/* -*- C++ -*- * * This file is a part of LEMON, a generic C++ optimization library * * Copyright (C) 2003-2006 * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport * (Egervary Research Group on Combinatorial Optimization, EGRES). * * Permission to use, modify and distribute this software is granted * provided that this copyright notice appears in all copies. For * precise terms see the accompanying LICENSE file. * * This software is provided "AS IS" with no warranty of any kind, * express or implied, and with no claim as to its suitability for any * purpose. * */ #ifndef LEMON_LIST_GRAPH_H #define LEMON_LIST_GRAPH_H ///\ingroup graphs ///\file ///\brief ListGraph, ListUGraph classes. #include #include #include #include #include namespace lemon { class ListGraphBase { protected: struct NodeT { int first_in, first_out; int prev, next; }; struct EdgeT { int target, source; int prev_in, prev_out; int next_in, next_out; }; std::vector nodes; int first_node; int first_free_node; std::vector edges; int first_free_edge; public: typedef ListGraphBase Graph; class Node { friend class ListGraphBase; protected: int id; explicit Node(int pid) { id = pid;} public: Node() {} Node (Invalid) { id = -1; } bool operator==(const Node& node) const {return id == node.id;} bool operator!=(const Node& node) const {return id != node.id;} bool operator<(const Node& node) const {return id < node.id;} }; class Edge { friend class ListGraphBase; protected: int id; explicit Edge(int pid) { id = pid;} public: Edge() {} Edge (Invalid) { id = -1; } bool operator==(const Edge& edge) const {return id == edge.id;} bool operator!=(const Edge& edge) const {return id != edge.id;} bool operator<(const Edge& edge) const {return id < edge.id;} }; ListGraphBase() : nodes(), first_node(-1), first_free_node(-1), edges(), first_free_edge(-1) {} /// Maximum node ID. /// Maximum node ID. ///\sa id(Node) int maxNodeId() const { return nodes.size()-1; } /// Maximum edge ID. /// Maximum edge ID. ///\sa id(Edge) int maxEdgeId() const { return edges.size()-1; } Node source(Edge e) const { return Node(edges[e.id].source); } Node target(Edge e) const { return Node(edges[e.id].target); } void first(Node& node) const { node.id = first_node; } void next(Node& node) const { node.id = nodes[node.id].next; } void first(Edge& e) const { int n; for(n = first_node; n!=-1 && nodes[n].first_in == -1; n = nodes[n].next); e.id = (n == -1) ? -1 : nodes[n].first_in; } void next(Edge& edge) const { if (edges[edge.id].next_in != -1) { edge.id = edges[edge.id].next_in; } else { int n; for(n = nodes[edges[edge.id].target].next; n!=-1 && nodes[n].first_in == -1; n = nodes[n].next); edge.id = (n == -1) ? -1 : nodes[n].first_in; } } void firstOut(Edge &e, const Node& v) const { e.id = nodes[v.id].first_out; } void nextOut(Edge &e) const { e.id=edges[e.id].next_out; } void firstIn(Edge &e, const Node& v) const { e.id = nodes[v.id].first_in; } void nextIn(Edge &e) const { e.id=edges[e.id].next_in; } static int id(Node v) { return v.id; } static int id(Edge e) { return e.id; } static Node nodeFromId(int id) { return Node(id);} static Edge edgeFromId(int id) { return Edge(id);} /// Adds a new node to the graph. /// Adds a new node to the graph. /// /// \warning It adds the new node to the front of the list. /// (i.e. the lastly added node becomes the first.) Node addNode() { int n; if(first_free_node==-1) { n = nodes.size(); nodes.push_back(NodeT()); } else { n = first_free_node; first_free_node = nodes[n].next; } nodes[n].next = first_node; if(first_node != -1) nodes[first_node].prev = n; first_node = n; nodes[n].prev = -1; nodes[n].first_in = nodes[n].first_out = -1; return Node(n); } Edge addEdge(Node u, Node v) { int n; if (first_free_edge == -1) { n = edges.size(); edges.push_back(EdgeT()); } else { n = first_free_edge; first_free_edge = edges[n].next_in; } edges[n].source = u.id; edges[n].target = v.id; edges[n].next_out = nodes[u.id].first_out; if(nodes[u.id].first_out != -1) { edges[nodes[u.id].first_out].prev_out = n; } edges[n].next_in = nodes[v.id].first_in; if(nodes[v.id].first_in != -1) { edges[nodes[v.id].first_in].prev_in = n; } edges[n].prev_in = edges[n].prev_out = -1; nodes[u.id].first_out = nodes[v.id].first_in = n; return Edge(n); } void erase(const Node& node) { int n = node.id; if(nodes[n].next != -1) { nodes[nodes[n].next].prev = nodes[n].prev; } if(nodes[n].prev != -1) { nodes[nodes[n].prev].next = nodes[n].next; } else { first_node = nodes[n].next; } nodes[n].next = first_free_node; first_free_node = n; } void erase(const Edge& edge) { int n = edge.id; if(edges[n].next_in!