeRefMap[it] = to.addEdge(aNodeRefMap[from.aNode(it)], |
---|
745 | bNodeRefMap[from.bNode(it)]); |
---|
746 | } |
---|
747 | } |
---|
748 | }; |
---|
749 | |
---|
750 | template <typename BpUGraph> |
---|
751 | struct BpUGraphCopySelector< |
---|
752 | BpUGraph, |
---|
753 | typename enable_if<typename BpUGraph::BuildTag, void>::type> |
---|
754 | { |
---|
755 | template <typename From, typename ANodeRefMap, |
---|
756 | typename BNodeRefMap, typename UEdgeRefMap> |
---|
757 | static void copy(BpUGraph &to, const From& from, |
---|
758 | ANodeRefMap& aNodeRefMap, BNodeRefMap& bNodeRefMap, |
---|
759 | UEdgeRefMap& uEdgeRefMap) { |
---|
760 | to.build(from, aNodeRefMap, bNodeRefMap, uEdgeRefMap); |
---|
761 | } |
---|
762 | }; |
---|
763 | |
---|
764 | |
---|
765 | } |
---|
766 | |
---|
767 | /// \brief Class to copy a graph. |
---|
768 | /// |
---|
769 | /// Class to copy a graph to another graph (duplicate a graph). The |
---|
770 | /// simplest way of using it is through the \c copyGraph() function. |
---|
771 | template <typename To, typename From> |
---|
772 | class GraphCopy { |
---|
773 | private: |
---|
774 | |
---|
775 | typedef typename From::Node Node; |
---|
776 | typedef typename From::NodeIt NodeIt; |
---|
777 | typedef typename From::Edge Edge; |
---|
778 | typedef typename From::EdgeIt EdgeIt; |
---|
779 | |
---|
780 | typedef typename To::Node TNode; |
---|
781 | typedef typename To::Edge TEdge; |
---|
782 | |
---|
783 | typedef typename From::template NodeMap<TNode> NodeRefMap; |
---|
784 | typedef typename From::template EdgeMap<TEdge> EdgeRefMap; |
---|
785 | |
---|
786 | |
---|
787 | public: |
---|
788 | |
---|
789 | |
---|
790 | /// \brief Constructor for the GraphCopy. |
---|
791 | /// |
---|
792 | /// It copies the content of the \c _from graph into the |
---|
793 | /// \c _to graph. |
---|
794 | GraphCopy(To& _to, const From& _from) |
---|
795 | : from(_from), to(_to) {} |
---|
796 | |
---|
797 | /// \brief Destructor of the GraphCopy |
---|
798 | /// |
---|
799 | /// Destructor of the GraphCopy |
---|
800 | ~GraphCopy() { |
---|
801 | for (int i = 0; i < int(nodeMapCopies.size()); ++i) { |
---|
802 | delete nodeMapCopies[i]; |
---|
803 | } |
---|
804 | for (int i = 0; i < int(edgeMapCopies.size()); ++i) { |
---|
805 | delete edgeMapCopies[i]; |
---|
806 | } |
---|
807 | |
---|
808 | } |
---|
809 | |
---|
810 | /// \brief Copies the node references into the given map. |
---|
811 | /// |
---|
812 | /// Copies the node references into the given map. |
---|
813 | template <typename NodeRef> |
---|
814 | GraphCopy& nodeRef(NodeRef& map) { |
---|
815 | nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<From, Node, |
---|
816 | NodeRefMap, NodeRef>(map)); |
---|
817 | return *this; |
---|
818 | } |
---|
819 | |
---|
820 | /// \brief Copies the node cross references into the given map. |
---|
821 | /// |
---|
822 | /// Copies the node cross references (reverse references) into |
---|
823 | /// the given map. |
---|
824 | template <typename NodeCrossRef> |
---|
825 | GraphCopy& nodeCrossRef(NodeCrossRef& map) { |
---|
826 | nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<From, Node, |
---|
827 | NodeRefMap, NodeCrossRef>(map)); |
---|
828 | return *this; |
---|
829 | } |
---|
830 | |
---|
831 | /// \brief Make copy of the given map. |
---|
832 | /// |
---|
833 | /// Makes copy of the given map for the newly created graph. |
---|
834 | /// The new map's key type is the to graph's node type, |
---|
835 | /// and the copied map's key type is the from graph's node |
---|
836 | /// type. |
---|
837 | template <typename ToMap, typename FromMap> |
---|
838 | GraphCopy& nodeMap(ToMap& tmap, const FromMap& map) { |
---|
839 | nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<From, Node, |
---|
840 | NodeRefMap, ToMap, FromMap>(tmap, map)); |
---|
841 | return *this; |
---|
842 | } |
---|
843 | |
---|
844 | /// \brief Make a copy of the given node. |
---|
845 | /// |
---|
846 | /// Make a copy of the given node. |
---|
847 | GraphCopy& node(TNode& tnode, const Node& snode) { |
---|
848 | nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<From, Node, |
---|
849 | NodeRefMap, TNode>(tnode, snode)); |
---|
850 | return *this; |
---|
851 | } |
---|
852 | |
---|
853 | /// \brief Copies the edge references into the given map. |
---|
854 | /// |
---|
855 | /// Copies the edge references into the given map. |
---|
856 | template <typename EdgeRef> |
---|
857 | GraphCopy& edgeRef(EdgeRef& map) { |
---|
858 | edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<From, Edge, |
---|
859 | EdgeRefMap, EdgeRef>(map)); |
---|
860 | return *this; |
---|
861 | } |
---|
862 | |
---|
863 | /// \brief Copies the edge cross references into the given map. |
---|
864 | /// |
---|
865 | /// Copies the edge cross references (reverse references) into |
---|
866 | /// the given map. |
---|
867 | template <typename EdgeCrossRef> |
---|
868 | GraphCopy& edgeCrossRef(EdgeCrossRef& map) { |
---|
869 | edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<From, Edge, |
---|
870 | EdgeRefMap, EdgeCrossRef>(map)); |
---|
871 | return *this; |
---|
872 | } |
---|
873 | |
---|
874 | /// \brief Make copy of the given map. |
---|
875 | /// |
---|
876 | /// Makes copy of the given map for the newly created graph. |
---|
877 | /// The new map's key type is the to graph's edge type, |
---|
878 | /// and the copied map's key type is the from graph's edge |
---|
879 | /// type. |
---|
880 | template <typename ToMap, typename FromMap> |
---|
881 | GraphCopy& edgeMap(ToMap& tmap, const FromMap& map) { |
---|
882 | edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<From, Edge, |
---|
883 | EdgeRefMap, ToMap, FromMap>(tmap, map)); |
---|
884 | return *this; |
---|
885 | } |
---|
886 | |
---|
887 | /// \brief Make a copy of the given edge. |
---|
888 | /// |
---|
889 | /// Make a copy of the given edge. |
---|
890 | GraphCopy& edge(TEdge& tedge, const Edge& sedge) { |
---|
891 | edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<From, Edge, |
---|
892 | EdgeRefMap, TEdge>(tedge, sedge)); |
---|
893 | return *this; |
---|
894 | } |
---|
895 | |
---|
896 | /// \brief Executes the copies. |
---|
897 | /// |
---|
898 | /// Executes the copies. |
---|
899 | void run() { |
---|
900 | NodeRefMap nodeRefMap(from); |
---|
901 | EdgeRefMap edgeRefMap(from); |
---|
902 | _graph_utils_bits::GraphCopySelector<To>:: |
---|
903 | copy(to, from, nodeRefMap, edgeRefMap); |
---|
904 | for (int i = 0; i < int(nodeMapCopies.size()); ++i) { |
---|
905 | nodeMapCopies[i]->copy(from, nodeRefMap); |
---|
906 | } |
---|
907 | for (int i = 0; i < int(edgeMapCopies.size()); ++i) { |
---|
908 | edgeMapCopies[i]->copy(from, edgeRefMap); |
---|
909 | } |
---|
910 | } |
---|
911 | |
---|
912 | protected: |
---|
913 | |
---|
914 | |
---|
915 | const From& from; |
---|
916 | To& to; |
---|
917 | |
---|
918 | std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > |
---|
919 | nodeMapCopies; |
---|
920 | |
---|
921 | std::vector<_graph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
---|
922 | edgeMapCopies; |
---|
923 | |
---|
924 | }; |
---|
925 | |
---|
926 | /// \brief Copy a graph to another graph. |
---|
927 | /// |
---|
928 | /// Copy a graph to another graph. |
---|
929 | /// The usage of the function: |
---|
930 | /// |
---|
931 | ///\code |
---|
932 | /// copyGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr).run(); |
---|
933 | ///\endcode |
---|
934 | /// |
---|
935 | /// After the copy the \c nr map will contain the mapping from the |
---|
936 | /// nodes of the \c from graph to the nodes of the \c to graph and |
---|
937 | /// \c ecr will contain the mapping from the edges of the \c to graph |
---|
938 | /// to the edges of the \c from graph. |
---|
939 | /// |
---|
940 | /// \see GraphCopy |
---|
941 | template <typename To, typename From> |
---|
942 | GraphCopy<To, From> copyGraph(To& to, const From& from) { |
---|
943 | return GraphCopy<To, From>(to, from); |
---|
944 | } |
---|
945 | |
---|
946 | /// \brief Class to copy an undirected graph. |
---|
947 | /// |
---|
948 | /// Class to copy an undirected graph to another graph (duplicate a graph). |
---|
949 | /// The simplest way of using it is through the \c copyUGraph() function. |
---|
950 | template <typename To, typename From> |
---|
951 | class UGraphCopy { |
---|
952 | private: |
---|
953 | |
---|
954 | typedef typename From::Node Node; |
---|
955 | typedef typename From::NodeIt NodeIt; |
---|
956 | typedef typename From::Edge Edge; |
---|
957 | typedef typename From::EdgeIt EdgeIt; |
---|
958 | typedef typename From::UEdge UEdge; |
---|
959 | typedef typename From::UEdgeIt UEdgeIt; |
---|
960 | |
---|
961 | typedef typename To::Node TNode; |
---|
962 | typedef typename To::Edge TEdge; |
---|
963 | typedef typename To::UEdge TUEdge; |
---|
964 | |
---|
965 | typedef typename From::template NodeMap<TNode> NodeRefMap; |
---|
966 | typedef typename From::template UEdgeMap<TUEdge> UEdgeRefMap; |
---|
967 | |
---|
968 | struct EdgeRefMap { |
---|
969 | EdgeRefMap(const To& _to, const From& _from, |
---|
970 | const UEdgeRefMap& _uedge_ref, const NodeRefMap& _node_ref) |
---|
971 | : to(_to), from(_from), |
---|
972 | uedge_ref(_uedge_ref), node_ref(_node_ref) {} |
---|
973 | |
---|
974 | typedef typename From::Edge Key; |
---|
975 | typedef typename To::Edge Value; |
---|
976 | |
---|
977 | Value operator[](const Key& key) const { |
---|
978 | bool forward = |
---|
979 | (from.direction(key) == |
---|
980 | (node_ref[from.source(static_cast<const UEdge&>(key))] == |
---|
981 | to.source(uedge_ref[static_cast<const UEdge&>(key)]))); |
---|
982 | return to.direct(uedge_ref[key], forward); |
---|
983 | } |
---|
984 | |
---|
985 | const To& to; |
---|
986 | const From& from; |
---|
987 | const UEdgeRefMap& uedge_ref; |
---|
988 | const NodeRefMap& node_ref; |
---|
989 | }; |
---|
990 | |
---|
991 | |
---|
992 | public: |
---|
993 | |
---|
994 | |
---|
995 | /// \brief Constructor for the GraphCopy. |
---|
996 | /// |
---|
997 | /// It copies the content of the \c _from graph into the |
---|
998 | /// \c _to graph. |
---|
999 | UGraphCopy(To& _to, const From& _from) |
---|
1000 | : from(_from), to(_to) {} |
---|
1001 | |
---|
1002 | /// \brief Destructor of the GraphCopy |
---|
1003 | /// |
---|
1004 | /// Destructor of the GraphCopy |
---|
1005 | ~UGraphCopy() { |
---|
1006 | for (int i = 0; i < int(nodeMapCopies.size()); ++i) { |
---|
1007 | delete nodeMapCopies[i]; |
---|
1008 | } |
---|
1009 | for (int i = 0; i < int(edgeMapCopies.size()); ++i) { |
---|
1010 | delete edgeMapCopies[i]; |
---|
1011 | } |
---|
1012 | for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) { |
---|
1013 | delete uEdgeMapCopies[i]; |
---|
1014 | } |
---|
1015 | |
---|
1016 | } |
---|
1017 | |
---|
1018 | /// \brief Copies the node references into the given map. |
---|
1019 | /// |
---|
1020 | /// Copies the node references into the given map. |
---|
1021 | template <typename NodeRef> |
---|
1022 | UGraphCopy& nodeRef(NodeRef& map) { |
---|
1023 | nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<From, Node, |
---|
1024 | NodeRefMap, NodeRef>(map)); |
---|
1025 | return *this; |
---|
1026 | } |
---|
1027 | |
---|
1028 | /// \brief Copies the node cross references into the given map. |
---|
1029 | /// |
---|
1030 | /// Copies the node cross references (reverse references) into |
---|
1031 | /// the given map. |
---|
1032 | template <typename NodeCrossRef> |
---|
1033 | UGraphCopy& nodeCrossRef(NodeCrossRef& map) { |
---|
1034 | nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<From, Node, |
---|
1035 | NodeRefMap, NodeCrossRef>(map)); |
---|
1036 | return *this; |
---|
1037 | } |
---|
1038 | |
---|
1039 | /// \brief Make copy of the given map. |
---|
1040 | /// |
---|
1041 | /// Makes copy of the given map for the newly created graph. |
---|
1042 | /// The new map's key type is the to graph's node type, |
