1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2008 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_KRUSKAL_H |
---|
20 | #define LEMON_KRUSKAL_H |
---|
21 | |
---|
22 | #include <algorithm> |
---|
23 | #include <vector> |
---|
24 | #include <lemon/unionfind.h> |
---|
25 | #include <lemon/graph_utils.h> |
---|
26 | #include <lemon/maps.h> |
---|
27 | |
---|
28 | #include <lemon/radix_sort.h> |
---|
29 | |
---|
30 | #include <lemon/bits/utility.h> |
---|
31 | #include <lemon/bits/traits.h> |
---|
32 | |
---|
33 | ///\ingroup spantree |
---|
34 | ///\file |
---|
35 | ///\brief Kruskal's algorithm to compute a minimum cost tree |
---|
36 | /// |
---|
37 | ///Kruskal's algorithm to compute a minimum cost tree. |
---|
38 | /// |
---|
39 | |
---|
40 | namespace lemon { |
---|
41 | |
---|
42 | namespace _kruskal_bits { |
---|
43 | |
---|
44 | template <typename Map, typename Comp> |
---|
45 | struct MappedComp { |
---|
46 | |
---|
47 | typedef typename Map::Key Key; |
---|
48 | |
---|
49 | const Map& map; |
---|
50 | Comp comp; |
---|
51 | |
---|
52 | MappedComp(const Map& _map) |
---|
53 | : map(_map), comp() {} |
---|
54 | |
---|
55 | bool operator()(const Key& left, const Key& right) { |
---|
56 | return comp(map[left], map[right]); |
---|
57 | } |
---|
58 | |
---|
59 | }; |
---|
60 | |
---|
61 | } |
---|
62 | |
---|
63 | /// \brief Default traits class of Kruskal class. |
---|
64 | /// |
---|
65 | /// Default traits class of Kruskal class. |
---|
66 | /// \param _UGraph Undirected graph type. |
---|
67 | /// \param _CostMap Type of cost map. |
---|
68 | template <typename _UGraph, typename _CostMap> |
---|
69 | struct KruskalDefaultTraits{ |
---|
70 | |
---|
71 | /// \brief The graph type the algorithm runs on. |
---|
72 | typedef _UGraph UGraph; |
---|
73 | |
---|
74 | /// \brief The type of the map that stores the edge costs. |
---|
75 | /// |
---|
76 | /// The type of the map that stores the edge costs. |
---|
77 | /// It must meet the \ref concepts::ReadMap "ReadMap" concept. |
---|
78 | typedef _CostMap CostMap; |
---|
79 | |
---|
80 | /// \brief The type of the cost of the edges. |
---|
81 | typedef typename _CostMap::Value Value; |
---|
82 | |
---|
83 | /// \brief The type of the map that stores whether an edge is in the |
---|
84 | /// spanning tree or not. |
---|
85 | /// |
---|
86 | /// The type of the map that stores whether an edge is in the |
---|
87 | /// spanning tree or not. |
---|
88 | typedef typename _UGraph::template UEdgeMap<bool> TreeMap; |
---|
89 | |
---|
90 | /// \brief Instantiates a TreeMap. |
---|
91 | /// |
---|
92 | /// This function instantiates a \ref TreeMap. |
---|
93 | /// |
---|
94 | /// The first parameter is the graph, to which |
---|
95 | /// we would like to define the \ref TreeMap |
---|
96 | static TreeMap *createTreeMap(const _UGraph& graph){ |
---|
97 | return new TreeMap(graph); |
---|
98 | } |
---|
99 | |
---|
100 | template <typename Iterator> |
---|
101 | static void sort(Iterator begin, Iterator end, const CostMap& cost) { |
---|
102 | _kruskal_bits::MappedComp<CostMap, std::less<Value> > comp(cost); |
---|
103 | std::sort(begin, end, comp); |
---|
104 | } |
---|
105 | |
---|
106 | }; |
---|
107 | |
---|
108 | ///\ingroup spantree |
---|
109 | /// |
---|
110 | /// \brief Kruskal's algorithm to find a minimum cost tree of a graph. |
---|
111 | /// |
---|
112 | /// This class implements Kruskal's algorithm to find a minimum cost |
---|
113 | /// spanning tree. The |
---|
114 | /// |
---|
115 | /// \param _UGraph Undirected graph type. |
---|
116 | /// \param _CostMap Type of cost map. |
---|