=-1) { edges[edges[n].next_in].prev_in = edges[n].prev_in; } if(edges[n].prev_in!=-1) { edges[edges[n].prev_in].next_in = edges[n].next_in; } else { nodes[edges[n].target].first_in = edges[n].next_in; } if(edges[n].next_out!=-1) { edges[edges[n].next_out].prev_out = edges[n].prev_out; } if(edges[n].prev_out!=-1) { edges[edges[n].prev_out].next_out = edges[n].next_out; } else { nodes[edges[n].source].first_out = edges[n].next_out; } edges[n].next_in = first_free_edge; first_free_edge = n; } void clear() { edges.clear(); nodes.clear(); first_node = first_free_node = first_free_edge = -1; } protected: void changeTarget(Edge e, Node n) { if(edges[e.id].next_in != -1) edges[edges[e.id].next_in].prev_in = edges[e.id].prev_in; if(edges[e.id].prev_in != -1) edges[edges[e.id].prev_in].next_in = edges[e.id].next_in; else nodes[edges[e.id].target].first_in = edges[e.id].next_in; if (nodes[n.id].first_in != -1) { edges[nodes[n.id].first_in].prev_in = e.id; } edges[e.id].target = n.id; edges[e.id].prev_in = -1; edges[e.id].next_in = nodes[n.id].first_in; nodes[n.id].first_in = e.id; } void changeSource(Edge e, Node n) { if(edges[e.id].next_out != -1) edges[edges[e.id].next_out].prev_out = edges[e.id].prev_out; if(edges[e.id].prev_out != -1) edges[edges[e.id].prev_out].next_out = edges[e.id].next_out; else nodes[edges[e.id].source].first_out = edges[e.id].next_out; if (nodes[n.id].first_out != -1) { edges[nodes[n.id].first_out].prev_out = e.id; } edges[e.id].source = n.id; edges[e.id].prev_out = -1; edges[e.id].next_out = nodes[n.id].first_out; nodes[n.id].first_out = e.id; } }; typedef GraphExtender ExtendedListGraphBase; /// \addtogroup graphs /// @{ ///A list graph class. ///This is a simple and fast graph implementation. /// ///It conforms to the \ref concept::Graph "Graph concept" and it ///also provides several additional useful extra functionalities. ///The most of the member functions and nested classes are ///documented only in the concept class. /// ///An important extra feature of this graph implementation is that ///its maps are real \ref concept::ReferenceMap "reference map"s. /// ///\sa concept::Graph. class ListGraph : public ExtendedListGraphBase { private: ///ListGraph is \e not copy constructible. Use GraphCopy() instead. ///ListGraph is \e not copy constructible. Use GraphCopy() instead. /// ListGraph(const ListGraph &) :ExtendedListGraphBase() {}; ///\brief Assignment of ListGraph to another one is \e not allowed. ///Use GraphCopy() instead. ///Assignment of ListGraph to another one is \e not allowed. ///Use GraphCopy() instead. void operator=(const ListGraph &) {} public: typedef ExtendedListGraphBase Parent; /// Constructor /// Constructor. /// ListGraph() {} ///Add a new node to the graph. /// \return the new node. /// Node addNode() { return Parent::addNode(); } ///Add a new edge to the graph. ///Add a new edge to the graph with source node \c s ///and target node \c t. ///\return the new edge. Edge addEdge(const Node& s, const Node& t) { return Parent::addEdge(s, t); } /// Changes the target of \c e to \c n /// Changes the target of \c e to \c n /// ///\note The EdgeIts and OutEdgeIts referencing ///the changed edge remain valid. However InEdgeIts are ///invalidated. ///\warning This functionality cannot be used together with the Snapshot ///feature. void changeTarget(Edge e, Node n) { Parent::changeTarget(e,n); } /// Changes the source of \c e to \c n /// Changes the source of \c e to \c n /// ///\note The EdgeIts and InEdgeIts referencing ///the changed edge remain valid. However OutEdgeIts are ///invalidated. ///\warning This functionality cannot be used together with the Snapshot ///feature. void changeSource(Edge e, Node n) { Parent::changeSource(e,n); } /// Invert the direction of an edge. ///\note The EdgeIts referencing the changed edge remain ///valid. However OutEdgeIts and InEdgeIts are ///invalidated. ///\warning This functionality cannot be used together with the Snapshot ///feature. void reverseEdge(Edge e) { Node t=target(e); changeTarget(e,source(e)); changeSource(e,t); } /// \brief Using this it is possible to avoid the superfluous memory /// allocation. ///Using this it is possible to