---|
1043 | /// and the copied map's key type is the from graph's node |
---|
1044 | /// type. |
---|
1045 | template <typename ToMap, typename FromMap> |
---|
1046 | UGraphCopy& nodeMap(ToMap& tmap, const FromMap& map) { |
---|
1047 | nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<From, Node, |
---|
1048 | NodeRefMap, ToMap, FromMap>(tmap, map)); |
---|
1049 | return *this; |
---|
1050 | } |
---|
1051 | |
---|
1052 | /// \brief Make a copy of the given node. |
---|
1053 | /// |
---|
1054 | /// Make a copy of the given node. |
---|
1055 | UGraphCopy& node(TNode& tnode, const Node& snode) { |
---|
1056 | nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<From, Node, |
---|
1057 | NodeRefMap, TNode>(tnode, snode)); |
---|
1058 | return *this; |
---|
1059 | } |
---|
1060 | |
---|
1061 | /// \brief Copies the edge references into the given map. |
---|
1062 | /// |
---|
1063 | /// Copies the edge references into the given map. |
---|
1064 | template <typename EdgeRef> |
---|
1065 | UGraphCopy& edgeRef(EdgeRef& map) { |
---|
1066 | edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<From, Edge, |
---|
1067 | EdgeRefMap, EdgeRef>(map)); |
---|
1068 | return *this; |
---|
1069 | } |
---|
1070 | |
---|
1071 | /// \brief Copies the edge cross references into the given map. |
---|
1072 | /// |
---|
1073 | /// Copies the edge cross references (reverse references) into |
---|
1074 | /// the given map. |
---|
1075 | template <typename EdgeCrossRef> |
---|
1076 | UGraphCopy& edgeCrossRef(EdgeCrossRef& map) { |
---|
1077 | edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<From, Edge, |
---|
1078 | EdgeRefMap, EdgeCrossRef>(map)); |
---|
1079 | return *this; |
---|
1080 | } |
---|
1081 | |
---|
1082 | /// \brief Make copy of the given map. |
---|
1083 | /// |
---|
1084 | /// Makes copy of the given map for the newly created graph. |
---|
1085 | /// The new map's key type is the to graph's edge type, |
---|
1086 | /// and the copied map's key type is the from graph's edge |
---|
1087 | /// type. |
---|
1088 | template <typename ToMap, typename FromMap> |
---|
1089 | UGraphCopy& edgeMap(ToMap& tmap, const FromMap& map) { |
---|
1090 | edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<From, Edge, |
---|
1091 | EdgeRefMap, ToMap, FromMap>(tmap, map)); |
---|
1092 | return *this; |
---|
1093 | } |
---|
1094 | |
---|
1095 | /// \brief Make a copy of the given edge. |
---|
1096 | /// |
---|
1097 | /// Make a copy of the given edge. |
---|
1098 | UGraphCopy& edge(TEdge& tedge, const Edge& sedge) { |
---|
1099 | edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<From, Edge, |
---|
1100 | EdgeRefMap, TEdge>(tedge, sedge)); |
---|
1101 | return *this; |
---|
1102 | } |
---|
1103 | |
---|
1104 | /// \brief Copies the undirected edge references into the given map. |
---|
1105 | /// |
---|
1106 | /// Copies the undirected edge references into the given map. |
---|
1107 | template <typename UEdgeRef> |
---|
1108 | UGraphCopy& uEdgeRef(UEdgeRef& map) { |
---|
1109 | uEdgeMapCopies.push_back(new _graph_utils_bits::RefCopy<From, UEdge, |
---|
1110 | UEdgeRefMap, UEdgeRef>(map)); |
---|
1111 | return *this; |
---|
1112 | } |
---|
1113 | |
---|
1114 | /// \brief Copies the undirected edge cross references into the given map. |
---|
1115 | /// |
---|
1116 | /// Copies the undirected edge cross references (reverse |
---|
1117 | /// references) into the given map. |
---|
1118 | template <typename UEdgeCrossRef> |
---|
1119 | UGraphCopy& uEdgeCrossRef(UEdgeCrossRef& map) { |
---|
1120 | uEdgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<From, |
---|
1121 | UEdge, UEdgeRefMap, UEdgeCrossRef>(map)); |
---|
1122 | return *this; |
---|
1123 | } |
---|
1124 | |
---|
1125 | /// \brief Make copy of the given map. |
---|
1126 | /// |
---|
1127 | /// Makes copy of the given map for the newly created graph. |
---|
1128 | /// The new map's key type is the to graph's undirected edge type, |
---|
1129 | /// and the copied map's key type is the from graph's undirected edge |
---|
1130 | /// type. |
---|
1131 | template <typename ToMap, typename FromMap> |
---|
1132 | UGraphCopy& uEdgeMap(ToMap& tmap, const FromMap& map) { |
---|
1133 | uEdgeMapCopies.push_back(new _graph_utils_bits::MapCopy<From, UEdge, |
---|
1134 | UEdgeRefMap, ToMap, FromMap>(tmap, map)); |
---|
1135 | return *this; |
---|
1136 | } |
---|
1137 | |
---|
1138 | /// \brief Make a copy of the given undirected edge. |
---|
1139 | /// |
---|
1140 | /// Make a copy of the given undirected edge. |
---|
1141 | UGraphCopy& uEdge(TUEdge& tuedge, const UEdge& suedge) { |
---|
1142 | uEdgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<From, UEdge, |
---|
1143 | UEdgeRefMap, TUEdge>(tuedge, suedge)); |
---|
1144 | return *this; |
---|
1145 | } |
---|
1146 | |
---|
1147 | /// \brief Executes the copies. |
---|
1148 | /// |
---|
1149 | /// Executes the copies. |
---|
1150 | void run() { |
---|
1151 | NodeRefMap nodeRefMap(from); |
---|
1152 | UEdgeRefMap uEdgeRefMap(from); |
---|
1153 | EdgeRefMap edgeRefMap(to, from, uEdgeRefMap, nodeRefMap); |
---|
1154 | _graph_utils_bits::UGraphCopySelector<To>:: |
---|
1155 | copy(to, from, nodeRefMap, uEdgeRefMap); |
---|
1156 | for (int i = 0; i < int(nodeMapCopies.size()); ++i) { |
---|
1157 | nodeMapCopies[i]->copy(from, nodeRefMap); |
---|
1158 | } |
---|
1159 | for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) { |
---|
1160 | uEdgeMapCopies[i]->copy(from, uEdgeRefMap); |
---|
1161 | } |
---|
1162 | for (int i = 0; i < int(edgeMapCopies.size()); ++i) { |
---|
1163 | edgeMapCopies[i]->copy(from, edgeRefMap); |
---|
1164 | } |
---|
1165 | } |
---|
1166 | |
---|
1167 | private: |
---|
1168 | |
---|
1169 | const From& from; |
---|
1170 | To& to; |
---|
1171 | |
---|
1172 | std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > |
---|
1173 | nodeMapCopies; |
---|
1174 | |
---|
1175 | std::vector<_graph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
---|
1176 | edgeMapCopies; |
---|
1177 | |
---|
1178 | std::vector<_graph_utils_bits::MapCopyBase<From, UEdge, UEdgeRefMap>* > |
---|
1179 | uEdgeMapCopies; |
---|
1180 | |
---|
1181 | }; |
---|
1182 | |
---|
1183 | /// \brief Copy an undirected graph to another graph. |
---|
1184 | /// |
---|
1185 | /// Copy an undirected graph to another graph. |
---|
1186 | /// The usage of the function: |
---|
1187 | /// |
---|
1188 | ///\code |
---|
1189 | /// copyUGraph(trg, src).nodeRef(nr).edgeCrossRef(ecr).run(); |
---|
1190 | ///\endcode |
---|
1191 | /// |
---|
1192 | /// After the copy the \c nr map will contain the mapping from the |
---|
1193 | /// nodes of the \c from graph to the nodes of the \c to graph and |
---|
1194 | /// \c ecr will contain the mapping from the edges of the \c to graph |
---|
1195 | /// to the edges of the \c from graph. |
---|
1196 | /// |
---|
1197 | /// \see UGraphCopy |
---|
1198 | template <typename To, typename From> |
---|
1199 | UGraphCopy<To, From> |
---|
1200 | copyUGraph(To& to, const From& from) { |
---|
1201 | return UGraphCopy<To, From>(to, from); |
---|
1202 | } |
---|
1203 | |
---|
1204 | /// \brief Class to copy a bipartite undirected graph. |
---|
1205 | /// |
---|
1206 | /// Class to copy a bipartite undirected graph to another graph |
---|
1207 | /// (duplicate a graph). The simplest way of using it is through |
---|
1208 | /// the \c copyBpUGraph() function. |
---|
1209 | template <typename To, typename From> |
---|
1210 | class BpUGraphCopy { |
---|
1211 | private: |
---|
1212 | |
---|
1213 | typedef typename From::Node Node; |
---|
1214 | typedef typename From::ANode ANode; |
---|
1215 | typedef typename From::BNode BNode; |
---|
1216 | typedef typename From::NodeIt NodeIt; |
---|
1217 | typedef typename From::Edge Edge; |
---|
1218 | typedef typename From::EdgeIt EdgeIt; |
---|
1219 | typedef typename From::UEdge UEdge; |
---|
1220 | typedef typename From::UEdgeIt UEdgeIt; |
---|
1221 | |
---|
1222 | typedef typename To::Node TNode; |
---|
1223 | typedef typename To::Edge TEdge; |
---|
1224 | typedef typename To::UEdge TUEdge; |
---|
1225 | |
---|
1226 | typedef typename From::template ANodeMap<TNode> ANodeRefMap; |
---|
1227 | typedef typename From::template BNodeMap<TNode> BNodeRefMap; |
---|
1228 | typedef typename From::template UEdgeMap<TUEdge> UEdgeRefMap; |
---|
1229 | |
---|
1230 | struct NodeRefMap { |
---|
1231 | NodeRefMap(const From& _from, const ANodeRefMap& _anode_ref, |
---|
1232 | const BNodeRefMap& _bnode_ref) |
---|
1233 | : from(_from), anode_ref(_anode_ref), bnode_ref(_bnode_ref) {} |
---|
1234 | |
---|
1235 | typedef typename From::Node Key; |
---|
1236 | typedef typename To::Node Value; |
---|
1237 | |
---|
1238 | Value operator[](const Key& key) const { |
---|
1239 | return from.aNode(key) ? anode_ref[key] : bnode_ref[key]; |
---|
1240 | } |
---|
1241 | |
---|
1242 | const From& from; |
---|
1243 | const ANodeRefMap& anode_ref; |
---|
1244 | const BNodeRefMap& bnode_ref; |
---|
1245 | }; |
---|
1246 | |
---|
1247 | struct EdgeRefMap { |
---|
1248 | EdgeRefMap(const To& _to, const From& _from, |
---|
1249 | const UEdgeRefMap& _uedge_ref, const NodeRefMap& _node_ref) |
---|
1250 | : to(_to), from(_from), |
---|
1251 | uedge_ref(_uedge_ref), node_ref(_node_ref) {} |
---|
1252 | |
---|
1253 | typedef typename From::Edge Key; |
---|
1254 | typedef typename To::Edge Value; |
---|
1255 | |
---|
1256 | Value operator[](const Key& key) const { |
---|
1257 | bool forward = |
---|
1258 | (from.direction(key) == |
---|
1259 | (node_ref[from.source(static_cast<const UEdge&>(key))] == |
---|
1260 | to.source(uedge_ref[static_cast<const UEdge&>(key)]))); |
---|
1261 | return to.direct(uedge_ref[key], forward); |
---|
1262 | } |
---|
1263 | |
---|
1264 | const To& to; |
---|
1265 | const From& from; |
---|
1266 | const UEdgeRefMap& uedge_ref; |
---|
1267 | const NodeRefMap& node_ref; |
---|
1268 | }; |
---|
1269 | |
---|
1270 | public: |
---|
1271 | |
---|
1272 | |
---|
1273 | /// \brief Constructor for the GraphCopy. |
---|
1274 | /// |
---|
1275 | /// It copies the content of the \c _from graph into the |
---|
1276 | /// \c _to graph. |
---|
1277 | BpUGraphCopy(To& _to, const From& _from) |
---|
1278 | : from(_from), to(_to) {} |
---|
1279 | |
---|
1280 | /// \brief Destructor of the GraphCopy |
---|
1281 | /// |
---|
1282 | /// Destructor of the GraphCopy |
---|
1283 | ~BpUGraphCopy() { |
---|
1284 | for (int i = 0; i < int(aNodeMapCopies.size()); ++i) { |
---|
1285 | delete aNodeMapCopies[i]; |
---|
1286 | } |
---|
1287 | for (int i = 0; i < int(bNodeMapCopies.size()); ++i) { |
---|
1288 | delete bNodeMapCopies[i]; |
---|
1289 | } |
---|
1290 | for (int i = 0; i < int(nodeMapCopies.size()); ++i) { |
---|
1291 | delete nodeMapCopies[i]; |
---|
1292 | } |
---|
1293 | for (int i = 0; i < int(edgeMapCopies.size()); ++i) { |
---|
1294 | delete edgeMapCopies[i]; |
---|
1295 | } |
---|
1296 | for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) { |
---|
1297 | delete uEdgeMapCopies[i]; |
---|
1298 | } |
---|
1299 | |
---|
1300 | } |
---|
1301 | |
---|
1302 | /// \brief Copies the A-node references into the given map. |
---|
1303 | /// |
---|
1304 | /// Copies the A-node references into the given map. |
---|
1305 | template <typename ANodeRef> |
---|
1306 | BpUGraphCopy& aNodeRef(ANodeRef& map) { |
---|
1307 | aNodeMapCopies.push_back(new _graph_utils_bits::RefCopy<From, ANode, |
---|
1308 | ANodeRefMap, ANodeRef>(map)); |
---|
1309 | return *this; |
---|
1310 | } |
---|
1311 | |
---|
1312 | /// \brief Copies the A-node cross references into the given map. |
---|
1313 | /// |
---|
1314 | /// Copies the A-node cross references (reverse references) into |
---|
1315 | /// the given map. |
---|
1316 | template <typename ANodeCrossRef> |
---|
1317 | BpUGraphCopy& aNodeCrossRef(ANodeCrossRef& map) { |
---|
1318 | aNodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<From, |
---|
1319 | ANode, ANodeRefMap, ANodeCrossRef>(map)); |