117 | template <typename _UGraph, typename _CostMap, |
---|
118 | typename _Traits = KruskalDefaultTraits<_UGraph, _CostMap> > |
---|
119 | class Kruskal { |
---|
120 | public: |
---|
121 | |
---|
122 | typedef _Traits Traits; |
---|
123 | |
---|
124 | typedef typename _Traits::UGraph UGraph; |
---|
125 | typedef typename _Traits::CostMap CostMap; |
---|
126 | |
---|
127 | typedef typename _Traits::TreeMap TreeMap; |
---|
128 | |
---|
129 | typedef typename _Traits::Value Value; |
---|
130 | |
---|
131 | template <typename Comp> |
---|
132 | struct DefSortCompareTraits : public Traits { |
---|
133 | template <typename Iterator> |
---|
134 | static void sort(Iterator begin, Iterator end, const CostMap& cost) { |
---|
135 | _kruskal_bits::MappedComp<CostMap, Comp> comp(cost, Comp()); |
---|
136 | std::sort(begin, end, comp); |
---|
137 | } |
---|
138 | }; |
---|
139 | |
---|
140 | /// \brief \ref named-templ-param "Named parameter" for setting the |
---|
141 | /// comparator object of the standard sort |
---|
142 | /// |
---|
143 | /// \ref named-templ-param "Named parameter" for setting the |
---|
144 | /// comparator object of the standard sort |
---|
145 | template <typename Comp> |
---|
146 | struct DefSortCompare |
---|
147 | : public Kruskal<UGraph, CostMap, DefSortCompareTraits<Comp> > { |
---|
148 | typedef Kruskal<UGraph, CostMap, DefSortCompareTraits<Comp> > Create; |
---|
149 | }; |
---|
150 | |
---|
151 | struct DefRadixSortTraits : public Traits { |
---|
152 | template <typename Iterator> |
---|
153 | static void sort(Iterator begin, Iterator end, const CostMap& cost) { |
---|
154 | radixSort(begin, end, cost); |
---|
155 | } |
---|
156 | }; |
---|
157 | |
---|
158 | /// \brief \ref named-templ-param "Named parameter" for setting the |
---|
159 | /// sort function to radix sort |
---|
160 | /// |
---|
161 | /// \brief \ref named-templ-param "Named parameter" for setting the |
---|
162 | /// sort function to radix sort. The value type of the cost map should |
---|
163 | /// be integral, of course. |
---|
164 | struct DefRadixSort |
---|
165 | : public Kruskal<UGraph, CostMap, DefRadixSortTraits> { |
---|
166 | typedef Kruskal<UGraph, CostMap, DefRadixSortTraits> Create; |
---|
167 | }; |
---|
168 | |
---|
169 | template <class TM> |
---|
170 | struct DefTreeMapTraits : public Traits { |
---|
171 | typedef TM TreeMap; |
---|
172 | static TreeMap *createTreeMap(const UGraph &) { |
---|
173 | throw UninitializedParameter(); |
---|
174 | } |
---|
175 | }; |
---|
176 | |
---|
177 | /// \brief \ref named-templ-param "Named parameter" for setting |
---|
178 | /// TreeMap |
---|
179 | /// |
---|
180 | /// \ref named-templ-param "Named parameter" for setting TreeMap |
---|
181 | /// |
---|
182 | template <class TM> |
---|
183 | struct DefTreeMap |
---|
184 | : public Kruskal< UGraph, CostMap, DefTreeMapTraits<TM> > { |
---|
185 | typedef Kruskal< UGraph, CostMap, DefTreeMapTraits<TM> > Create; |
---|
186 | }; |
---|
187 | |
---|
188 | |
---|
189 | private: |
---|
190 | |
---|
191 | typedef typename UGraph::Node Node; |
---|
192 | typedef typename UGraph::NodeIt NodeIt; |
---|
193 | |
---|
194 | typedef typename UGraph::UEdge UEdge; |
---|
195 | typedef typename UGraph::UEdgeIt UEdgeIt; |
---|
196 | |
---|
197 | const UGraph& graph; |
---|
198 | const CostMap& cost; |
---|
199 | |
---|
200 | std::vector<UEdge> edges; |
---|
201 | |
---|
202 | typedef typename UGraph::template NodeMap<int> UfIndex; |
---|
203 | typedef UnionFind<UfIndex> Uf; |
---|
204 | UfIndex *ufi; |
---|
205 | Uf *uf; |
---|
206 | |
---|
207 | int index; |
---|
208 | |
---|
209 | void initStructures() { |