avoid the superfluous memory ///allocation: if you know that the graph you want to build will ///contain at least 10 million nodes then it is worth reserving ///space for this amount before starting to build the graph. void reserveNode(int n) { nodes.reserve(n); }; /// \brief Using this it is possible to avoid the superfluous memory /// allocation. ///Using this it is possible to avoid the superfluous memory ///allocation: see the \ref reserveNode function. void reserveEdge(int n) { edges.reserve(n); }; ///Contract two nodes. ///This function contracts two nodes. /// ///Node \p b will be removed but instead of deleting ///incident edges, they will be joined to \p a. ///The last parameter \p r controls whether to remove loops. \c true ///means that loops will be removed. /// ///\note The EdgeIts ///referencing a moved edge remain ///valid. However InEdgeIts and OutEdgeIts ///may be invalidated. ///\warning This functionality cannot be used together with the Snapshot ///feature. void contract(Node a, Node b, bool r = true) { for(OutEdgeIt e(*this,b);e!=INVALID;) { OutEdgeIt f=e; ++f; if(r && target(e)==a) erase(e); else changeSource(e,a); e=f; } for(InEdgeIt e(*this,b);e!=INVALID;) { InEdgeIt f=e; ++f; if(r && source(e)==a) erase(e); else changeTarget(e,a); e=f; } erase(b); } ///Split a node. ///This function splits a node. First a new node is added to the graph, ///then the source of each outgoing edge of \c n is moved to this new node. ///If \c connect is \c true (this is the default value), then a new edge ///from \c n to the newly created node is also added. ///\return The newly created node. /// ///\note The EdgeIts referencing a moved edge remain ///valid. However InEdgeIts and OutEdgeIts may ///be invalidated. /// ///\warning This functionality cannot be used together with the ///Snapshot feature. \todo It could be implemented in a bit ///faster way. Node split(Node n, bool connect = true) { Node b = addNode(); for(OutEdgeIt e(*this,n);e!=INVALID;) { OutEdgeIt f=e; ++f; changeSource(e,b); e=f; } if (connect) addEdge(n,b); return b; } ///Split an edge. ///This function splits an edge. First a new node \c b is added to ///the graph, then the original edge is re-targeted to \c ///b. Finally an edge from \c b to the original target is added. ///\return The newly created node. ///\warning This functionality ///cannot be used together with the Snapshot feature. Node split(Edge e) { Node b = addNode(); addEdge(b,target(e)); changeTarget(e,b); return b; } /// \brief Class to make a snapshot of the graph and restore /// to it later. /// /// Class to make a snapshot of the graph and to restore it /// later. /// /// The newly added nodes and edges can be removed using the /// restore() function. /// /// \warning Edge and node deletions cannot be restored. This /// events invalidate the snapshot. class Snapshot { protected: typedef Parent::NodeNotifier NodeNotifier; class NodeObserverProxy : public NodeNotifier::ObserverBase { public: NodeObserverProxy(Snapshot& _snapshot) : snapshot(_snapshot) {} using NodeNotifier::ObserverBase::attach; using NodeNotifier::ObserverBase::detach; using NodeNotifier::ObserverBase::attached; protected: virtual void add(const Node& node) { snapshot.addNode(node); } virtual void add(const std::vector& nodes) { for (int i = nodes.size() - 1; i >= 0; ++i) { snapshot.addNode(nodes[i]); } } virtual void erase(const Node& node) { snapshot.eraseNode(node); } virtual void erase(const std::vector& nodes) { for (int i = 0; i < (int)nodes.size(); ++i) { snapshot.eraseNode(nodes[i]); } } virtual void build() { NodeNotifier* notifier = getNotifier(); Node node; std::vector nodes; for (notifier->first(node); node != INVALID; notifier->next(node)) { nodes.push_back(node); } for (int i = nodes.size() - 1; i >= 0; --i) { snapshot.addNode(nodes[i]); } } virtual void clear() { NodeNotifier* notifier = getNotifier(); Node node; for (notifier->first(node); node != INVALID; notifier->next(node)) { snapshot.eraseNode(node); } } Snapshot& snapshot; }; class EdgeObserverProxy : public EdgeNotifier::ObserverBase { public: EdgeObserverProxy(Snapshot& _snapshot) : snapshot(_snapshot) {} using EdgeNotifier::ObserverBase::attach; using EdgeNotifier::ObserverBase::detach; using EdgeNotifier::ObserverBase::attached; protected: virtual void add(const Edge& edge) { snapshot.addEdge(edge); } virtual void add(const std::vector& edges) { for (int i = edges.size() - 1; i >= 0; ++i) { snapshot.addEdge(edges[i]); } } virtual void erase(const Edge& edge) { snapshot.eraseEdge(edge); } virtual void erase(const std::vector& edges) { for (int i = 0; i < (int)edges.size(); ++i) { snapshot.eraseEdge(edges[i]); } } virtual void build() { EdgeNotifier* notifier = getNotifier(); Edge edge; std::vector edges; for (notifier->first(edge); edge != INVALID; notifier->next(edge)) { edges.push_back(edge); } for (int i = edges.size() - 1; i >= 0; --i) { snapshot.addEdge(edges[i]); } } virtual void clear() { EdgeNotifier* notifier = getNotifier(); Edge edge; for (notifier->first(edge); edge != INVALID; notifier->next(edge)) { snapshot.eraseEdge(edge); } } Snapshot& snapshot; }; ListGraph *graph; NodeObserverProxy node_observer_proxy; EdgeObserverProxy edge_observer_proxy; std::list added_nodes; std::list added_edges; void addNode(const Node& node) { added_nodes.push_front(node); } void eraseNode(const Node& node) { std::list::iterator it = std::find(added_nodes.begin(), added_nodes.end(), node); if (it == added_nodes.end()) { clear(); edge_observer_proxy.detach(); throw NodeNotifier::ImmediateDetach(); } else { added_nodes.erase(it); } } void addEdge(const Edge& edge) { added_edges.push_front(edge); } void eraseEdge(const Edge& edge) { std::list::iterator it = std::find(added_edges.begin(), added_edges.end(), edge); if (it == added_edges.end()) { clear(); node_observer_proxy.detach(); throw EdgeNotifier::ImmediateDetach(); } else { added_edges.erase(it); } } void attach(ListGraph &_graph) { graph = &_graph; node_observer_proxy.attach(graph->getNotifier(Node())); edge_observer_proxy.attach(graph->getNotifier(Edge())); } void detach() { node_observer_proxy.detach(); edge_observer_proxy.detach(); } bool attached() const { return node_observer_proxy.attached(); } void clear() { added_nodes.clear(); added_edges.clear(); } public: /// \brief Default constructor. /// /// Default constructor. /// To actually make a snapshot you must call save(). Snapshot() : graph(0), node_observer_proxy(*this), edge_observer_proxy(*this) {} /// \brief Constructor that immediately makes a snapshot. /// /// This constructor immediately makes a snapshot of the graph. /// \param _graph The graph we make a snapshot of. Snapshot(ListGraph &_graph) : node_observer_proxy(*this), edge_observer_proxy(*this) { attach(_graph); } /// \brief Make a snapshot. /// /// Make a snapshot of the graph. /// /// This function can be called more than once. In case of a repeated /// call, the previous snapshot gets lost. /// \param _graph The graph we make the snapshot of. void save(ListGraph &_graph) { if (attached()) { detach(); clear(); } attach(_graph); } /// \brief Undo the changes until the last snapshot. // /// Undo the changes until the last snapshot created by save(). void restore() { detach(); for(std::list::iterator it = added_edges.begin(); it != added_edges.end(); ++it) { graph->erase(*it); } for(std::list::iterator it = added_nodes.begin(); it != added_nodes.end(); ++it) { graph->erase(*it); } clear(); } /// \brief Gives back true when the snapshot is valid. /// /// Gives back true when the snapshot is valid. bool valid() const { return attached(); } }; }; ///@} /**************** Undirected List Graph ****************/ typedef UGraphExtender > ExtendedListUGraphBase; /// \addtogroup graphs /// @{ ///An undirected list graph class. ///This is a simple and fast undirected graph implementation. /// ///An important extra feature of this graph implementation is that ///its maps are real \ref concept::ReferenceMap "reference map"s. /// ///It conforms to the ///\ref concept::UGraph "UGraph concept". /// ///\sa concept::UGraph. /// class ListUGraph : public ExtendedListUGraphBase { private: ///ListUGraph is \e not copy constructible. Use UGraphCopy() instead. ///ListUGraph is \e not copy constructible. Use UGraphCopy() instead. /// ListUGraph(const ListUGraph &) :ExtendedListUGraphBase() {}; ///\brief Assignment of ListUGraph to another one is \e not allowed. ///Use UGraphCopy() instead. ///Assignment of ListUGraph to another one is \e not allowed. ///Use UGraphCopy() instead. void operator=(const ListUGraph &) {} public: /// Constructor /// Constructor. /// ListUGraph() {} typedef ExtendedListUGraphBase Parent; /// \brief Add a new node to the graph. /// /// \return the new node. /// Node addNode() { return