---|
1320 | return *this; |
---|
1321 | } |
---|
1322 | |
---|
1323 | /// \brief Make copy of the given A-node map. |
---|
1324 | /// |
---|
1325 | /// Makes copy of the given map for the newly created graph. |
---|
1326 | /// The new map's key type is the to graph's node type, |
---|
1327 | /// and the copied map's key type is the from graph's node |
---|
1328 | /// type. |
---|
1329 | template <typename ToMap, typename FromMap> |
---|
1330 | BpUGraphCopy& aNodeMap(ToMap& tmap, const FromMap& map) { |
---|
1331 | aNodeMapCopies.push_back(new _graph_utils_bits::MapCopy<From, ANode, |
---|
1332 | ANodeRefMap, ToMap, FromMap>(tmap, map)); |
---|
1333 | return *this; |
---|
1334 | } |
---|
1335 | |
---|
1336 | /// \brief Copies the B-node references into the given map. |
---|
1337 | /// |
---|
1338 | /// Copies the B-node references into the given map. |
---|
1339 | template <typename BNodeRef> |
---|
1340 | BpUGraphCopy& bNodeRef(BNodeRef& map) { |
---|
1341 | bNodeMapCopies.push_back(new _graph_utils_bits::RefCopy<From, BNode, |
---|
1342 | BNodeRefMap, BNodeRef>(map)); |
---|
1343 | return *this; |
---|
1344 | } |
---|
1345 | |
---|
1346 | /// \brief Copies the B-node cross references into the given map. |
---|
1347 | /// |
---|
1348 | /// Copies the B-node cross references (reverse references) into |
---|
1349 | /// the given map. |
---|
1350 | template <typename BNodeCrossRef> |
---|
1351 | BpUGraphCopy& bNodeCrossRef(BNodeCrossRef& map) { |
---|
1352 | bNodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<From, |
---|
1353 | BNode, BNodeRefMap, BNodeCrossRef>(map)); |
---|
1354 | return *this; |
---|
1355 | } |
---|
1356 | |
---|
1357 | /// \brief Make copy of the given B-node map. |
---|
1358 | /// |
---|
1359 | /// Makes copy of the given map for the newly created graph. |
---|
1360 | /// The new map's key type is the to graph's node type, |
---|
1361 | /// and the copied map's key type is the from graph's node |
---|
1362 | /// type. |
---|
1363 | template <typename ToMap, typename FromMap> |
---|
1364 | BpUGraphCopy& bNodeMap(ToMap& tmap, const FromMap& map) { |
---|
1365 | bNodeMapCopies.push_back(new _graph_utils_bits::MapCopy<From, BNode, |
---|
1366 | BNodeRefMap, ToMap, FromMap>(tmap, map)); |
---|
1367 | return *this; |
---|
1368 | } |
---|
1369 | /// \brief Copies the node references into the given map. |
---|
1370 | /// |
---|
1371 | /// Copies the node references into the given map. |
---|
1372 | template <typename NodeRef> |
---|
1373 | BpUGraphCopy& nodeRef(NodeRef& map) { |
---|
1374 | nodeMapCopies.push_back(new _graph_utils_bits::RefCopy<From, Node, |
---|
1375 | NodeRefMap, NodeRef>(map)); |
---|
1376 | return *this; |
---|
1377 | } |
---|
1378 | |
---|
1379 | /// \brief Copies the node cross references into the given map. |
---|
1380 | /// |
---|
1381 | /// Copies the node cross references (reverse references) into |
---|
1382 | /// the given map. |
---|
1383 | template <typename NodeCrossRef> |
---|
1384 | BpUGraphCopy& nodeCrossRef(NodeCrossRef& map) { |
---|
1385 | nodeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<From, Node, |
---|
1386 | NodeRefMap, NodeCrossRef>(map)); |
---|
1387 | return *this; |
---|
1388 | } |
---|
1389 | |
---|
1390 | /// \brief Make copy of the given map. |
---|
1391 | /// |
---|
1392 | /// Makes copy of the given map for the newly created graph. |
---|
1393 | /// The new map's key type is the to graph's node type, |
---|
1394 | /// and the copied map's key type is the from graph's node |
---|
1395 | /// type. |
---|
1396 | template <typename ToMap, typename FromMap> |
---|
1397 | BpUGraphCopy& nodeMap(ToMap& tmap, const FromMap& map) { |
---|
1398 | nodeMapCopies.push_back(new _graph_utils_bits::MapCopy<From, Node, |
---|
1399 | NodeRefMap, ToMap, FromMap>(tmap, map)); |
---|
1400 | return *this; |
---|
1401 | } |
---|
1402 | |
---|
1403 | /// \brief Make a copy of the given node. |
---|
1404 | /// |
---|
1405 | /// Make a copy of the given node. |
---|
1406 | BpUGraphCopy& node(TNode& tnode, const Node& snode) { |
---|
1407 | nodeMapCopies.push_back(new _graph_utils_bits::ItemCopy<From, Node, |
---|
1408 | NodeRefMap, TNode>(tnode, snode)); |
---|
1409 | return *this; |
---|
1410 | } |
---|
1411 | |
---|
1412 | /// \brief Copies the edge references into the given map. |
---|
1413 | /// |
---|
1414 | /// Copies the edge references into the given map. |
---|
1415 | template <typename EdgeRef> |
---|
1416 | BpUGraphCopy& edgeRef(EdgeRef& map) { |
---|
1417 | edgeMapCopies.push_back(new _graph_utils_bits::RefCopy<From, Edge, |
---|
1418 | EdgeRefMap, EdgeRef>(map)); |
---|
1419 | return *this; |
---|
1420 | } |
---|
1421 | |
---|
1422 | /// \brief Copies the edge cross references into the given map. |
---|
1423 | /// |
---|
1424 | /// Copies the edge cross references (reverse references) into |
---|
1425 | /// the given map. |
---|
1426 | template <typename EdgeCrossRef> |
---|
1427 | BpUGraphCopy& edgeCrossRef(EdgeCrossRef& map) { |
---|
1428 | edgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<From, Edge, |
---|
1429 | EdgeRefMap, EdgeCrossRef>(map)); |
---|
1430 | return *this; |
---|
1431 | } |
---|
1432 | |
---|
1433 | /// \brief Make copy of the given map. |
---|
1434 | /// |
---|
1435 | /// Makes copy of the given map for the newly created graph. |
---|
1436 | /// The new map's key type is the to graph's edge type, |
---|
1437 | /// and the copied map's key type is the from graph's edge |
---|
1438 | /// type. |
---|
1439 | template <typename ToMap, typename FromMap> |
---|
1440 | BpUGraphCopy& edgeMap(ToMap& tmap, const FromMap& map) { |
---|
1441 | edgeMapCopies.push_back(new _graph_utils_bits::MapCopy<From, Edge, |
---|
1442 | EdgeRefMap, ToMap, FromMap>(tmap, map)); |
---|
1443 | return *this; |
---|
1444 | } |
---|
1445 | |
---|
1446 | /// \brief Make a copy of the given edge. |
---|
1447 | /// |
---|
1448 | /// Make a copy of the given edge. |
---|
1449 | BpUGraphCopy& edge(TEdge& tedge, const Edge& sedge) { |
---|
1450 | edgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<From, Edge, |
---|
1451 | EdgeRefMap, TEdge>(tedge, sedge)); |
---|
1452 | return *this; |
---|
1453 | } |
---|
1454 | |
---|
1455 | /// \brief Copies the undirected edge references into the given map. |
---|
1456 | /// |
---|
1457 | /// Copies the undirected edge references into the given map. |
---|
1458 | template <typename UEdgeRef> |
---|
1459 | BpUGraphCopy& uEdgeRef(UEdgeRef& map) { |
---|
1460 | uEdgeMapCopies.push_back(new _graph_utils_bits::RefCopy<From, UEdge, |
---|
1461 | UEdgeRefMap, UEdgeRef>(map)); |
---|
1462 | return *this; |
---|
1463 | } |
---|
1464 | |
---|
1465 | /// \brief Copies the undirected edge cross references into the given map. |
---|
1466 | /// |
---|
1467 | /// Copies the undirected edge cross references (reverse |
---|
1468 | /// references) into the given map. |
---|
1469 | template <typename UEdgeCrossRef> |
---|
1470 | BpUGraphCopy& uEdgeCrossRef(UEdgeCrossRef& map) { |
---|
1471 | uEdgeMapCopies.push_back(new _graph_utils_bits::CrossRefCopy<From, |
---|
1472 | UEdge, UEdgeRefMap, UEdgeCrossRef>(map)); |
---|
1473 | return *this; |
---|
1474 | } |
---|
1475 | |
---|
1476 | /// \brief Make copy of the given map. |
---|
1477 | /// |
---|
1478 | /// Makes copy of the given map for the newly created graph. |
---|
1479 | /// The new map's key type is the to graph's undirected edge type, |
---|
1480 | /// and the copied map's key type is the from graph's undirected edge |
---|
1481 | /// type. |
---|
1482 | template <typename ToMap, typename FromMap> |
---|
1483 | BpUGraphCopy& uEdgeMap(ToMap& tmap, const FromMap& map) { |
---|
1484 | uEdgeMapCopies.push_back(new _graph_utils_bits::MapCopy<From, UEdge, |
---|
1485 | UEdgeRefMap, ToMap, FromMap>(tmap, map)); |
---|
1486 | return *this; |
---|
1487 | } |
---|
1488 | |
---|
1489 | /// \brief Make a copy of the given undirected edge. |
---|
1490 | /// |
---|
1491 | /// Make a copy of the given undirected edge. |
---|
1492 | BpUGraphCopy& uEdge(TUEdge& tuedge, const UEdge& suedge) { |
---|
1493 | uEdgeMapCopies.push_back(new _graph_utils_bits::ItemCopy<From, UEdge, |
---|
1494 | UEdgeRefMap, TUEdge>(tuedge, suedge)); |
---|
1495 | return *this; |
---|
1496 | } |
---|
1497 | |
---|
1498 | /// \brief Executes the copies. |
---|
1499 | /// |
---|
1500 | /// Executes the copies. |
---|
1501 | void run() { |
---|
1502 | ANodeRefMap aNodeRefMap(from); |
---|
1503 | BNodeRefMap bNodeRefMap(from); |
---|
1504 | NodeRefMap nodeRefMap(from, aNodeRefMap, bNodeRefMap); |
---|
1505 | UEdgeRefMap uEdgeRefMap(from); |
---|
1506 | EdgeRefMap edgeRefMap(to, from, uEdgeRefMap, nodeRefMap); |
---|
1507 | _graph_utils_bits::BpUGraphCopySelector<To>:: |
---|
1508 | copy(to, from, aNodeRefMap, bNodeRefMap, uEdgeRefMap); |
---|
1509 | for (int i = 0; i < int(aNodeMapCopies.size()); ++i) { |
---|
1510 | aNodeMapCopies[i]->copy(from, aNodeRefMap); |
---|
1511 | } |
---|
1512 | for (int i = 0; i < int(bNodeMapCopies.size()); ++i) { |
---|
1513 | bNodeMapCopies[i]->copy(from, bNodeRefMap); |
---|
1514 | } |
---|
1515 | for (int i = 0; i < int(nodeMapCopies.size()); ++i) { |
---|
1516 | nodeMapCopies[i]->copy(from, nodeRefMap); |
---|
1517 | } |
---|
1518 | for (int i = 0; i < int(uEdgeMapCopies.size()); ++i) { |
---|
1519 | uEdgeMapCopies[i]->copy(from, uEdgeRefMap); |
---|
1520 | } |
---|
1521 | for (int i = 0; i < int(edgeMapCopies.size()); ++i) { |
---|
1522 | edgeMapCopies[i]->copy(from, edgeRefMap); |
---|
1523 | } |
---|
1524 | } |
---|
1525 | |
---|
1526 | private: |
---|
1527 | |
---|
1528 | const From& from; |
---|
1529 | To& to; |
---|
1530 | |
---|
1531 | std::vector<_graph_utils_bits::MapCopyBase<From, ANode, ANodeRefMap>* > |
---|
1532 | aNodeMapCopies; |
---|
1533 | |
---|
1534 | std::vector<_graph_utils_bits::MapCopyBase<From, BNode, BNodeRefMap>* > |
---|
1535 | bNodeMapCopies; |
---|
1536 | |
---|
1537 | std::vector<_graph_utils_bits::MapCopyBase<From, Node, NodeRefMap>* > |
---|
1538 | nodeMapCopies; |
---|
1539 | |
---|
1540 | std::vector<_graph_utils_bits::MapCopyBase<From, Edge, EdgeRefMap>* > |
---|
1541 | edgeMapCopies; |
---|
1542 | |
---|
1543 | std::vector<_graph_utils_bits::MapCopyBase<From, UEdge, UEdgeRefMap>* > |
---|
1544 | uEdgeMapCopies; |
---|
1545 | |
---|
1546 | }; |
---|
1547 | |
---|
1548 | /// \brief Copy a bipartite undirected graph to another graph. |
---|
1549 | /// |
---|
1550 | /// Copy a bipartite undirected graph to another graph. |
---|
1551 | /// The usage of the function: |
---|
1552 | /// |
---|
1553 | ///\code |
---|
1554 | /// copyBpUGraph(trg, src).aNodeRef(anr).edgeCrossRef(ecr).run(); |
---|
1555 | ///\endcode |
---|
1556 | /// |
---|
1557 | /// After the copy the \c nr map will contain the mapping from the |
---|
1558 | /// nodes of the \c from graph to the nodes of the \c to graph and |
---|
1559 | /// \c ecr will contain the mapping from the edges of the \c to graph |
---|
1560 | /// to the edges of the \c from graph. |
---|
1561 | /// |
---|
1562 | /// \see BpUGraphCopy |
---|
1563 | template <typename To, typename From> |
---|
1564 | BpUGraphCopy<To, From> |
---|
1565 | copyBpUGraph(To& to, const From& from) { |
---|
1566 | return BpUGraphCopy<To, From>(to, from); |
---|
1567 | } |
---|
1568 | |
---|
1569 | |
---|
1570 | /// @} |
---|
1571 | |
---|
1572 | /// \addtogroup graph_maps |
---|
1573 | /// @{ |
---|
1574 | |
---|
1575 | /// Provides an immutable and unique id for each item in the graph. |
---|
1576 | |
---|
1577 | /// The IdMap class provides a unique and immutable id for each item of the |
---|
1578 | /// same type (e.g. node) in the graph. This id is <ul><li>\b unique: |
---|
1579 | /// different items (nodes) get different ids <li>\b immutable: the id of an |
---|
1580 | /// item (node) does not change (even if you delete other nodes). </ul> |
---|
1581 | /// Through this map you get access (i.e. can read) the inner id values of |