---|
210 | if (!_tree) { |
---|
211 | _tree = Traits::createTreeMap(graph); |
---|
212 | local_tree = true; |
---|
213 | } |
---|
214 | if (!uf) { |
---|
215 | ufi = new typename UGraph::template NodeMap<int>(graph); |
---|
216 | uf = new UnionFind<typename UGraph::template NodeMap<int> >(*ufi); |
---|
217 | } |
---|
218 | } |
---|
219 | |
---|
220 | void initUnionFind() { |
---|
221 | uf->clear(); |
---|
222 | for (NodeIt it(graph); it != INVALID; ++it) { |
---|
223 | uf->insert(it); |
---|
224 | } |
---|
225 | } |
---|
226 | |
---|
227 | bool local_tree; |
---|
228 | TreeMap* _tree; |
---|
229 | |
---|
230 | public: |
---|
231 | |
---|
232 | /// \brief Constructor |
---|
233 | /// |
---|
234 | /// Constructor of the algorithm. |
---|
235 | Kruskal(const UGraph& _graph, const CostMap& _cost) |
---|
236 | : graph(_graph), cost(_cost), |
---|
237 | ufi(0), uf(0), local_tree(false), _tree(0) {} |
---|
238 | |
---|
239 | /// \brief Destructor |
---|
240 | /// |
---|
241 | /// Destructor |
---|
242 | ~Kruskal() { |
---|
243 | if (local_tree) { |
---|
244 | delete _tree; |
---|
245 | } |
---|
246 | if (uf) { |
---|
247 | delete uf; |
---|
248 | delete ufi; |
---|
249 | } |
---|
250 | } |
---|
251 | |
---|
252 | /// \brief Sets the map storing the tree edges. |
---|
253 | /// |
---|
254 | /// Sets the map storing the tree edges. |
---|
255 | /// If you don't use this function before calling \ref run(), |
---|
256 | /// it will allocate one. The destuctor deallocates this |
---|
257 | /// automatically allocated map, of course. |
---|
258 | /// \return \c *this </tt> |
---|
259 | Kruskal& treeMap(TreeMap &m){ |
---|
260 | if (local_tree) { |
---|
261 | delete _tree; |
---|
262 | local_tree = false; |
---|
263 | } |
---|
264 | _tree = &m; |
---|
265 | return *this; |
---|
266 | } |
---|
267 | |
---|
268 | /// \brief Initialize the algorithm |
---|
269 | /// |
---|
270 | /// This member function initializes the unionfind data structure |
---|
271 | /// and sorts the edges into ascending order |
---|
272 | void init() { |
---|
273 | initStructures(); |
---|
274 | initUnionFind(); |
---|
275 | for (UEdgeIt e(graph); e != INVALID; ++e) { |
---|
276 | edges.push_back(e); |
---|
277 | _tree->set(e, false); |
---|
278 | } |
---|
279 | Traits::sort(edges.begin(), edges.end(), cost); |
---|
280 | index = 0; |
---|
281 | } |
---|
282 | |
---|
283 | |
---|
284 | /// \brief Initialize the algorithm |
---|
285 | /// |
---|
286 | /// This member function initializes the unionfind data structure |
---|
287 | /// and sets the edge order to the given sequence. The given |
---|
288 | /// sequence should be a valid STL range of undirected edges. |
---|
289 | template <typename Iterator> |
---|
290 | void initPresorted(Iterator begin, Iterator end) { |
---|
291 | initStructures(); |
---|
292 | initUnionFind(); |
---|
293 | edges.clear(); |
---|
294 | std::copy(begin, end, std::back_inserter(edges)); |
---|
295 | index = 0; |
---|
296 | } |
---|
297 | |
---|
298 | /// \brief Initialize the algorithm |
---|
299 | /// |
---|
300 | /// This member function initializes the unionfind data structure |
---|
301 | /// and sets the tree to empty. It does not change the order of |
---|
302 | /// the edges, it uses the order of the previous running. |
---|
303 | void reinit() { |
---|
304 | initStructures(); |
---|
305 | initUnionFind(); |
---|
306 | for (UEdgeIt e(graph); e != INVALID; ++e) { |
---|
307 | _tree->set(e, false); |
---|
308 | } |
---|
309 | index = 0; |
---|
310 | } |
---|
311 | |
---|
312 | |
---|
313 | /// \brief Executes the algorithm. |
---|
314 | /// |
---|
315 | /// Executes the algorithm. |