Parent::addNode(); } /// \brief Add a new edge to the graph. /// /// Add a new edge to the graph with source node \c s /// and target node \c t. /// \return the new undirected edge. UEdge addEdge(const Node& s, const Node& t) { return Parent::addEdge(s, t); } /// \brief Changes the source of \c e to \c n /// /// Changes the source of \c e to \c n /// ///\note The EdgeIts and InEdgeIts ///referencing the changed edge remain ///valid. However OutEdgeIts are invalidated. void changeSource(UEdge e, Node n) { Parent::changeSource(e,n); } /// \brief Changes the target of \c e to \c n /// /// Changes the target of \c e to \c n /// /// \note The EdgeIts referencing the changed edge remain /// valid. However the other iterators may be invalidated. void changeTarget(UEdge e, Node n) { Parent::changeTarget(e,n); } /// \brief Changes the source of \c e to \c n /// /// Changes the source of \c e to \c n. It changes the proper /// node of the represented undirected edge. /// ///\note The EdgeIts and InEdgeIts ///referencing the changed edge remain ///valid. However OutEdgeIts are invalidated. void changeSource(Edge e, Node n) { if (Parent::direction(e)) { Parent::changeSource(e,n); } else { Parent::changeTarget(e,n); } } /// \brief Changes the target of \c e to \c n /// /// Changes the target of \c e to \c n. It changes the proper /// node of the represented undirected edge. /// ///\note The EdgeIts and OutEdgeIts ///referencing the changed edge remain ///valid. However InEdgeIts are invalidated. void changeTarget(Edge e, Node n) { if (Parent::direction(e)) { Parent::changeTarget(e,n); } else { Parent::changeSource(e,n); } } /// \brief Contract two nodes. /// /// This function contracts two nodes. /// /// Node \p b will be removed but instead of deleting /// its neighboring edges, they will be joined to \p a. /// The last parameter \p r controls whether to remove loops. \c true /// means that loops will be removed. /// /// \note The EdgeIts referencing a moved edge remain /// valid. void contract(Node a, Node b, bool r = true) { for(IncEdgeIt e(*this, b); e!=INVALID;) { IncEdgeIt f = e; ++f; if (r && runningNode(e) == a) { erase(e); } else if (source(e) == b) { changeSource(e, a); } else { changeTarget(e, a); } e = f; } erase(b); } /// \brief Class to make a snapshot of the graph and restore /// to it later. /// /// Class to make a snapshot of the graph and to restore it /// later. /// /// The newly added nodes and undirected edges can be removed /// using the restore() function. /// /// \warning Edge and node deletions cannot be restored. This /// events invalidate the snapshot. class Snapshot { protected: typedef Parent::NodeNotifier NodeNotifier; class NodeObserverProxy : public NodeNotifier::ObserverBase { public: NodeObserverProxy(Snapshot& _snapshot) : snapshot(_snapshot) {} using NodeNotifier::ObserverBase::attach; using NodeNotifier::ObserverBase::detach; using NodeNotifier::ObserverBase::attached; protected: virtual void add(const Node& node) { snapshot.addNode(node); } virtual void add(const std::vector& nodes) { for (int i = nodes.size() - 1; i >= 0; ++i) { snapshot.addNode(nodes[i]); } } virtual void erase(const Node& node) { snapshot.eraseNode(node); } virtual void erase(const std::vector& nodes) { for (int i = 0; i < (int)nodes.size(); ++i) { snapshot.eraseNode(nodes[i]); } } virtual void build() { NodeNotifier* notifier = getNotifier(); Node node; std::vector nodes; for (notifier->first(node); node != INVALID; notifier->next(node)) { nodes.push_back(node); } for (int i = nodes.size() - 1; i >= 0; --i) { snapshot.addNode(nodes[i]); } } virtual void clear() { NodeNotifier* notifier = getNotifier(); Node node; for (notifier->first(node); node != INVALID; notifier->next(node)) { snapshot.eraseNode(node); } } Snapshot& snapshot; }; class UEdgeObserverProxy : public UEdgeNotifier::ObserverBase { public: UEdgeObserverProxy(Snapshot& _snapshot) : snapshot(_snapshot) {} using UEdgeNotifier::ObserverBase::attach; using UEdgeNotifier::ObserverBase::detach; using UEdgeNotifier::ObserverBase::attached; protected: virtual void add(const UEdge& edge) { snapshot.addUEdge(edge); } virtual void add(const std::vector& edges) { for (int i = edges.size() - 1; i >= 0; ++i) { snapshot.addUEdge(edges[i]); } } virtual void erase(const UEdge& edge) { snapshot.eraseUEdge(edge); } virtual void erase(const std::vector& edges) { for (int i = 0; i < (int)edges.size(); ++i) { snapshot.eraseUEdge(edges[i]); } } virtual void build() { UEdgeNotifier* notifier = getNotifier(); UEdge edge; std::vector edges; for (notifier->first(edge); edge != INVALID; notifier->next(edge)) { edges.push_back(edge); } for (int i = edges.size() - 1; i >= 0; --i) { snapshot.addUEdge(edges[i]); } } virtual void clear() { UEdgeNotifier* notifier = getNotifier(); UEdge edge; for (notifier->first(edge); edge != INVALID; notifier->next(edge)) { snapshot.eraseUEdge(edge); } } Snapshot& snapshot; }; ListUGraph *graph; NodeObserverProxy node_observer_proxy; UEdgeObserverProxy edge_observer_proxy; std::list added_nodes; std::list added_edges; void addNode(const Node& node) { added_nodes.push_front(node); } void eraseNode(const Node& node) { std::list::iterator it = std::find(added_nodes.begin(), added_nodes.end(), node); if (it == added_nodes.end()) { clear(); edge_observer_proxy.detach(); throw NodeNotifier::ImmediateDetach(); } else { added_nodes.erase(it); } } void addUEdge(const UEdge& edge) { added_edges.push_front(edge); } void eraseUEdge(const UEdge& edge) { std::list::iterator it = std::find(added_edges.begin(), added_edges.end(), edge); if (it == added_edges.end()) { clear(); node_observer_proxy.detach(); throw UEdgeNotifier::ImmediateDetach(); } else { added_edges.erase(it); } } void attach(ListUGraph &_graph) { graph = &_graph; node_observer_proxy.attach(graph->getNotifier(Node())); edge_observer_proxy.attach(graph->getNotifier(UEdge())); } void detach() { node_observer_proxy.detach(); edge_observer_proxy.detach(); } bool attached() const { return node_observer_proxy.attached(); } void clear() { added_nodes.clear(); added_edges.clear(); } public: /// \brief Default constructor. /// /// Default constructor. /// To actually make a snapshot you must call save(). Snapshot() : graph(0), node_observer_proxy(*this), edge_observer_proxy(*this) {} /// \brief Constructor that immediately makes a snapshot. /// /// This constructor immediately makes a snapshot of the graph. /// \param _graph The graph we make a snapshot of. Snapshot(ListUGraph &_graph) : node_observer_proxy(*this), edge_observer_proxy(*this) { attach(_graph); } /// \brief Make a snapshot. /// /// Make a snapshot of the graph. /// /// This function can be called more than once. In case of a repeated /// call, the previous snapshot gets lost. /// \param _graph The graph we make the snapshot of. void save(ListUGraph &_graph) { if (attached()) { detach(); clear(); } attach(_graph); } /// \brief Undo the changes until the last snapshot. // /// Undo the changes until the last snapshot created by save(). void restore() { detach(); for(std::list::iterator it = added_edges.begin(); it != added_edges.end(); ++it) { graph->erase(*it); } for(std::list::iterator it = added_nodes.begin(); it != added_nodes.end(); ++it) { graph->erase(*it); } clear(); } /// \brief Gives back true when the snapshot is valid. /// /// Gives back true when the snapshot is valid. bool valid() const { return attached(); } }; }; class ListBpUGraphBase { public: class NodeSetError : public LogicError { public: virtual const char* what() const throw() { return "lemon::ListBpUGraph::NodeSetError"; } }; protected: struct NodeT { int first_edge, prev, next; }; struct UEdgeT { int aNode, prev_out, next_out; int bNode, prev_in, next_in; }; std::vector aNodes; std::vector bNodes; std::vector edges; int first_anode; int first_free_anode; int first_bnode; int first_free_bnode; int first_free_edge; public: class Node { friend class ListBpUGraphBase; protected: int id; explicit Node(int _id) : id(_id) {} public: Node() {} Node(Invalid) { id = -1; } bool operator==(const Node i) const {return id==i.id;} bool operator!=(const Node i) const {return id!