---|
1582 | /// the items stored in the graph. This map can be inverted with its member |
---|
1583 | /// class \c InverseMap. |
---|
1584 | /// |
---|
1585 | template <typename _Graph, typename _Item> |
---|
1586 | class IdMap { |
---|
1587 | public: |
---|
1588 | typedef _Graph Graph; |
---|
1589 | typedef int Value; |
---|
1590 | typedef _Item Item; |
---|
1591 | typedef _Item Key; |
---|
1592 | |
---|
1593 | /// \brief Constructor. |
---|
1594 | /// |
---|
1595 | /// Constructor of the map. |
---|
1596 | explicit IdMap(const Graph& _graph) : graph(&_graph) {} |
---|
1597 | |
---|
1598 | /// \brief Gives back the \e id of the item. |
---|
1599 | /// |
---|
1600 | /// Gives back the immutable and unique \e id of the item. |
---|
1601 | int operator[](const Item& item) const { return graph->id(item);} |
---|
1602 | |
---|
1603 | /// \brief Gives back the item by its id. |
---|
1604 | /// |
---|
1605 | /// Gives back the item by its id. |
---|
1606 | Item operator()(int id) { return graph->fromId(id, Item()); } |
---|
1607 | |
---|
1608 | private: |
---|
1609 | const Graph* graph; |
---|
1610 | |
---|
1611 | public: |
---|
1612 | |
---|
1613 | /// \brief The class represents the inverse of its owner (IdMap). |
---|
1614 | /// |
---|
1615 | /// The class represents the inverse of its owner (IdMap). |
---|
1616 | /// \see inverse() |
---|
1617 | class InverseMap { |
---|
1618 | public: |
---|
1619 | |
---|
1620 | /// \brief Constructor. |
---|
1621 | /// |
---|
1622 | /// Constructor for creating an id-to-item map. |
---|
1623 | explicit InverseMap(const Graph& _graph) : graph(&_graph) {} |
---|
1624 | |
---|
1625 | /// \brief Constructor. |
---|
1626 | /// |
---|
1627 | /// Constructor for creating an id-to-item map. |
---|
1628 | explicit InverseMap(const IdMap& idMap) : graph(idMap.graph) {} |
---|
1629 | |
---|
1630 | /// \brief Gives back the given item from its id. |
---|
1631 | /// |
---|
1632 | /// Gives back the given item from its id. |
---|
1633 | /// |
---|
1634 | Item operator[](int id) const { return graph->fromId(id, Item());} |
---|
1635 | |
---|
1636 | private: |
---|
1637 | const Graph* graph; |
---|
1638 | }; |
---|
1639 | |
---|
1640 | /// \brief Gives back the inverse of the map. |
---|
1641 | /// |
---|
1642 | /// Gives back the inverse of the IdMap. |
---|
1643 | InverseMap inverse() const { return InverseMap(*graph);} |
---|
1644 | |
---|
1645 | }; |
---|
1646 | |
---|
1647 | |
---|
1648 | /// \brief General invertable graph-map type. |
---|
1649 | |
---|
1650 | /// This type provides simple invertable graph-maps. |
---|
1651 | /// The InvertableMap wraps an arbitrary ReadWriteMap |
---|
1652 | /// and if a key is set to a new value then store it |
---|
1653 | /// in the inverse map. |
---|
1654 | /// |
---|
1655 | /// The values of the map can be accessed |
---|
1656 | /// with stl compatible forward iterator. |
---|
1657 | /// |
---|
1658 | /// \param _Graph The graph type. |
---|
1659 | /// \param _Item The item type of the graph. |
---|
1660 | /// \param _Value The value type of the map. |
---|
1661 | /// |
---|
1662 | /// \see IterableValueMap |
---|
1663 | template <typename _Graph, typename _Item, typename _Value> |
---|
1664 | class InvertableMap : protected DefaultMap<_Graph, _Item, _Value> { |
---|
1665 | private: |
---|
1666 | |
---|
1667 | typedef DefaultMap<_Graph, _Item, _Value> Map; |
---|
1668 | typedef _Graph Graph; |
---|
1669 | |
---|
1670 | typedef std::map<_Value, _Item> Container; |
---|
1671 | Container invMap; |
---|
1672 | |
---|
1673 | public: |
---|
1674 | |
---|
1675 | /// The key type of InvertableMap (Node, Edge, UEdge). |
---|
1676 | typedef typename Map::Key Key; |
---|
1677 | /// The value type of the InvertableMap. |
---|
1678 | typedef typename Map::Value Value; |
---|
1679 | |
---|
1680 | |
---|
1681 | |
---|
1682 | /// \brief Constructor. |
---|
1683 | /// |
---|
1684 | /// Construct a new InvertableMap for the graph. |
---|
1685 | /// |
---|
1686 | explicit InvertableMap(const Graph& graph) : Map(graph) {} |
---|
1687 | |
---|
1688 | /// \brief Forward iterator for values. |
---|
1689 | /// |
---|
1690 | /// This iterator is an stl compatible forward |
---|
1691 | /// iterator on the values of the map. The values can |
---|
1692 | /// be accessed in the [beginValue, endValue) range. |
---|
1693 | /// |
---|
1694 | class ValueIterator |
---|
1695 | : public std::iterator<std::forward_iterator_tag, Value> { |
---|
1696 | friend class InvertableMap; |
---|
1697 | private: |
---|
1698 | ValueIterator(typename Container::const_iterator _it) |
---|
1699 | : it(_it) {} |
---|
1700 | public: |
---|
1701 | |
---|
1702 | ValueIterator() {} |
---|
1703 | |
---|
1704 | ValueIterator& operator++() { ++it; return *this; } |
---|
1705 | ValueIterator operator++(int) { |
---|
1706 | ValueIterator tmp(*this); |
---|
1707 | operator++(); |
---|
1708 | return tmp; |
---|
1709 | } |
---|
1710 | |
---|
1711 | const Value& operator*() const { return it->first; } |
---|
1712 | const Value* operator->() const { return &(it->first); } |
---|
1713 | |
---|
1714 | bool operator==(ValueIterator jt) const { return it == jt.it; } |
---|
1715 | bool operator!=(ValueIterator jt) const { return it != jt.it; } |
---|
1716 | |
---|
1717 | private: |
---|
1718 | typename Container::const_iterator it; |
---|
1719 | }; |
---|
1720 | |
---|
1721 | /// \brief Returns an iterator to the first value. |
---|
1722 | /// |
---|
1723 | /// Returns an stl compatible iterator to the |
---|
1724 | /// first value of the map. The values of the |
---|
1725 | /// map can be accessed in the [beginValue, endValue) |
---|
1726 | /// range. |
---|
1727 | ValueIterator beginValue() const { |
---|
1728 | return ValueIterator(invMap.begin()); |
---|
1729 | } |
---|
1730 | |
---|
1731 | /// \brief Returns an iterator after the last value. |
---|
1732 | /// |
---|
1733 | /// Returns an stl compatible iterator after the |
---|
1734 | /// last value of the map. The values of the |
---|
1735 | /// map can be accessed in the [beginValue, endValue) |
---|
1736 | /// range. |
---|
1737 | ValueIterator endValue() const { |
---|
1738 | return ValueIterator(invMap.end()); |
---|
1739 | } |
---|
1740 | |
---|
1741 | /// \brief The setter function of the map. |
---|
1742 | /// |
---|
1743 | /// Sets the mapped value. |
---|
1744 | void set(const Key& key, const Value& val) { |
---|
1745 | Value oldval = Map::operator[](key); |
---|
1746 | typename Container::iterator it = invMap.find(oldval); |
---|
1747 | if (it != invMap.end() && it->second == key) { |
---|
1748 | invMap.erase(it); |
---|
1749 | } |
---|
1750 | invMap.insert(make_pair(val, key)); |
---|
1751 | Map::set(key, val); |
---|
1752 | } |
---|
1753 | |
---|
1754 | /// \brief The getter function of the map. |
---|
1755 | /// |
---|
1756 | /// It gives back the value associated with the key. |
---|
1757 | typename MapTraits<Map>::ConstReturnValue |
---|
1758 | operator[](const Key& key) const { |
---|
1759 | return Map::operator[](key); |
---|
1760 | } |
---|
1761 | |
---|
1762 | /// \brief Gives back the item by its value. |
---|
1763 | /// |
---|
1764 | /// Gives back the item by its value. |
---|
1765 | Key operator()(const Value& key) const { |
---|
1766 | typename Container::const_iterator it = invMap.find(key); |
---|
1767 | return it != invMap.end() ? it->second : INVALID; |
---|
1768 | } |
---|
1769 | |
---|
1770 | protected: |
---|
1771 | |
---|
1772 | /// \brief Erase the key from the map. |
---|
1773 | /// |
---|
1774 | /// Erase the key to the map. It is called by the |
---|
1775 | /// \c AlterationNotifier. |
---|
1776 | virtual void erase(const Key& key) { |
---|
1777 | Value val = Map::operator[](key); |
---|
1778 | typename Container::iterator it = invMap.find(val); |
---|
1779 | if (it != invMap.end() && it->second == key) { |
---|
1780 | invMap.erase(it); |
---|
1781 | } |
---|
1782 | Map::erase(key); |
---|
1783 | } |
---|
1784 | |
---|
1785 | /// \brief Erase more keys from the map. |
---|
1786 | /// |
---|
1787 | /// Erase more keys from the map. It is called by the |
---|
1788 | /// \c AlterationNotifier. |
---|
1789 | virtual void erase(const std::vector<Key>& keys) { |
---|
1790 | for (int i = 0; i < int(keys.size()); ++i) { |
---|
1791 | Value val = Map::operator[](keys[i]); |
---|
1792 | typename Container::iterator it = invMap.find(val); |
---|
1793 | if (it != invMap.end() && it->second == keys[i]) { |
---|
1794 | invMap.erase(it); |
---|
1795 | } |
---|
1796 | } |
---|
1797 | Map::erase(keys); |
---|
1798 | } |
---|
1799 | |
---|
1800 | /// \brief Clear the keys from the map and inverse map. |
---|
1801 | /// |
---|
1802 | /// Clear the keys from the map and inverse map. It is called by the |
---|
1803 | /// \c AlterationNotifier. |
---|
1804 | virtual void clear() { |
---|
1805 | invMap.clear(); |
---|
1806 | Map::clear(); |
---|
1807 | } |
---|
1808 | |
---|
1809 | public: |
---|
1810 | |
---|
1811 | /// \brief The inverse map type. |
---|
1812 | /// |
---|
1813 | /// The inverse of this map. The subscript operator of the map |
---|
1814 | /// gives back always the item what was last assigned to the value. |
---|
1815 | class InverseMap { |
---|
1816 | public: |
---|
1817 | /// \brief Constructor of the InverseMap. |
---|
1818 | /// |
---|
1819 | /// Constructor of the InverseMap. |
---|
1820 | explicit InverseMap(const InvertableMap& _inverted) |
---|
1821 | : inverted(_inverted) {} |
---|
1822 | |
---|
1823 | /// The value type of the InverseMap. |
---|
1824 | typedef typename InvertableMap::Key Value; |
---|
1825 | /// The key type of the InverseMap. |
---|
1826 | typedef typename InvertableMap::Value Key; |
---|
1827 | |
---|
1828 | /// \brief Subscript operator. |
---|
1829 | /// |
---|
1830 | /// Subscript operator. It gives back always the item |
---|
1831 | /// what was last assigned to the value. |
---|
1832 | Value operator[](const Key& key) const { |
---|
1833 | return inverted(key); |
---|
1834 | } |
---|
1835 | |
---|
1836 | private: |
---|
1837 | const InvertableMap& inverted; |
---|
1838 | }; |
---|
1839 | |
---|
1840 | /// \brief It gives back the just readable inverse map. |
---|
1841 | /// |
---|
1842 | /// It gives back the just readable inverse map. |
---|
1843 | InverseMap inverse() const { |
---|
1844 | return InverseMap(*this); |
---|
1845 | } |
---|
1846 | |
---|
1847 | |
---|
1848 | |
---|
1849 | }; |
---|
1850 | |
---|
1851 | /// \brief Provides a mutable, continuous and unique descriptor for each |
---|
1852 | /// item in the graph. |
---|
1853 | /// |
---|
1854 | /// The DescriptorMap class provides a unique and continuous (but mutable) |
---|
1855 | /// descriptor (id) for each item of the same type (e.g. node) in the |
---|
1856 | /// graph. This id is <ul><li>\b unique: different items (nodes) get |
---|
1857 | /// different ids <li>\b continuous: the range of the ids is the set of |
---|
1858 | /// integers between 0 and \c n-1, where \c n is the number of the items of |
---|
1859 | /// this type (e.g. nodes) (so the id of a node can change if you delete an |
---|
1860 | /// other node, i.e. this id is mutable). </ul> This map can be inverted |
---|
1861 | /// with its member class \c InverseMap. |
---|
1862 | /// |
---|
1863 | /// \param _Graph The graph class the \c DescriptorMap belongs to. |
---|
1864 | /// \param _Item The Item is the Key of the Map. It may be Node, Edge or |
---|
1865 | /// UEdge. |
---|
1866 | template <typename _Graph, typename _Item> |
---|
1867 | class DescriptorMap : protected DefaultMap<_Graph, _Item, int> { |
---|
1868 | |
---|
1869 | typedef _Item Item; |
---|
1870 | typedef DefaultMap<_Graph, _Item, int> Map; |
---|
1871 | |
---|
1872 | public: |
---|
1873 | /// The graph class of DescriptorMap. |
---|
1874 | typedef _Graph Graph; |
---|
1875 | |
---|
1876 | /// The key type of DescriptorMap (Node, Edge, UEdge). |
---|
1877 | typedef typename Map::Key Key; |
---|