---|
316 | /// |
---|
317 | /// \pre init() must be called before using this function. |
---|
318 | /// |
---|
319 | /// This method runs the %Kruskal algorithm. |
---|
320 | void start() { |
---|
321 | while (index < int(edges.size())) { |
---|
322 | if (uf->join(graph.target(edges[index]), graph.source(edges[index]))) { |
---|
323 | _tree->set(edges[index], true); |
---|
324 | } |
---|
325 | ++index; |
---|
326 | } |
---|
327 | } |
---|
328 | |
---|
329 | /// \brief Runs the prim algorithm until it find a new tree edge |
---|
330 | /// |
---|
331 | /// Runs the prim algorithm until it find a new tree edge. If it |
---|
332 | /// does not next tree edge in the sequence it gives back \c INVALID. |
---|
333 | UEdge findNextTreeEdge() { |
---|
334 | while (index < int(edges.size())) { |
---|
335 | if (uf->join(graph.target(edges[index]), graph.source(edges[index]))) { |
---|
336 | _tree->set(edges[index], true); |
---|
337 | return edges[index++]; |
---|
338 | } |
---|
339 | ++index; |
---|
340 | } |
---|
341 | return INVALID; |
---|
342 | } |
---|
343 | |
---|
344 | /// \brief Processes the next edge in the sequence |
---|
345 | /// |
---|
346 | /// Processes the next edge in the sequence. |
---|
347 | /// |
---|
348 | /// \return The prcocessed edge. |
---|
349 | /// |
---|
350 | /// \warning The sequence must not be empty! |
---|
351 | UEdge processNextEdge() { |
---|
352 | UEdge edge = edges[index++]; |
---|
353 | processEdge(edge); |
---|
354 | return edge; |
---|
355 | } |
---|
356 | |
---|
357 | /// \brief Processes an arbitrary edge |
---|
358 | /// |
---|
359 | /// Processes the next edge in the sequence. |
---|
360 | /// |
---|
361 | /// \return True when the edge is a tree edge. |
---|
362 | bool processEdge(const UEdge& edge) { |
---|
363 | if (uf->join(graph.target(edge), graph.source(edge))) { |
---|
364 | _tree->set(edge, true); |
---|
365 | return true; |
---|
366 | } else { |
---|
367 | return false; |
---|
368 | } |
---|
369 | } |
---|
370 | |
---|
371 | /// \brief Returns \c false if there are edge to be processed in |
---|
372 | /// sequence |
---|
373 | /// |
---|
374 | /// Returns \c false if there are nodes to be processed in the |
---|
375 | /// sequence |
---|
376 | bool emptyQueue() { |
---|
377 | return index == int(edges.size()); |
---|
378 | } |
---|
379 | |
---|
380 | /// \brief Returns the next edge to be processed |
---|
381 | /// |
---|
382 | /// Returns the next edge to be processed |
---|
383 | /// |
---|
384 | UEdge nextEdge() const { |
---|
385 | return edges[index]; |
---|
386 | } |
---|
387 | |
---|
388 | /// \brief Runs %Kruskal algorithm. |
---|
389 | /// |
---|
390 | /// This method runs the %Kruskal algorithm in order to compute the |
---|
391 | /// minimum spanning tree (or minimum spanning forest). The |
---|
392 | /// method also works on graphs that has more than one components. |
---|
393 | /// In this case it computes the minimum spanning forest. |
---|
394 | void run() { |
---|
395 | init(); |
---|
396 | start(); |
---|
397 | } |
---|
398 | |
---|
399 | /// \brief Returns a reference to the tree edges map |
---|
400 | /// |
---|
401 | /// Returns a reference to the TreeEdgeMap of the edges of the |
---|
402 | /// minimum spanning tree. The value of the map is \c true only if |
---|
403 | /// the edge is in the minimum spanning tree. |
---|
404 | /// |
---|
405 | const TreeMap &treeMap() const { return *_tree;} |
---|
406 | |
---|
407 | /// \brief Returns the total cost of the tree |
---|
408 | /// |
---|
409 | /// Returns the total cost of the tree |
---|
410 | Value treeValue() const { |
---|
411 | Value value = 0; |
---|
412 | for (UEdgeIt it(graph); it != INVALID; ++it) { |
---|
413 | if ((*_tree)[it]) { |
---|
414 | value += cost[it]; |
---|
415 | } |
---|
416 | } |
---|
417 | return value; |
---|
418 | } |
---|
419 | |
---|
420 | /// \brief Returns true when the given edge is tree edge |
---|
421 | /// |
---|
422 | /// Returns true when the given edge is tree edge |
---|
423 | bool tree(UEdge e) const { |
---|
424 | return (*_tree)[e]; |
---|
425 | } |
---|
426 | |
---|
427 | |
---|
428 | }; |
---|
429 | |
---|
430 | |
---|
431 | namespace _kruskal_bits { |
---|
432 | |
---|
433 | template <typename Graph, typename In, typename Out> |
---|
434 | typename In::value_type::second_type |
---|
435 | kruskal(const Graph& graph, const In& in, Out& out) { |
---|
436 | typedef typename In::value_type::second_type Value; |
---|
437 | typedef typename Graph::template NodeMap<int> IndexMap; |
---|
438 | typedef typename Graph::Node Node; |
---|
439 | |
---|
440 | IndexMap index(graph); |
---|
441 | UnionFind<IndexMap> uf(index); |
---|
442 | for (typename Graph::NodeIt it(graph); it != INVALID; ++it) { |
---|
443 | uf.insert(it); |
---|
444 | } |
---|
445 | |
---|
446 | Value tree_value = 0; |
---|
447 | for (typename In::const_iterator it = in.begin(); it != in.end(); ++it) { |
---|
448 | if (uf.join(graph.target(it->first),graph.source(it->first))) { |
---|
449 | out.set(it->first, true); |
---|
450 | tree_value += it->second; |
---|
451 | } |
---|
452 | else { |
---|
453 | out.set(it->first, false); |
---|
454 | } |
---|
455 | } |
---|
456 | return tree_value; |
---|
457 | } |
---|
458 | |
---|
459 | |
---|
460 | template <typename Sequence> |
---|
461 | struct PairComp { |
---|
462 | typedef typename Sequence::value_type Value; |
---|
463 | bool operator()(const Value& left, const Value& right) { |
---|
464 | return left.second < right.second; |
---|
465 | } |
---|
466 | }; |
---|
467 | |
---|
468 | template <typename In, typename Enable = void> |
---|
469 | struct SequenceInputIndicator { |
---|
470 | static const bool value = false; |
---|
471 | }; |
---|
472 | |
---|
473 | template <typename In> |
---|
474 | struct SequenceInputIndicator<In, |
---|
475 | typename exists<typename In::value_type::first_type>::type> { |
---|
476 | static const bool value = true; |
---|
477 | }; |
---|
478 | |
---|
479 | template <typename In, typename Enable = void> |
---|
480 | struct MapInputIndicator { |
---|
481 | static const bool value = false; |
---|
482 | }; |
---|
483 | |
---|
484 | template <typename In> |
---|
485 | struct MapInputIndicator<In, |
---|
486 | typename exists<typename In::Value>::type> { |
---|
487 | static const bool value = true; |
---|
488 | }; |
---|
489 | |
---|
490 | template <typename In, typename Enable = void> |
---|
491 | struct SequenceOutputIndicator { |
---|
492 | static const bool value = false; |
---|
493 | }; |
---|
494 | |
---|
495 | template <typename Out> |
---|
496 | struct SequenceOutputIndicator<Out, |
---|
497 | typename exists<typename Out::value_type>::type> { |
---|
498 | static const bool value = true; |
---|
499 | }; |
---|
500 | |
---|
501 | template <typename Out, typename Enable = void> |
---|
502 | struct MapOutputIndicator { |
---|
503 | static const bool value = false; |
---|
504 | }; |
---|
505 | |
---|
506 | template <typename Out> |
---|
507 | struct MapOutputIndicator<Out, |
---|
508 | typename exists<typename Out::Value>::type> { |
---|
509 | static const bool value = true; |
---|
510 | }; |
---|
511 | |
---|
512 | template <typename In, typename InEnable = void> |
---|
513 | struct KruskalValueSelector {}; |