1878 | /// The value type of DescriptorMap. |
---|
1879 | typedef typename Map::Value Value; |
---|
1880 | |
---|
1881 | /// \brief Constructor. |
---|
1882 | /// |
---|
1883 | /// Constructor for descriptor map. |
---|
1884 | explicit DescriptorMap(const Graph& _graph) : Map(_graph) { |
---|
1885 | Item it; |
---|
1886 | const typename Map::Notifier* nf = Map::notifier(); |
---|
1887 | for (nf->first(it); it != INVALID; nf->next(it)) { |
---|
1888 | Map::set(it, invMap.size()); |
---|
1889 | invMap.push_back(it); |
---|
1890 | } |
---|
1891 | } |
---|
1892 | |
---|
1893 | protected: |
---|
1894 | |
---|
1895 | /// \brief Add a new key to the map. |
---|
1896 | /// |
---|
1897 | /// Add a new key to the map. It is called by the |
---|
1898 | /// \c AlterationNotifier. |
---|
1899 | virtual void add(const Item& item) { |
---|
1900 | Map::add(item); |
---|
1901 | Map::set(item, invMap.size()); |
---|
1902 | invMap.push_back(item); |
---|
1903 | } |
---|
1904 | |
---|
1905 | /// \brief Add more new keys to the map. |
---|
1906 | /// |
---|
1907 | /// Add more new keys to the map. It is called by the |
---|
1908 | /// \c AlterationNotifier. |
---|
1909 | virtual void add(const std::vector<Item>& items) { |
---|
1910 | Map::add(items); |
---|
1911 | for (int i = 0; i < int(items.size()); ++i) { |
---|
1912 | Map::set(items[i], invMap.size()); |
---|
1913 | invMap.push_back(items[i]); |
---|
1914 | } |
---|
1915 | } |
---|
1916 | |
---|
1917 | /// \brief Erase the key from the map. |
---|
1918 | /// |
---|
1919 | /// Erase the key from the map. It is called by the |
---|
1920 | /// \c AlterationNotifier. |
---|
1921 | virtual void erase(const Item& item) { |
---|
1922 | Map::set(invMap.back(), Map::operator[](item)); |
---|
1923 | invMap[Map::operator[](item)] = invMap.back(); |
---|
1924 | invMap.pop_back(); |
---|
1925 | Map::erase(item); |
---|
1926 | } |
---|
1927 | |
---|
1928 | /// \brief Erase more keys from the map. |
---|
1929 | /// |
---|
1930 | /// Erase more keys from the map. It is called by the |
---|
1931 | /// \c AlterationNotifier. |
---|
1932 | virtual void erase(const std::vector<Item>& items) { |
---|
1933 | for (int i = 0; i < int(items.size()); ++i) { |
---|
1934 | Map::set(invMap.back(), Map::operator[](items[i])); |
---|
1935 | invMap[Map::operator[](items[i])] = invMap.back(); |
---|
1936 | invMap.pop_back(); |
---|
1937 | } |
---|
1938 | Map::erase(items); |
---|
1939 | } |
---|
1940 | |
---|
1941 | /// \brief Build the unique map. |
---|
1942 | /// |
---|
1943 | /// Build the unique map. It is called by the |
---|
1944 | /// \c AlterationNotifier. |
---|
1945 | virtual void build() { |
---|
1946 | Map::build(); |
---|
1947 | Item it; |
---|
1948 | const typename Map::Notifier* nf = Map::notifier(); |
---|
1949 | for (nf->first(it); it != INVALID; nf->next(it)) { |
---|
1950 | Map::set(it, invMap.size()); |
---|
1951 | invMap.push_back(it); |
---|
1952 | } |
---|
1953 | } |
---|
1954 | |
---|
1955 | /// \brief Clear the keys from the map. |
---|
1956 | /// |
---|
1957 | /// Clear the keys from the map. It is called by the |
---|
1958 | /// \c AlterationNotifier. |
---|
1959 | virtual void clear() { |
---|
1960 | invMap.clear(); |
---|
1961 | Map::clear(); |
---|
1962 | } |
---|
1963 | |
---|
1964 | public: |
---|
1965 | |
---|
1966 | /// \brief Returns the maximal value plus one. |
---|
1967 | /// |
---|
1968 | /// Returns the maximal value plus one in the map. |
---|
1969 | unsigned int size() const { |
---|
1970 | return invMap.size(); |
---|
1971 | } |
---|
1972 | |
---|
1973 | /// \brief Swaps the position of the two items in the map. |
---|
1974 | /// |
---|
1975 | /// Swaps the position of the two items in the map. |
---|
1976 | void swap(const Item& p, const Item& q) { |
---|
1977 | int pi = Map::operator[](p); |
---|
1978 | int qi = Map::operator[](q); |
---|
1979 | Map::set(p, qi); |
---|
1980 | invMap[qi] = p; |
---|
1981 | Map::set(q, pi); |
---|
1982 | invMap[pi] = q; |
---|
1983 | } |
---|
1984 | |
---|
1985 | /// \brief Gives back the \e descriptor of the item. |
---|
1986 | /// |
---|
1987 | /// Gives back the mutable and unique \e descriptor of the map. |
---|
1988 | int operator[](const Item& item) const { |
---|
1989 | return Map::operator[](item); |
---|
1990 | } |
---|
1991 | |
---|
1992 | /// \brief Gives back the item by its descriptor. |
---|
1993 | /// |
---|
1994 | /// Gives back th item by its descriptor. |
---|
1995 | Item operator()(int id) const { |
---|
1996 | return invMap[id]; |
---|
1997 | } |
---|
1998 | |
---|
1999 | private: |
---|
2000 | |
---|
2001 | typedef std::vector<Item> Container; |
---|
2002 | Container invMap; |
---|
2003 | |
---|
2004 | public: |
---|
2005 | /// \brief The inverse map type of DescriptorMap. |
---|
2006 | /// |
---|
2007 | /// The inverse map type of DescriptorMap. |
---|
2008 | class InverseMap { |
---|
2009 | public: |
---|
2010 | /// \brief Constructor of the InverseMap. |
---|
2011 | /// |
---|
2012 | /// Constructor of the InverseMap. |
---|
2013 | explicit InverseMap(const DescriptorMap& _inverted) |
---|
2014 | : inverted(_inverted) {} |
---|
2015 | |
---|
2016 | |
---|
2017 | /// The value type of the InverseMap. |
---|
2018 | typedef typename DescriptorMap::Key Value; |
---|
2019 | /// The key type of the InverseMap. |
---|
2020 | typedef typename DescriptorMap::Value Key; |
---|
2021 | |
---|
2022 | /// \brief Subscript operator. |
---|
2023 | /// |
---|
2024 | /// Subscript operator. It gives back the item |
---|
2025 | /// that the descriptor belongs to currently. |
---|
2026 | Value operator[](const Key& key) const { |
---|
2027 | return inverted(key); |
---|
2028 | } |
---|
2029 | |
---|
2030 | /// \brief Size of the map. |
---|
2031 | /// |
---|
2032 | /// Returns the size of the map. |
---|
2033 | unsigned int size() const { |
---|
2034 | return inverted.size(); |
---|
2035 | } |
---|
2036 | |
---|
2037 | private: |
---|
2038 | const DescriptorMap& inverted; |
---|
2039 | }; |
---|
2040 | |
---|
2041 | /// \brief Gives back the inverse of the map. |
---|
2042 | /// |
---|
2043 | /// Gives back the inverse of the map. |
---|
2044 | const InverseMap inverse() const { |
---|
2045 | return InverseMap(*this); |
---|
2046 | } |
---|
2047 | }; |
---|
2048 | |
---|
2049 | /// \brief Returns the source of the given edge. |
---|
2050 | /// |
---|
2051 | /// The SourceMap gives back the source Node of the given edge. |
---|
2052 | /// \see TargetMap |
---|
2053 | /// \author Balazs Dezso |
---|
2054 | template <typename Graph> |
---|
2055 | class SourceMap { |
---|
2056 | public: |
---|
2057 | |
---|
2058 | typedef typename Graph::Node Value; |
---|
2059 | typedef typename Graph::Edge Key; |
---|
2060 | |
---|
2061 | /// \brief Constructor |
---|
2062 | /// |
---|
2063 | /// Constructor |
---|
2064 | /// \param _graph The graph that the map belongs to. |
---|
2065 | explicit SourceMap(const Graph& _graph) : graph(_graph) {} |
---|
2066 | |
---|
2067 | /// \brief The subscript operator. |
---|
2068 | /// |
---|
2069 | /// The subscript operator. |
---|
2070 | /// \param edge The edge |
---|
2071 | /// \return The source of the edge |
---|
2072 | Value operator[](const Key& edge) const { |
---|
2073 | return graph.source(edge); |
---|
2074 | } |
---|
2075 | |
---|
2076 | private: |
---|
2077 | const Graph& graph; |
---|
2078 | }; |
---|
2079 | |
---|
2080 | /// \brief Returns a \ref SourceMap class. |
---|
2081 | /// |
---|
2082 | /// This function just returns an \ref SourceMap class. |
---|
2083 | /// \relates SourceMap |
---|
2084 | template <typename Graph> |
---|
2085 | inline SourceMap<Graph> sourceMap(const Graph& graph) { |
---|
2086 | return SourceMap<Graph>(graph); |
---|
2087 | } |
---|
2088 | |
---|
2089 | /// \brief Returns the target of the given edge. |
---|
2090 | /// |
---|
2091 | /// The TargetMap gives back the target Node of the given edge. |
---|
2092 | /// \see SourceMap |
---|
2093 | /// \author Balazs Dezso |
---|
2094 | template <typename Graph> |
---|
2095 | class TargetMap { |
---|
2096 | public: |
---|
2097 | |
---|
2098 | typedef typename Graph::Node Value; |
---|
2099 | typedef typename Graph::Edge Key; |
---|
2100 | |
---|
2101 | /// \brief Constructor |
---|
2102 | /// |
---|
2103 | /// Constructor |
---|
2104 | /// \param _graph The graph that the map belongs to. |
---|
2105 | explicit TargetMap(const Graph& _graph) : graph(_graph) {} |
---|
2106 | |
---|
2107 | /// \brief The subscript operator. |
---|
2108 | /// |
---|
2109 | /// The subscript operator. |
---|
2110 | /// \param e The edge |
---|
2111 | /// \return The target of the edge |
---|
2112 | Value operator[](const Key& e) const { |
---|
2113 | return graph.target(e); |
---|
2114 | } |
---|
2115 | |
---|
2116 | private: |
---|
2117 | const Graph& graph; |
---|
2118 | }; |
---|
2119 | |
---|
2120 | /// \brief Returns a \ref TargetMap class. |
---|
2121 | /// |
---|
2122 | /// This function just returns a \ref TargetMap class. |
---|
2123 | /// \relates TargetMap |
---|
2124 | template <typename Graph> |
---|
2125 | inline TargetMap<Graph> targetMap(const Graph& graph) { |
---|
2126 | return TargetMap<Graph>(graph); |
---|
2127 | } |
---|
2128 | |
---|
2129 | /// \brief Returns the "forward" directed edge view of an undirected edge. |
---|
2130 | /// |
---|
2131 | /// Returns the "forward" directed edge view of an undirected edge. |
---|
2132 | /// \see BackwardMap |
---|
2133 | /// \author Balazs Dezso |
---|
2134 | template <typename Graph> |
---|
2135 | class ForwardMap { |
---|
2136 | public: |
---|
2137 | |
---|
2138 | typedef typename Graph::Edge Value; |
---|
2139 | typedef typename Graph::UEdge Key; |
---|
2140 | |
---|
2141 | /// \brief Constructor |
---|
2142 | /// |
---|
2143 | /// Constructor |
---|
2144 | /// \param _graph The graph that the map belongs to. |
---|
2145 | explicit ForwardMap(const Graph& _graph) : graph(_graph) {} |
---|
2146 | |
---|
2147 | /// \brief The subscript operator. |
---|
2148 | /// |
---|
2149 | /// The subscript operator. |
---|
2150 | /// \param key An undirected edge |
---|
2151 | /// \return The "forward" directed edge view of undirected edge |
---|
2152 | Value operator[](const Key& key) const { |
---|
2153 | return graph.direct(key, true); |
---|
2154 | } |
---|
2155 | |
---|
2156 | private: |
---|
2157 | const Graph& graph; |
---|
2158 | }; |
---|
2159 | |
---|
2160 | /// \brief Returns a \ref ForwardMap class. |
---|
2161 | /// |
---|
2162 | /// This function just returns an \ref ForwardMap class. |
---|
2163 | /// \relates ForwardMap |
---|
2164 | template <typename Graph> |
---|
2165 | inline ForwardMap<Graph> forwardMap(const Graph& graph) { |
---|
2166 | return ForwardMap<Graph>(graph); |
---|
2167 | } |
---|
2168 | |
---|
2169 | /// \brief Returns the "backward" directed edge view of an undirected edge. |
---|
2170 | /// |
---|
2171 | /// Returns the "backward" directed edge view of an undirected edge. |
---|
2172 | /// \see ForwardMap |
---|
2173 | /// \author Balazs Dezso |
---|
2174 | template <typename Graph> |
---|
2175 | class BackwardMap { |
---|
2176 | public: |
---|
2177 | |
---|
2178 | typedef typename Graph::Edge Value; |
---|
2179 | typedef typename Graph::UEdge Key; |
---|
2180 | |
---|
2181 | /// \brief Constructor |
---|
2182 | /// |
---|
2183 | /// Constructor |
---|
2184 | /// \param _graph The graph that the map belongs to. |
---|
2185 | explicit BackwardMap(const Graph& _graph) : graph(_graph) {} |
---|
2186 | |
---|
2187 | /// \brief The subscript operator. |
---|
2188 | /// |
---|
2189 | /// The subscript operator. |
---|
2190 | /// \param key An undirected edge |
---|
2191 | /// \return The "backward" directed edge view of undirected edge |
---|
2192 | Value operator[](const Key& key) const { |
---|
2193 | return graph.direct(key, false); |
---|
2194 | } |
---|
2195 | |
---|
2196 | private: |
---|
2197 | const Graph& graph; |
---|
2198 | }; |
---|
2199 | |
---|