---|
514 | |
---|
515 | template <typename In> |
---|
516 | struct KruskalValueSelector<In, |
---|
517 | typename enable_if<SequenceInputIndicator<In>, void>::type> |
---|
518 | { |
---|
519 | typedef typename In::value_type::second_type Value; |
---|
520 | }; |
---|
521 | |
---|
522 | template <typename In> |
---|
523 | struct KruskalValueSelector<In, |
---|
524 | typename enable_if<MapInputIndicator<In>, void>::type> |
---|
525 | { |
---|
526 | typedef typename In::Value Value; |
---|
527 | }; |
---|
528 | |
---|
529 | template <typename Graph, typename In, typename Out, |
---|
530 | typename InEnable = void> |
---|
531 | struct KruskalInputSelector {}; |
---|
532 | |
---|
533 | template <typename Graph, typename In, typename Out, |
---|
534 | typename InEnable = void> |
---|
535 | struct KruskalOutputSelector {}; |
---|
536 | |
---|
537 | template <typename Graph, typename In, typename Out> |
---|
538 | struct KruskalInputSelector<Graph, In, Out, |
---|
539 | typename enable_if<SequenceInputIndicator<In>, void>::type > |
---|
540 | { |
---|
541 | typedef typename In::value_type::second_type Value; |
---|
542 | |
---|
543 | static Value kruskal(const Graph& graph, const In& in, Out& out) { |
---|
544 | return KruskalOutputSelector<Graph, In, Out>:: |
---|
545 | kruskal(graph, in, out); |
---|
546 | } |
---|
547 | |
---|
548 | }; |
---|
549 | |
---|
550 | template <typename Graph, typename In, typename Out> |
---|
551 | struct KruskalInputSelector<Graph, In, Out, |
---|
552 | typename enable_if<MapInputIndicator<In>, void>::type > |
---|
553 | { |
---|
554 | typedef typename In::Value Value; |
---|
555 | static Value kruskal(const Graph& graph, const In& in, Out& out) { |
---|
556 | typedef typename In::Key MapEdge; |
---|
557 | typedef typename In::Value Value; |
---|
558 | typedef typename ItemSetTraits<Graph, MapEdge>::ItemIt MapEdgeIt; |
---|
559 | typedef std::vector<std::pair<MapEdge, Value> > Sequence; |
---|
560 | Sequence seq; |
---|
561 | |
---|
562 | for (MapEdgeIt it(graph); it != INVALID; ++it) { |
---|
563 | seq.push_back(std::make_pair(it, in[it])); |
---|
564 | } |
---|
565 | |
---|
566 | std::sort(seq.begin(), seq.end(), PairComp<Sequence>()); |
---|
567 | return KruskalOutputSelector<Graph, Sequence, Out>:: |
---|
568 | kruskal(graph, seq, out); |
---|
569 | } |
---|
570 | }; |
---|
571 | |
---|
572 | template <typename Graph, typename In, typename Out> |
---|
573 | struct KruskalOutputSelector<Graph, In, Out, |
---|
574 | typename enable_if<SequenceOutputIndicator<Out>, void>::type > |
---|
575 | { |
---|
576 | typedef typename In::value_type::second_type Value; |
---|
577 | |
---|
578 | static Value kruskal(const Graph& graph, const In& in, Out& out) { |
---|
579 | typedef StoreBoolMap<Out> Map; |
---|
580 | Map map(out); |
---|
581 | return _kruskal_bits::kruskal(graph, in, map); |
---|
582 | } |
---|
583 | |
---|
584 | }; |
---|
585 | |
---|
586 | template <typename Graph, typename In, typename Out> |
---|
587 | struct KruskalOutputSelector<Graph, In, Out, |
---|
588 | typename enable_if<MapOutputIndicator<Out>, void>::type > |
---|
589 | { |
---|
590 | typedef typename In::value_type::second_type Value; |
---|
591 | |
---|
592 | static Value kruskal(const Graph& graph, const In& in, Out& out) { |
---|
593 | return _kruskal_bits::kruskal(graph, in, out); |
---|
594 | } |
---|
595 | }; |
---|
596 | |
---|
597 | } |
---|
598 | |
---|
599 | /// \ingroup spantree |
---|
600 | /// |
---|
601 | /// \brief Kruskal's algorithm to find a minimum cost tree of a graph. |
---|
602 | /// |
---|
603 | /// This function runs Kruskal's algorithm to find a minimum cost tree. |
---|
604 | /// Due to hard C++ hacking, it accepts various input and output types. |
---|
605 | /// |
---|
606 | /// \param g The graph the algorithm runs on. |
---|
607 | /// It can be either \ref concepts::Graph "directed" or |
---|
608 | /// \ref concepts::UGraph "undirected". |
---|
609 | /// If the graph is directed, the algorithm consider it to be |
---|
610 | /// undirected by disregarding the direction of the edges. |
---|
611 | /// |
---|
612 | /// \param in This object is used to describe the edge costs. It can be one |
---|
613 | /// of the following choices. |
---|
614 | /// - An STL compatible 'Forward Container' with |
---|
615 | /// <tt>std::pair<GR::UEdge,X></tt> or |
---|
616 | /// <tt>std::pair<GR::Edge,X></tt> as its <tt>value_type</tt>, where |
---|
617 | /// \c X is the type of the costs. The pairs indicates the edges |
---|
618 | /// along with the assigned cost. <em>They must be in a |
---|
619 | /// cost-ascending order.</em> |
---|
620 | /// - Any readable Edge map. The values of the map indicate the edge costs. |
---|
621 | /// |
---|
622 | /// \retval out Here we also have a choise. |
---|
623 | /// - It can be a writable \c bool edge map. After running the |
---|
624 | /// algorithm this will contain the found minimum cost spanning |
---|
625 | /// tree: the value of an edge will be set to \c true if it belongs |
---|
626 | /// to the tree, otherwise it will be set to \c false. The value of |
---|
627 | /// each edge will be set exactly once. |
---|
628 | /// - It can also be an iteraror of an STL Container with |
---|
629 | /// <tt>GR::UEdge</tt> or <tt>GR::Edge</tt> as its |
---|
630 | /// <tt>value_type</tt>. The algorithm copies the elements of the |
---|
631 | /// found tree into this sequence. For example, if we know that the |
---|
632 | /// spanning tree of the graph \c g has say 53 edges, then we can |
---|
633 | /// put its edges into an STL vector \c tree with a code like this. |
---|
634 | ///\code |
---|
635 | /// std::vector<Edge> tree(53); |
---|
636 | /// kruskal(g,cost,tree.begin()); |
---|
637 | ///\endcode |
---|
638 | /// Or if we don't know in advance the size of the tree, we can |
---|
639 | /// write this. |
---|
640 | ///\code std::vector<Edge> tree; |
---|
641 | /// kruskal(g,cost,std::back_inserter(tree)); |
---|
642 | ///\endcode |
---|
643 | /// |
---|
644 | /// \return The total cost of the found tree. |
---|
645 | /// |
---|
646 | /// \warning If kruskal runs on an be consistent of using the same |
---|
647 | /// Edge type for input and output. |
---|
648 | /// |
---|
649 | |
---|
650 | #ifdef DOXYGEN |
---|
651 | template <class Graph, class In, class Out> |
---|
652 | Value kruskal(GR const& g, const In& in, Out& out) |
---|
653 | #else |
---|
654 | template <class Graph, class In, class Out> |
---|
655 | inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
---|
656 | kruskal(const Graph& graph, const In& in, Out& out) |
---|
657 | #endif |
---|
658 | { |
---|
659 | return _kruskal_bits::KruskalInputSelector<Graph, In, Out>:: |
---|
660 | kruskal(graph, in, out); |
---|
661 | } |
---|
662 | |
---|
663 | |
---|
664 | |
---|
665 | |
---|
666 | template <class Graph, class In, class Out> |
---|
667 | inline typename _kruskal_bits::KruskalValueSelector<In>::Value |
---|
668 | kruskal(const Graph& graph, const In& in, const Out& out) |
---|
669 | { |
---|
670 | return _kruskal_bits::KruskalInputSelector<Graph, In, const Out>:: |
---|
671 | kruskal(graph, in, out); |
---|
672 | } |
---|
673 | |
---|
674 | } //namespace lemon |
---|
675 | |
---|
676 | #endif //LEMON_KRUSKAL_H |
---|