2200 | /// \brief Returns a \ref BackwardMap class |
---|
2201 | |
---|
2202 | /// This function just returns a \ref BackwardMap class. |
---|
2203 | /// \relates BackwardMap |
---|
2204 | template <typename Graph> |
---|
2205 | inline BackwardMap<Graph> backwardMap(const Graph& graph) { |
---|
2206 | return BackwardMap<Graph>(graph); |
---|
2207 | } |
---|
2208 | |
---|
2209 | /// \brief Potential difference map |
---|
2210 | /// |
---|
2211 | /// If there is an potential map on the nodes then we |
---|
2212 | /// can get an edge map as we get the substraction of the |
---|
2213 | /// values of the target and source. |
---|
2214 | template <typename Graph, typename NodeMap> |
---|
2215 | class PotentialDifferenceMap { |
---|
2216 | public: |
---|
2217 | typedef typename Graph::Edge Key; |
---|
2218 | typedef typename NodeMap::Value Value; |
---|
2219 | |
---|
2220 | /// \brief Constructor |
---|
2221 | /// |
---|
2222 | /// Contructor of the map |
---|
2223 | explicit PotentialDifferenceMap(const Graph& _graph, |
---|
2224 | const NodeMap& _potential) |
---|
2225 | : graph(_graph), potential(_potential) {} |
---|
2226 | |
---|
2227 | /// \brief Const subscription operator |
---|
2228 | /// |
---|
2229 | /// Const subscription operator |
---|
2230 | Value operator[](const Key& edge) const { |
---|
2231 | return potential[graph.target(edge)] - potential[graph.source(edge)]; |
---|
2232 | } |
---|
2233 | |
---|
2234 | private: |
---|
2235 | const Graph& graph; |
---|
2236 | const NodeMap& potential; |
---|
2237 | }; |
---|
2238 | |
---|
2239 | /// \brief Returns a PotentialDifferenceMap. |
---|
2240 | /// |
---|
2241 | /// This function just returns a PotentialDifferenceMap. |
---|
2242 | /// \relates PotentialDifferenceMap |
---|
2243 | template <typename Graph, typename NodeMap> |
---|
2244 | PotentialDifferenceMap<Graph, NodeMap> |
---|
2245 | potentialDifferenceMap(const Graph& graph, const NodeMap& potential) { |
---|
2246 | return PotentialDifferenceMap<Graph, NodeMap>(graph, potential); |
---|
2247 | } |
---|
2248 | |
---|
2249 | /// \brief Map of the node in-degrees. |
---|
2250 | /// |
---|
2251 | /// This map returns the in-degree of a node. Once it is constructed, |
---|
2252 | /// the degrees are stored in a standard NodeMap, so each query is done |
---|
2253 | /// in constant time. On the other hand, the values are updated automatically |
---|
2254 | /// whenever the graph changes. |
---|
2255 | /// |
---|
2256 | /// \warning Besides addNode() and addEdge(), a graph structure may provide |
---|
2257 | /// alternative ways to modify the graph. The correct behavior of InDegMap |
---|
2258 | /// is not guarantied if these additional features are used. For example |
---|
2259 | /// the functions \ref ListGraph::changeSource() "changeSource()", |
---|
2260 | /// \ref ListGraph::changeTarget() "changeTarget()" and |
---|
2261 | /// \ref ListGraph::reverseEdge() "reverseEdge()" |
---|
2262 | /// of \ref ListGraph will \e not update the degree values correctly. |
---|
2263 | /// |
---|
2264 | /// \sa OutDegMap |
---|
2265 | |
---|
2266 | template <typename _Graph> |
---|
2267 | class InDegMap |
---|
2268 | : protected ItemSetTraits<_Graph, typename _Graph::Edge> |
---|
2269 | ::ItemNotifier::ObserverBase { |
---|
2270 | |
---|
2271 | public: |
---|
2272 | |
---|
2273 | typedef _Graph Graph; |
---|
2274 | typedef int Value; |
---|
2275 | typedef typename Graph::Node Key; |
---|
2276 | |
---|
2277 | typedef typename ItemSetTraits<_Graph, typename _Graph::Edge> |
---|
2278 | ::ItemNotifier::ObserverBase Parent; |
---|
2279 | |
---|
2280 | private: |
---|
2281 | |
---|
2282 | class AutoNodeMap : public DefaultMap<_Graph, Key, int> { |
---|
2283 | public: |
---|
2284 | |
---|
2285 | typedef DefaultMap<_Graph, Key, int> Parent; |
---|
2286 | typedef typename Parent::Graph Graph; |
---|
2287 | |
---|
2288 | AutoNodeMap(const Graph& graph) : Parent(graph, 0) {} |
---|
2289 | |
---|
2290 | virtual void add(const Key& key) { |
---|
2291 | Parent::add(key); |
---|
2292 | Parent::set(key, 0); |
---|
2293 | } |
---|
2294 | |
---|
2295 | virtual void add(const std::vector<Key>& keys) { |
---|
2296 | Parent::add(keys); |
---|
2297 | for (int i = 0; i < int(keys.size()); ++i) { |
---|
2298 | Parent::set(keys[i], 0); |
---|
2299 | } |
---|
2300 | } |
---|
2301 | |
---|
2302 | virtual void build() { |
---|
2303 | Parent::build(); |
---|
2304 | Key it; |
---|
2305 | typename Parent::Notifier* nf = Parent::notifier(); |
---|
2306 | for (nf->first(it); it != INVALID; nf->next(it)) { |
---|
2307 | Parent::set(it, 0); |
---|
2308 | } |
---|
2309 | } |
---|
2310 | }; |
---|
2311 | |
---|
2312 | public: |
---|
2313 | |
---|
2314 | /// \brief Constructor. |
---|
2315 | /// |
---|
2316 | /// Constructor for creating in-degree map. |
---|
2317 | explicit InDegMap(const Graph& _graph) : graph(_graph), deg(_graph) { |
---|
2318 | Parent::attach(graph.notifier(typename _Graph::Edge())); |
---|
2319 | |
---|
2320 | for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
2321 | deg[it] = countInEdges(graph, it); |
---|
2322 | } |
---|
2323 | } |
---|
2324 | |
---|
2325 | /// Gives back the in-degree of a Node. |
---|
2326 | int operator[](const Key& key) const { |
---|
2327 | return deg[key]; |
---|
2328 | } |
---|
2329 | |
---|
2330 | protected: |
---|
2331 | |
---|
2332 | typedef typename Graph::Edge Edge; |
---|
2333 | |
---|
2334 | virtual void add(const Edge& edge) { |
---|
2335 | ++deg[graph.target(edge)]; |
---|
2336 | } |
---|
2337 | |
---|
2338 | virtual void add(const std::vector<Edge>& edges) { |
---|
2339 | for (int i = 0; i < int(edges.size()); ++i) { |
---|
2340 | ++deg[graph.target(edges[i])]; |
---|
2341 | } |
---|
2342 | } |
---|
2343 | |
---|
2344 | virtual void erase(const Edge& edge) { |
---|
2345 | --deg[graph.target(edge)]; |
---|
2346 | } |
---|
2347 | |
---|
2348 | virtual void erase(const std::vector<Edge>& edges) { |
---|
2349 | for (int i = 0; i < int(edges.size()); ++i) { |
---|
2350 | --deg[graph.target(edges[i])]; |
---|
2351 | } |
---|
2352 | } |
---|
2353 | |
---|
2354 | virtual void build() { |
---|
2355 | for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
2356 | deg[it] = countInEdges(graph, it); |
---|
2357 | } |
---|
2358 | } |
---|
2359 | |
---|
2360 | virtual void clear() { |
---|
2361 | for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
2362 | deg[it] = 0; |
---|
2363 | } |
---|
2364 | } |
---|
2365 | private: |
---|
2366 | |
---|
2367 | const _Graph& graph; |
---|
2368 | AutoNodeMap deg; |
---|
2369 | }; |
---|
2370 | |
---|
2371 | /// \brief Map of the node out-degrees. |
---|
2372 | /// |
---|
2373 | /// This map returns the out-degree of a node. Once it is constructed, |
---|
2374 | /// the degrees are stored in a standard NodeMap, so each query is done |
---|
2375 | /// in constant time. On the other hand, the values are updated automatically |
---|
2376 | /// whenever the graph changes. |
---|
2377 | /// |
---|
2378 | /// \warning Besides addNode() and addEdge(), a graph structure may provide |
---|
2379 | /// alternative ways to modify the graph. The correct behavior of OutDegMap |
---|
2380 | /// is not guarantied if these additional features are used. For example |
---|
2381 | /// the functions \ref ListGraph::changeSource() "changeSource()", |
---|
2382 | /// \ref ListGraph::changeTarget() "changeTarget()" and |
---|
2383 | /// \ref ListGraph::reverseEdge() "reverseEdge()" |
---|
2384 | /// of \ref ListGraph will \e not update the degree values correctly. |
---|
2385 | /// |
---|
2386 | /// \sa InDegMap |
---|
2387 | |
---|
2388 | template <typename _Graph> |
---|
2389 | class OutDegMap |
---|
2390 | : protected ItemSetTraits<_Graph, typename _Graph::Edge> |
---|
2391 | ::ItemNotifier::ObserverBase { |
---|
2392 | |
---|
2393 | public: |
---|
2394 | |
---|
2395 | typedef typename ItemSetTraits<_Graph, typename _Graph::Edge> |
---|
2396 | ::ItemNotifier::ObserverBase Parent; |
---|
2397 | |
---|
2398 | typedef _Graph Graph; |
---|
2399 | typedef int Value; |
---|
2400 | typedef typename Graph::Node Key; |
---|
2401 | |
---|
2402 | private: |
---|
2403 | |
---|
2404 | class AutoNodeMap : public DefaultMap<_Graph, Key, int> { |
---|
2405 | public: |
---|
2406 | |
---|
2407 | typedef DefaultMap<_Graph, Key, int> Parent; |
---|
2408 | typedef typename Parent::Graph Graph; |
---|
2409 | |
---|
2410 | AutoNodeMap(const Graph& graph) : Parent(graph, 0) {} |
---|
2411 | |
---|
2412 | virtual void add(const Key& key) { |
---|
2413 | Parent::add(key); |
---|
2414 | Parent::set(key, 0); |
---|
2415 | } |
---|
2416 | virtual void add(const std::vector<Key>& keys) { |
---|
2417 | Parent::add(keys); |
---|
2418 | for (int i = 0; i < int(keys.size()); ++i) { |
---|
2419 | Parent::set(keys[i], 0); |
---|
2420 | } |
---|
2421 | } |
---|
2422 | virtual void build() { |
---|
2423 | Parent::build(); |
---|
2424 | Key it; |
---|
2425 | typename Parent::Notifier* nf = Parent::notifier(); |
---|
2426 | for (nf->first(it); it != INVALID; nf->next(it)) { |
---|
2427 | Parent::set(it, 0); |
---|
2428 | } |
---|
2429 | } |
---|
2430 | }; |
---|
2431 | |
---|
2432 | public: |
---|
2433 | |
---|
2434 | /// \brief Constructor. |
---|
2435 | /// |
---|
2436 | /// Constructor for creating out-degree map. |
---|
2437 | explicit OutDegMap(const Graph& _graph) : graph(_graph), deg(_graph) { |
---|
2438 | Parent::attach(graph.notifier(typename _Graph::Edge())); |
---|
2439 | |
---|
2440 | for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
2441 | deg[it] = countOutEdges(graph, it); |
---|
2442 | } |
---|
2443 | } |
---|
2444 | |
---|
2445 | /// Gives back the out-degree of a Node. |
---|
2446 | int operator[](const Key& key) const { |
---|
2447 | return deg[key]; |
---|
2448 | } |
---|
2449 | |
---|
2450 | protected: |
---|
2451 | |
---|
2452 | typedef typename Graph::Edge Edge; |
---|
2453 | |
---|
2454 | virtual void add(const Edge& edge) { |
---|
2455 | ++deg[graph.source(edge)]; |
---|
2456 | } |
---|
2457 | |
---|
2458 | virtual void add(const std::vector<Edge>& edges) { |
---|
2459 | for (int i = 0; i < int(edges.size()); ++i) { |
---|
2460 | ++deg[graph.source(edges[i])]; |
---|
2461 | } |
---|
2462 | } |
---|
2463 | |
---|
2464 | virtual void erase(const Edge& edge) { |
---|
2465 | --deg[graph.source(edge)]; |
---|
2466 | } |
---|
2467 | |
---|
2468 | virtual void erase(const std::vector<Edge>& edges) { |
---|
2469 | for (int i = 0; i < int(edges.size()); ++i) { |
---|
2470 | --deg[graph.source(edges[i])]; |
---|
2471 | } |
---|
2472 | } |
---|
2473 | |
---|
2474 | virtual void build() { |
---|
2475 | for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
2476 | deg[it] = countOutEdges(graph, it); |
---|
2477 | } |
---|
2478 | } |
---|
2479 | |
---|
2480 | virtual void clear() { |
---|
2481 | for(typename _Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
2482 | deg[it] = 0; |
---|
2483 | } |
---|
2484 | } |
---|
2485 | private: |
---|
2486 | |
---|
2487 | const _Graph& graph; |
---|
2488 | AutoNodeMap deg; |
---|
2489 | }; |
---|
2490 | |
---|
2491 | |
---|
2492 | ///Dynamic edge look up between given endpoints. |
---|
2493 | |
---|
2494 | ///\ingroup gutils |
---|
2495 | ///Using this class, you can find an edge in a graph from a given |
---|
2496 | ///source to a given target in amortized time <em>O(log d)</em>, |
---|
2497 | ///where <em>d</em> is the out-degree of the source node. |
---|
2498 | /// |
---|
2499 | ///It is possible to find \e all parallel edges between two nodes with |
---|
2500 | ///the \c findFirst() and \c findNext() members. |
---|
2501 | /// |
---|
2502 | ///See the \ref EdgeLookUp and \ref AllEdgeLookUp classes if your |
---|
2503 | ///graph do not changed so frequently. |
---|
2504 | /// |
---|
2505 | ///This class uses a self-adjusting binary search tree, Sleator's |
---|
2506 | ///and Tarjan's Splay tree for guarantee the logarithmic amortized |
---|
2507 | ///time bound for edge lookups. This class also guarantees the |
---|
2508 | ///optimal time bound in a constant factor for any distribution of |
---|
2509 | ///queries. |
---|
2510 | /// |
---|
2511 | ///\param G The type of the underlying graph. |
---|
2512 | /// |
---|
2513 | ///\sa EdgeLookUp |
---|
2514 | ///\sa AllEdgeLookUp |
---|
2515 | template<class G> |
---|
2516 | class DynEdgeLookUp |
---|
2517 | : protected ItemSetTraits<G, typename G::Edge>::ItemNotifier::ObserverBase |
---|
2518 | { |
---|
2519 | public: |
---|
2520 | typedef typename ItemSetTraits<G, typename G::Edge> |
---|
2521 | ::ItemNotifier::ObserverBase Parent; |
---|
2522 | |
---|
2523 | GRAPH_TYPEDEFS(typename G); |
---|
2524 | typedef G Graph; |
---|
2525 | |
---|
2526 | protected: |
---|
2527 | |
---|
2528 | class AutoNodeMap : public DefaultMap<G, Node, Edge> { |
---|
2529 | public: |
---|
2530 | |
---|
2531 | typedef DefaultMap<G, Node, Edge> Parent; |
---|
2532 | |
---|
2533 | AutoNodeMap(const G& graph) : Parent(graph, INVALID) {} |
---|
2534 | |
---|
2535 | virtual void add(const Node& node) { |
---|
2536 | Parent::add(node); |
---|
2537 | Parent::set(node, INVALID); |
---|
2538 | } |
---|
2539 | |
---|
2540 | virtual void add(const std::vector<Node>& nodes) { |
---|
2541 | Parent::add(nodes); |
---|
2542 | for (int i = 0; i < int(nodes.size()); ++i) { |
---|
2543 | Parent::set(nodes[i], INVALID); |
---|
2544 | } |
---|
2545 | } |
---|
2546 | |
---|
2547 | virtual void build() { |
---|
2548 | Parent::build(); |
---|
2549 | Node it; |
---|
2550 | typename Parent::Notifier* nf = Parent::notifier(); |
---|
2551 | for (nf->first(it); it != INVALID; nf->next(it)) { |
---|
2552 | Parent::set(it, INVALID); |
---|
2553 | } |
---|
2554 | } |
---|
2555 | }; |
---|
2556 | |
---|
2557 | const Graph &_g; |
---|
2558 | AutoNodeMap _head; |
---|
2559 | typename Graph::template EdgeMap<Edge> _parent; |
---|
2560 | typename Graph::template EdgeMap<Edge> _left; |
---|
2561 | typename Graph::template EdgeMap<Edge> _right; |
---|
2562 | |
---|
2563 | class EdgeLess { |
---|
2564 | const Graph &g; |
---|
2565 | public: |
---|
2566 | EdgeLess(const Graph &_g) : g(_g) {} |
---|
2567 | bool operator()(Edge a,Edge b) const |
---|
2568 | { |
---|
2569 | return g.target(a)<g.target(b); |
---|
2570 | } |
---|
2571 | }; |
---|
2572 | |
---|
2573 | public: |
---|
2574 | |
---|
2575 | ///Constructor |
---|
2576 | |
---|
2577 | ///Constructor. |
---|
2578 | /// |
---|
2579 | ///It builds up the search database. |
---|
2580 | DynEdgeLookUp(const Graph &g) |
---|
2581 | : _g(g),_head(g),_parent(g),_left(g),_right(g) |
---|
2582 | { |
---|
2583 | Parent::attach(_g.notifier(typename Graph::Edge())); |
---|
2584 | refresh(); |
---|
2585 | } |
---|
2586 | |
---|
2587 | protected: |
---|
2588 | |
---|
2589 | virtual void add(const Edge& edge) { |
---|
2590 | insert(edge); |
---|
2591 | } |
---|
2592 | |
---|
2593 | virtual void add(const std::vector<Edge>& edges) { |
---|
2594 | for (int i = 0; i < int(edges.size()); ++i) { |
---|
2595 | insert(edges[i]); |
---|
2596 | } |
---|
2597 | } |
---|
2598 | |
---|
2599 | virtual void erase(const Edge& edge) { |
---|
2600 | remove(edge); |
---|
2601 | } |
---|
2602 | |
---|
2603 | virtual void erase(const std::vector<Edge>& edges) { |
---|
2604 | for (int i = 0; i < int(edges.size()); ++i) { |
---|
2605 | remove(edges[i]); |
---|
2606 | } |
---|
2607 | } |
---|
2608 | |
---|
2609 | virtual void build() { |
---|
2610 | refresh(); |
---|
2611 | } |
---|
2612 | |
---|
2613 | virtual void clear() { |
---|
2614 | for(NodeIt n(_g);n!=INVALID;++n) { |
---|
2615 | _head.set(n, INVALID); |
---|
2616 | } |
---|
2617 | } |
---|
2618 | |
---|
2619 | void insert(Edge edge) { |
---|
2620 | Node s = _g.source(edge); |
---|
2621 | Node t = _g.target(edge); |
---|
2622 | _left.set(edge, INVALID); |
---|
2623 | _right.set(edge, INVALID); |
---|
2624 | |
---|
2625 | Edge e = _head[s]; |
---|
2626 | if (e == INVALID) { |
---|
2627 | _head.set(s, edge); |
---|
2628 | _parent.set(edge, INVALID); |
---|
2629 | return; |
---|
2630 | } |
---|
2631 | while (true) { |
---|
2632 | if (t < _g.target(e)) { |
---|
2633 | if (_left[e] == INVALID) { |
---|
2634 | _left.set(e, edge); |
---|
2635 | _parent.set(edge, e); |
---|
2636 | splay(edge); |
---|
2637 | return; |
---|
2638 | } else { |
---|
2639 | e = _left[e]; |
---|
2640 | } |
---|
2641 | } else { |
---|
2642 | if (_right[e] == INVALID) { |
---|
2643 | _right.set(e, edge); |
---|
2644 | _parent.set(edge, e); |
---|
2645 | splay(edge); |
---|
2646 | return; |
---|
2647 | } else { |
---|
2648 | e = _right[e]; |
---|
2649 | } |
---|
2650 | } |
---|
2651 | } |
---|
2652 | } |
---|
2653 | |
---|
2654 | void remove(Edge edge) { |
---|
2655 | if (_left[edge] == INVALID) { |
---|
2656 | if (_right[edge] != INVALID) { |
---|
2657 | _parent.set(_right[edge], _parent[edge]); |
---|
2658 | } |
---|
2659 | if (_parent[edge] != INVALID) { |
---|
2660 | if (_left[_parent[edge]] == edge) { |
---|
2661 | _left.set(_parent[edge], _right[edge]); |
---|
2662 | } else { |
---|
2663 | _right.set(_parent[edge], _right[edge]); |
---|
2664 | } |
---|
2665 | } else { |
---|
2666 | _head.set(_g.source(edge), _right[edge]); |
---|
2667 | } |
---|
2668 | } else if (_right[edge] == INVALID) { |
---|
2669 | _parent.set(_left[edge], _parent[edge]); |
---|
2670 | if (_parent[edge] != INVALID) { |
---|
2671 | if (_left[_parent[edge]] == edge) { |
---|
2672 | _left.set(_parent[edge], _left[edge]); |
---|
2673 | } else { |
---|
2674 | _right.set(_parent[edge], _left[edge]); |
---|
2675 | } |
---|
2676 | } else { |
---|
2677 | _head.set(_g.source(edge), _left[edge]); |
---|
2678 | } |
---|
2679 | } else { |
---|
2680 | Edge e = _left[edge]; |
---|
2681 | if (_right[e] != INVALID) { |
---|
2682 | e = _right[e]; |
---|
2683 | while (_right[e] != INVALID) { |
---|
2684 | e = _right[e]; |
---|
2685 | } |
---|
2686 | Edge s = _parent[e]; |
---|
2687 | _right.set(_parent[e], _left[e]); |
---|
2688 | if (_left[e] != INVALID) { |
---|
2689 | _parent.set(_left[e], _parent[e]); |
---|
2690 | } |
---|
2691 | |
---|
2692 | _left.set(e, _left[edge]); |
---|
2693 | _parent.set(_left[edge], e); |
---|
2694 | _right.set(e, _right[edge]); |
---|
2695 | _parent.set(_right[edge], e); |
---|
2696 | |
---|
2697 | _parent.set(e, _parent[edge]); |
---|
2698 | if (_parent[edge] != INVALID) { |
---|
2699 | if (_left[_parent[edge]] == edge) { |
---|
2700 | _left.set(_parent[edge], e); |
---|
2701 | } else { |
---|
2702 | _right.set(_parent[edge], e); |
---|
2703 | } |
---|
2704 | } |
---|
2705 | splay(s); |
---|
2706 | } else { |
---|
2707 | _right.set(e, _right[edge]); |
---|
2708 | _parent.set(_right[edge], e); |
---|
2709 | _parent.set(e, _parent[edge]); |
---|
2710 | |
---|
2711 | if (_parent[edge] != INVALID) { |
---|
2712 | if (_left[_parent[edge]] == edge) { |
---|
2713 | _left.set(_parent[edge], e); |
---|
2714 | } else { |
---|
2715 | _right.set(_parent[edge], e); |
---|
2716 | } |
---|
2717 | } else { |
---|
2718 | _head.set(_g.source(edge), e); |
---|
2719 | } |
---|
2720 | } |
---|
2721 | } |
---|
2722 | } |
---|
2723 | |
---|
2724 | Edge refreshRec(std::vector<Edge> &v,int a,int b) |
---|
2725 | { |
---|
2726 | int m=(a+b)/2; |
---|
2727 | Edge me=v[m]; |
---|
2728 | if (a < m) { |
---|
2729 | Edge left = refreshRec(v,a,m-1); |
---|
2730 | _left.set(me, left); |
---|
2731 | _parent.set(left, me); |
---|
2732 | } else { |
---|
2733 | _left.set(me, INVALID); |
---|
2734 | } |
---|
2735 | if (m < b) { |
---|
2736 | Edge right = refreshRec(v,m+1,b); |
---|
2737 | _right.set(me, right); |
---|
2738 | _parent.set(right, me); |
---|
2739 | } else { |
---|
2740 | _right.set(me, INVALID); |
---|
2741 | } |
---|
2742 | return me; |
---|
2743 | } |
---|
2744 | |
---|
2745 | void refresh() { |
---|
2746 | for(NodeIt n(_g);n!=INVALID;++n) { |
---|
2747 | std::vector<Edge> v; |
---|
2748 | for(OutEdgeIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
---|
2749 | if(v.size()) { |
---|
2750 | std::sort(v.begin(),v.end(),EdgeLess(_g)); |
---|
2751 | Edge head = refreshRec(v,0,v.size()-1); |
---|
2752 | _head.set(n, head); |
---|
2753 | _parent.set(head, INVALID); |
---|
2754 | } |
---|
2755 | else _head.set(n, INVALID); |
---|
2756 | } |
---|
2757 | } |
---|
2758 | |
---|
2759 | void zig(Edge v) { |
---|
2760 | Edge w = _parent[v]; |
---|
2761 | _parent.set(v, _parent[w]); |
---|
2762 | _parent.set(w, v); |
---|
2763 | _left.set(w, _right[v]); |
---|
2764 | _right.set(v, w); |
---|
2765 | if (_parent[v] != INVALID) { |
---|
2766 | if (_right[_parent[v]] == w) { |
---|
2767 | _right.set(_parent[v], v); |
---|
2768 | } else { |
---|
2769 | _left.set(_parent[v], v); |
---|
2770 | } |
---|
2771 | } |
---|
2772 | if (_left[w] != INVALID){ |
---|
2773 | _parent.set(_left[w], w); |
---|
2774 | } |
---|
2775 | } |
---|
2776 | |
---|
2777 | void zag(Edge v) { |
---|
2778 | Edge w = _parent[v]; |
---|
2779 | _parent.set(v, _parent[w]); |
---|
2780 | _parent.set(w, v); |
---|
2781 | _right.set(w, _left[v]); |
---|
2782 | _left.set(v, w); |
---|
2783 | if (_parent[v] != INVALID){ |
---|
2784 | if (_left[_parent[v]] == w) { |
---|
2785 | _left.set(_parent[v], v); |
---|
2786 | } else { |
---|
2787 | _right.set(_parent[v], v); |
---|
2788 | } |
---|
2789 | } |
---|
2790 | if (_right[w] != INVALID){ |
---|
2791 | _parent.set(_right[w], w); |
---|
2792 | } |
---|
2793 | } |
---|
2794 | |
---|
2795 | void splay(Edge v) { |
---|
2796 | while (_parent[v] != INVALID) { |
---|
2797 | if (v == _left[_parent[v]]) { |
---|
2798 | if (_parent[_parent[v]] == INVALID) { |
---|
2799 | zig(v); |
---|
2800 | } else { |
---|
2801 | if (_parent[v] == _left[_parent[_parent[v]]]) { |
---|
2802 | zig(_parent[v]); |
---|
2803 | zig(v); |
---|
2804 | } else { |
---|
2805 | zig(v); |
---|
2806 | zag(v); |
---|
2807 | } |
---|
2808 | } |
---|
2809 | } else { |
---|
2810 | if (_parent[_parent[v]] == INVALID) { |
---|
2811 | zag(v); |
---|
2812 | } else { |
---|
2813 | if (_parent[v] == _left[_parent[_parent[v]]]) { |
---|
2814 | zag(v); |
---|
2815 | zig(v); |
---|
2816 | } else { |
---|
2817 | zag(_parent[v]); |
---|
2818 | zag(v); |
---|
2819 | } |
---|
2820 | } |
---|
2821 | } |
---|
2822 | } |
---|
2823 | _head[_g.source(v)] = v; |
---|
2824 | } |
---|
2825 | |
---|
2826 | |
---|
2827 | public: |
---|
2828 | |
---|
2829 | ///Find an edge between two nodes. |
---|
2830 | |
---|
2831 | ///Find an edge between two nodes in time <em>O(</em>log<em>d)</em>, where |
---|
2832 | /// <em>d</em> is the number of outgoing edges of \c s. |
---|
2833 | ///\param s The source node |
---|
2834 | ///\param t The target node |
---|
2835 | ///\return An edge from \c s to \c t if there exists, |
---|
2836 | ///\ref INVALID otherwise. |
---|
2837 | Edge operator()(Node s, Node t) const |
---|
2838 | { |
---|
2839 | Edge e = _head[s]; |
---|
2840 | if (e == INVALID) return INVALID; |
---|
2841 | while (true) { |
---|
2842 | if (_g.target(e) == t) { |
---|
2843 | const_cast<DynEdgeLookUp&>(*this).splay(e); |
---|
2844 | return e; |
---|
2845 | } else if (t < _g.target(e)) { |
---|
2846 | if (_left[e] == INVALID) { |
---|
2847 | const_cast<DynEdgeLookUp&>(*this).splay(e); |
---|
2848 | return INVALID; |
---|
2849 | } else { |
---|
2850 | e = _left[e]; |
---|
2851 | } |
---|
2852 | } else { |
---|
2853 | if (_right[e] == INVALID) { |
---|
2854 | const_cast<DynEdgeLookUp&>(*this).splay(e); |
---|
2855 | return INVALID; |
---|
2856 | } else { |
---|
2857 | e = _right[e]; |
---|
2858 | } |
---|
2859 | } |
---|
2860 | } |
---|
2861 | } |
---|
2862 | |
---|
2863 | ///Find the first edge between two nodes. |
---|
2864 | |
---|
2865 | ///Find the first edge between two nodes in time |
---|
2866 | /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of |
---|
2867 | /// outgoing edges of \c s. |
---|
2868 | ///\param s The source node |
---|
2869 | ///\param t The target node |
---|
2870 | ///\return An edge from \c s to \c t if there exists, \ref INVALID |
---|
2871 | /// otherwise. |
---|
2872 | Edge findFirst(Node s, Node t) const |
---|
2873 | { |
---|
2874 | Edge e = _head[s]; |
---|
2875 | Edge r = INVALID; |
---|
2876 | while (true) { |
---|
2877 | if (_g.target(e) < t) { |
---|
2878 | if (_right[e] == INVALID) { |
---|
2879 | const_cast<DynEdgeLookUp&>(*this).splay(e); |
---|
2880 | return r; |
---|
2881 | } else { |
---|
2882 | e = _right[e]; |
---|
2883 | } |
---|
2884 | } else { |
---|
2885 | if (_g.target(e) == t) { |
---|
2886 | r = e; |
---|
2887 | } |
---|
2888 | if (_left[e] == INVALID) { |
---|
2889 | const_cast<DynEdgeLookUp&>(*this).splay(e); |
---|
2890 | return r; |
---|
2891 | } else { |
---|
2892 | e = _left[e]; |
---|
2893 | } |
---|
2894 | } |
---|
2895 | } |
---|
2896 | } |
---|
2897 | |
---|
2898 | ///Find the next edge between two nodes. |
---|
2899 | |
---|
2900 | ///Find the next edge between two nodes in time |
---|
2901 | /// <em>O(</em>log<em>d)</em>, where <em>d</em> is the number of |
---|
2902 | /// outgoing edges of \c s. |
---|
2903 | ///\param s The source node |
---|
2904 | ///\param t The target node |
---|
2905 | ///\return An edge from \c s to \c t if there exists, \ref INVALID |
---|
2906 | /// otherwise. |
---|
2907 | |
---|
2908 | ///\note If \c e is not the result of the previous \c findFirst() |
---|
2909 | ///operation then the amorized time bound can not be guaranteed. |
---|
2910 | #ifdef DOXYGEN |
---|
2911 | Edge findNext(Node s, Node t, Edge e) const |
---|
2912 | #else |
---|
2913 | Edge findNext(Node, Node t, Edge e) const |
---|
2914 | #endif |
---|
2915 | { |
---|
2916 | if (_right[e] != INVALID) { |
---|
2917 | e = _right[e]; |
---|
2918 | while (_left[e] != INVALID) { |
---|
2919 | e = _left[e]; |
---|
2920 | } |
---|
2921 | const_cast<DynEdgeLookUp&>(*this).splay(e); |
---|
2922 | } else { |
---|
2923 | while (_parent[e] != INVALID && _right[_parent[e]] == e) { |
---|
2924 | e = _parent[e]; |
---|
2925 | } |
---|
2926 | if (_parent[e] == INVALID) { |
---|
2927 | return INVALID; |
---|
2928 | } else { |
---|
2929 | e = _parent[e]; |
---|
2930 | const_cast<DynEdgeLookUp&>(*this).splay(e); |
---|
2931 | } |
---|
2932 | } |
---|
2933 | if (_g.target(e) == t) return e; |
---|
2934 | else return INVALID; |
---|
2935 | } |
---|
2936 | |
---|
2937 | }; |
---|
2938 | |
---|
2939 | ///Fast edge look up between given endpoints. |
---|
2940 | |
---|
2941 | ///\ingroup gutils |
---|
2942 | ///Using this class, you can find an edge in a graph from a given |
---|
2943 | ///source to a given target in time <em>O(log d)</em>, |
---|
2944 | ///where <em>d</em> is the out-degree of the source node. |
---|
2945 | /// |
---|
2946 | ///It is not possible to find \e all parallel edges between two nodes. |
---|
2947 | ///Use \ref AllEdgeLookUp for this purpose. |
---|
2948 | /// |
---|
2949 | ///\warning This class is static, so you should refresh() (or at least |
---|
2950 | ///refresh(Node)) this data structure |
---|
2951 | ///whenever the graph changes. This is a time consuming (superlinearly |
---|
2952 | ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges). |
---|
2953 | /// |
---|
2954 | ///\param G The type of the underlying graph. |
---|
2955 | /// |
---|
2956 | ///\sa DynEdgeLookUp |
---|
2957 | ///\sa AllEdgeLookUp |
---|
2958 | template<class G> |
---|
2959 | class EdgeLookUp |
---|
2960 | { |
---|
2961 | public: |
---|
2962 | GRAPH_TYPEDEFS(typename G); |
---|
2963 | typedef G Graph; |
---|
2964 | |
---|
2965 | protected: |
---|
2966 | const Graph &_g; |
---|
2967 | typename Graph::template NodeMap<Edge> _head; |
---|
2968 | typename Graph::template EdgeMap<Edge> _left; |
---|
2969 | typename Graph::template EdgeMap<Edge> _right; |
---|
2970 | |
---|
2971 | class EdgeLess { |
---|
2972 | const Graph &g; |
---|
2973 | public: |
---|
2974 | EdgeLess(const Graph &_g) : g(_g) {} |
---|
2975 | bool operator()(Edge a,Edge b) const |
---|
2976 | { |
---|
2977 | return g.target(a)<g.target(b); |
---|
2978 | } |
---|
2979 | }; |
---|
2980 | |
---|
2981 | public: |
---|
2982 | |
---|
2983 | ///Constructor |
---|
2984 | |
---|
2985 | ///Constructor. |
---|
2986 | /// |
---|
2987 | ///It builds up the search database, which remains valid until the graph |
---|
2988 | ///changes. |
---|
2989 | EdgeLookUp(const Graph &g) :_g(g),_head(g),_left(g),_right(g) {refresh();} |
---|
2990 | |
---|
2991 | private: |
---|
2992 | Edge refreshRec(std::vector<Edge> &v,int a,int b) |
---|
2993 | { |
---|
2994 | int m=(a+b)/2; |
---|
2995 | Edge me=v[m]; |
---|
2996 | _left[me] = a<m?refreshRec(v,a,m-1):INVALID; |
---|
2997 | _right[me] = m<b?refreshRec(v,m+1,b):INVALID; |
---|
2998 | return me; |
---|
2999 | } |
---|
3000 | public: |
---|
3001 | ///Refresh the data structure at a node. |
---|
3002 | |
---|
3003 | ///Build up the search database of node \c n. |
---|
3004 | /// |
---|
3005 | ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is |
---|
3006 | ///the number of the outgoing edges of \c n. |
---|
3007 | void refresh(Node n) |
---|
3008 | { |
---|
3009 | std::vector<Edge> v; |
---|
3010 | for(OutEdgeIt e(_g,n);e!=INVALID;++e) v.push_back(e); |
---|
3011 | if(v.size()) { |
---|
3012 | std::sort(v.begin(),v.end(),EdgeLess(_g)); |
---|
3013 | _head[n]=refreshRec(v,0,v.size()-1); |
---|
3014 | } |
---|
3015 | else _head[n]=INVALID; |
---|
3016 | } |
---|
3017 | ///Refresh the full data structure. |
---|
3018 | |
---|
3019 | ///Build up the full search database. In fact, it simply calls |
---|
3020 | ///\ref refresh(Node) "refresh(n)" for each node \c n. |
---|
3021 | /// |
---|
3022 | ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is |
---|
3023 | ///the number of the edges of \c n and <em>D</em> is the maximum |
---|
3024 | ///out-degree of the graph. |
---|
3025 | |
---|
3026 | void refresh() |
---|
3027 | { |
---|
3028 | for(NodeIt n(_g);n!=INVALID;++n) refresh(n); |
---|
3029 | } |
---|
3030 | |
---|
3031 | ///Find an edge between two nodes. |
---|
3032 | |
---|
3033 | ///Find an edge between two nodes in time <em>O(</em>log<em>d)</em>, where |
---|
3034 | /// <em>d</em> is the number of outgoing edges of \c s. |
---|
3035 | ///\param s The source node |
---|
3036 | ///\param t The target node |
---|
3037 | ///\return An edge from \c s to \c t if there exists, |
---|
3038 | ///\ref INVALID otherwise. |
---|
3039 | /// |
---|
3040 | ///\warning If you change the graph, refresh() must be called before using |
---|
3041 | ///this operator. If you change the outgoing edges of |
---|
3042 | ///a single node \c n, then |
---|
3043 | ///\ref refresh(Node) "refresh(n)" is enough. |
---|
3044 | /// |
---|
3045 | Edge operator()(Node s, Node t) const |
---|
3046 | { |
---|
3047 | Edge e; |
---|
3048 | for(e=_head[s]; |
---|
3049 | e!=INVALID&&_g.target(e)!=t; |
---|
3050 | e = t < _g.target(e)?_left[e]:_right[e]) ; |
---|
3051 | return e; |
---|
3052 | } |
---|
3053 | |
---|
3054 | }; |
---|
3055 | |
---|
3056 | ///Fast look up of all edges between given endpoints. |
---|
3057 | |
---|
3058 | ///\ingroup gutils |
---|
3059 | ///This class is the same as \ref EdgeLookUp, with the addition |
---|
3060 | ///that it makes it possible to find all edges between given endpoints. |
---|
3061 | /// |
---|
3062 | ///\warning This class is static, so you should refresh() (or at least |
---|
3063 | ///refresh(Node)) this data structure |
---|
3064 | ///whenever the graph changes. This is a time consuming (superlinearly |
---|
3065 | ///proportional (<em>O(m</em>log<em>m)</em>) to the number of edges). |
---|
3066 | /// |
---|
3067 | ///\param G The type of the underlying graph. |
---|
3068 | /// |
---|
3069 | ///\sa DynEdgeLookUp |
---|
3070 | ///\sa EdgeLookUp |
---|
3071 | template<class G> |
---|
3072 | class AllEdgeLookUp : public EdgeLookUp<G> |
---|
3073 | { |
---|
3074 | using EdgeLookUp<G>::_g; |
---|
3075 | using EdgeLookUp<G>::_right; |
---|
3076 | using EdgeLookUp<G>::_left; |
---|
3077 | using EdgeLookUp<G>::_head; |
---|
3078 | |
---|
3079 | GRAPH_TYPEDEFS(typename G); |
---|
3080 | typedef G Graph; |
---|
3081 | |
---|
3082 | typename Graph::template EdgeMap<Edge> _next; |
---|
3083 | |
---|
3084 | Edge refreshNext(Edge head,Edge next=INVALID) |
---|
3085 | { |
---|
3086 | if(head==INVALID) return next; |
---|
3087 | else { |
---|
3088 | next=refreshNext(_right[head],next); |
---|
3089 | // _next[head]=next; |
---|
3090 | _next[head]=( next!=INVALID && _g.target(next)==_g.target(head)) |
---|
3091 | ? next : INVALID; |
---|
3092 | return refreshNext(_left[head],head); |
---|
3093 | } |
---|
3094 | } |
---|
3095 | |
---|
3096 | void refreshNext() |
---|
3097 | { |
---|
3098 | for(NodeIt n(_g);n!=INVALID;++n) refreshNext(_head[n]); |
---|
3099 | } |
---|
3100 | |
---|
3101 | public: |
---|
3102 | ///Constructor |
---|
3103 | |
---|
3104 | ///Constructor. |
---|
3105 | /// |
---|
3106 | ///It builds up the search database, which remains valid until the graph |
---|
3107 | ///changes. |
---|
3108 | AllEdgeLookUp(const Graph &g) : EdgeLookUp<G>(g), _next(g) {refreshNext();} |
---|
3109 | |
---|
3110 | ///Refresh the data structure at a node. |
---|
3111 | |
---|
3112 | ///Build up the search database of node \c n. |
---|
3113 | /// |
---|
3114 | ///It runs in time <em>O(d</em>log<em>d)</em>, where <em>d</em> is |
---|
3115 | ///the number of the outgoing edges of \c n. |
---|
3116 | |
---|
3117 | void refresh(Node n) |
---|
3118 | { |
---|
3119 | EdgeLookUp<G>::refresh(n); |
---|
3120 | refreshNext(_head[n]); |
---|
3121 | } |
---|
3122 | |
---|
3123 | ///Refresh the full data structure. |
---|
3124 | |
---|
3125 | ///Build up the full search database. In fact, it simply calls |
---|
3126 | ///\ref refresh(Node) "refresh(n)" for each node \c n. |
---|
3127 | /// |
---|
3128 | ///It runs in time <em>O(m</em>log<em>D)</em>, where <em>m</em> is |
---|
3129 | ///the number of the edges of \c n and <em>D</em> is the maximum |
---|
3130 | ///out-degree of the graph. |
---|
3131 | |
---|
3132 | void refresh() |
---|
3133 | { |
---|
3134 | for(NodeIt n(_g);n!=INVALID;++n) refresh(_head[n]); |
---|
3135 | } |
---|
3136 | |
---|
3137 | ///Find an edge between two nodes. |
---|
3138 | |
---|
3139 | ///Find an edge between two nodes. |
---|
3140 | ///\param s The source node |
---|
3141 | ///\param t The target node |
---|
3142 | ///\param prev The previous edge between \c s and \c t. It it is INVALID or |
---|
3143 | ///not given, the operator finds the first appropriate edge. |
---|
3144 | ///\return An edge from \c s to \c t after \c prev or |
---|
3145 | ///\ref INVALID if there is no more. |
---|
3146 | /// |
---|
3147 | ///For example, you can count the number of edges from \c u to \c v in the |
---|
3148 | ///following way. |
---|
3149 | ///\code |
---|
3150 | ///AllEdgeLookUp<ListGraph> ae(g); |
---|
3151 | ///... |
---|
3152 | ///int n=0; |
---|
3153 | ///for(Edge e=ae(u,v);e!=INVALID;e=ae(u,v,e)) n++; |
---|
3154 | ///\endcode |
---|
3155 | /// |
---|
3156 | ///Finding the first edge take <em>O(</em>log<em>d)</em> time, where |
---|
3157 | /// <em>d</em> is the number of outgoing edges of \c s. Then, the |
---|
3158 | ///consecutive edges are found in constant time. |
---|
3159 | /// |
---|
3160 | ///\warning If you change the graph, refresh() must be called before using |
---|
3161 | ///this operator. If you change the outgoing edges of |
---|
3162 | ///a single node \c n, then |
---|
3163 | ///\ref refresh(Node) "refresh(n)" is enough. |
---|
3164 | /// |
---|
3165 | #ifdef DOXYGEN |
---|
3166 | Edge operator()(Node s, Node t, Edge prev=INVALID) const {} |
---|
3167 | #else |
---|
3168 | using EdgeLookUp<G>::operator() ; |
---|
3169 | Edge operator()(Node s, Node t, Edge prev) const |
---|
3170 | { |
---|
3171 | return prev==INVALID?(*this)(s,t):_next[prev]; |
---|
3172 | } |
---|
3173 | #endif |
---|
3174 | |
---|
3175 | }; |
---|
3176 | |
---|
3177 | /// @} |
---|
3178 | |
---|
3179 | } //END OF NAMESPACE LEMON |
---|
3180 | |
---|
3181 | #endif |
---|