=i.id;} bool operator<(const Node i) const {return id> 1].next; } void firstBNode(Node& node) const { node.id = first_bnode != -1 ? (first_bnode << 1) + 1 : -1; } void nextBNode(Node& node) const { node.id = bNodes[node.id >> 1].next; } void first(Node& node) const { if (first_anode != -1) { node.id = (first_anode << 1); } else if (first_bnode != -1) { node.id = (first_bnode << 1) + 1; } else { node.id = -1; } } void next(Node& node) const { if (aNode(node)) { node.id = aNodes[node.id >> 1].next; if (node.id == -1) { if (first_bnode != -1) { node.id = (first_bnode << 1) + 1; } } } else { node.id = bNodes[node.id >> 1].next; } } void first(UEdge& edge) const { int aNodeId = first_anode; while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) { aNodeId = aNodes[aNodeId].next != -1 ? aNodes[aNodeId].next >> 1 : -1; } if (aNodeId != -1) { edge.id = aNodes[aNodeId].first_edge; } else { edge.id = -1; } } void next(UEdge& edge) const { int aNodeId = edges[edge.id].aNode >> 1; edge.id = edges[edge.id].next_out; if (edge.id == -1) { aNodeId = aNodes[aNodeId].next != -1 ? aNodes[aNodeId].next >> 1 : -1; while (aNodeId != -1 && aNodes[aNodeId].first_edge == -1) { aNodeId = aNodes[aNodeId].next != -1 ? aNodes[aNodeId].next >> 1 : -1; } if (aNodeId != -1) { edge.id = aNodes[aNodeId].first_edge; } else { edge.id = -1; } } } void firstFromANode(UEdge& edge, const Node& node) const { LEMON_ASSERT((node.id & 1) == 0, NodeSetError()); edge.id = aNodes[node.id >> 1].first_edge; } void nextFromANode(UEdge& edge) const { edge.id = edges[edge.id].next_out; } void firstFromBNode(UEdge& edge, const Node& node) const { LEMON_ASSERT((node.id & 1) == 1, NodeSetError()); edge.id = bNodes[node.id >> 1].first_edge; } void nextFromBNode(UEdge& edge) const { edge.id = edges[edge.id].next_in; } static int id(const Node& node) { return node.id; } static Node nodeFromId(int id) { return Node(id); } int maxNodeId() const { return aNodes.size() > bNodes.size() ? aNodes.size() * 2 - 2 : bNodes.size() * 2 - 1; } static int id(const UEdge& edge) { return edge.id; } static UEdge uEdgeFromId(int id) { return UEdge(id); } int maxUEdgeId() const { return edges.size(); } static int aNodeId(const Node& node) { return node.id >> 1; } static Node nodeFromANodeId(int id) { return Node(id << 1); } int maxANodeId() const { return aNodes.size(); } static int bNodeId(const Node& node) { return node.id >> 1; } static Node nodeFromBNodeId(int id) { return Node((id << 1) + 1); } int maxBNodeId() const { return bNodes.size(); } Node aNode(const UEdge& edge) const { return Node(edges[edge.id].aNode); } Node bNode(const UEdge& edge) const { return Node(edges[edge.id].bNode); } static bool aNode(const Node& node) { return (node.id & 1) == 0; } static bool bNode(const Node& node) { return (node.id & 1) == 1; } Node addANode() { int aNodeId; if (first_free_anode == -1) { aNodeId = aNodes.size(); aNodes.push_back(NodeT()); } else { aNodeId = first_free_anode; first_free_anode = aNodes[first_free_anode].next; } if (first_anode != -1) { aNodes[aNodeId].next = first_anode << 1; aNodes[first_anode].prev = aNodeId << 1; } else { aNodes[aNodeId].next = -1; } aNodes[aNodeId].prev = -1; first_anode = aNodeId; aNodes[aNodeId].first_edge = -1; return Node(aNodeId << 1); } Node addBNode() { int bNodeId; if (first_free_bnode == -1) { bNodeId = bNodes.size(); bNodes.push_back(NodeT()); } else { bNodeId = first_free_bnode; first_free_bnode = bNodes[first_free_bnode].next; } if (first_bnode != -1) { bNodes[bNodeId].next = (first_bnode << 1) + 1; bNodes[first_bnode].prev = (bNodeId << 1) + 1; } else { bNodes[bNodeId].next = -1; } bNodes[bNodeId].prev = -1; first_bnode = bNodeId; bNodes[bNodeId].first_edge = -1; return Node((bNodeId << 1) + 1); } UEdge addEdge(const Node& source, const Node& target) { LEMON_ASSERT(((source.id ^ target.id) & 1) == 1, NodeSetError()); int edgeId; if (first_free_edge != -1) { edgeId = first_free_edge; first_free_edge = edges[edgeId].next_out; } else { edgeId = edges.size(); edges.push_back(UEdgeT()); } if ((source.id & 1) == 0) { edges[edgeId].aNode = source.id; edges[edgeId].bNode = target.id; } else { edges[edgeId].aNode = target.id; edges[edgeId].bNode = source.id; } edges[edgeId].next_out = aNodes[edges[edgeId].aNode >> 1].first_edge; edges[edgeId].prev_out = -1; if (aNodes[edges[edgeId].aNode >> 1].first_edge != -1) { edges[aNodes[edges[edgeId].aNode >> 1].first_edge].prev_out = edgeId; } aNodes[edges[edgeId].aNode >> 1].first_edge = edgeId; edges[edgeId].next_in = bNodes[edges[edgeId].bNode >> 1].first_edge; edges[edgeId].prev_in = -1; if (bNodes[edges[edgeId].bNode >> 1].first_edge != -1) { edges[bNodes[edges[edgeId].bNode >> 1].first_edge].prev_in = edgeId; } bNodes[edges[edgeId].bNode >> 1].first_edge = edgeId; return UEdge(edgeId); } void erase(const Node& node) { if (aNode(node)) { int aNodeId = node.id >> 1; if (aNodes[aNodeId].prev != -1) { aNodes[aNodes[aNodeId].prev >> 1].next = aNodes[aNodeId].next; } else { first_anode = aNodes[aNodeId].next != -1 ? aNodes[aNodeId].next >> 1 : -1; } if (aNodes[aNodeId].next != -1) { aNodes[aNodes[aNodeId].next >> 1].prev = aNodes[aNodeId].prev; } aNodes[aNodeId].next = first_free_anode; first_free_anode = aNodeId; } else { int bNodeId = node.id >> 1; if (bNodes[bNodeId].prev != -1) { bNodes[bNodes[bNodeId].prev >> 1].next = bNodes[bNodeId].next; } else { first_bnode = bNodes[bNodeId].next != -1 ? bNodes[bNodeId].next >> 1 : -1; } if (bNodes[bNodeId].next != -1) { bNodes[bNodes[bNodeId].next >> 1].prev = bNodes[bNodeId].prev; } bNodes[bNodeId].next = first_free_bnode; first_free_bnode = bNodeId; } } void erase(const UEdge& edge) { if (edges[edge.id].prev_out != -1) { edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out; } else { aNodes[edges[edge.id].aNode >> 1].first_edge = edges[edge.id].next_out; } if (edges[edge.id].next_out != -1) { edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out; } if (edges[edge.id].prev_in != -1) { edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in; } else { bNodes[edges[edge.id].bNode >> 1].first_edge = edges[edge.id].next_in; } if (edges[edge.id].next_in != -1) { edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in; } edges[edge.id].next_out = first_free_edge; first_free_edge = edge.id; } void clear() { aNodes.clear(); bNodes.clear(); edges.clear(); first_anode = -1; first_free_anode = -1; first_bnode = -1; first_free_bnode = -1; first_free_edge = -1; } void changeANode(const UEdge& edge, const Node& node) { LEMON_ASSERT((node.id & 1) == 0, NodeSetError()); if (edges[edge.id].prev_out != -1) { edges[edges[edge.id].prev_out].next_out = edges[edge.id].next_out; } else { aNodes[edges[edge.id].aNode >> 1].first_edge = edges[edge.id].next_out; } if (edges[edge.id].next_out != -1) { edges[edges[edge.id].next_out].prev_out = edges[edge.id].prev_out; } if (aNodes[node.id >> 1].first_edge != -1) { edges[aNodes[node.id >> 1].first_edge].prev_out = edge.id; } edges[edge.id].prev_out = -1; edges[edge.id].next_out = aNodes[node.id >> 1].first_edge; aNodes[node.id >> 1].first_edge = edge.id; edges[edge.id].aNode = node.id; } void changeBNode(const UEdge& edge, const Node& node) { LEMON_ASSERT((node.id & 1) == 1, NodeSetError()); if (edges[edge.id].prev_in != -1) { edges[edges[edge.id].prev_in].next_in = edges[edge.id].next_in; } else { bNodes[edges[edge.id].bNode >> 1].first_edge = edges[edge.id].next_in; } if (edges[edge.id].next_in != -1) { edges[edges[edge.id].next_in].prev_in = edges[edge.id].prev_in; } if (bNodes[node.id >> 1].first_edge != -1) { edges[bNodes[node.id >> 1].first_edge].prev_in = edge.id; } edges[edge.id].prev_in = -1; edges[edge.id].next_in = bNodes[node.id >> 1].first_edge; bNodes[node.id >> 1].first_edge = edge.id; edges[edge.id].bNode = node.id; } }; typedef BpUGraphExtender > ExtendedListBpUGraphBase; /// \ingroup graphs /// /// \brief A smart bipartite undirected graph class. /// /// This is a bipartite undirected graph implementation. /// It is conforms to the \ref concept::BpUGraph "BpUGraph concept". /// ///An important extra feature of this graph implementation is that ///its maps are real \ref concept::ReferenceMap "reference map"s. /// /// \sa concept::BpUGraph. /// class ListBpUGraph : public ExtendedListBpUGraphBase { /// \brief ListBpUGraph is \e not copy constructible. /// ///ListBpUGraph is \e not copy constructible. ListBpUGraph(const ListBpUGraph &) :ExtendedListBpUGraphBase() {}; /// \brief Assignment of ListBpUGraph to another one is \e not /// allowed. /// /// Assignment of ListBpUGraph to another one is \e not allowed. void operator=(const ListBpUGraph &) {} public: /// \brief Constructor /// /// Constructor. /// ListBpUGraph() {} typedef ExtendedListBpUGraphBase Parent; /// \brief Add a new ANode to the graph. /// /// \return the new node. /// Node addANode() { return Parent::addANode(); } /// \brief Add a new BNode to the graph. /// /// \return the new node. /// Node addBNode() { return Parent::addBNode(); } /// \brief Add a new edge to the graph. /// /// Add a new edge to the graph with an ANode and a BNode. /// \return the new undirected edge. UEdge addEdge(const Node& s, const Node& t) { return Parent::addEdge(s, t); } /// \brief Changes the ANode of \c e to \c n /// /// Changes the ANode of \c e to \c n /// ///\note The EdgeIts and InEdgeIts referencing ///the changed edge remain valid. However OutEdgeIts are ///invalidated. void changeANode(UEdge e, Node n) { Parent::changeANode(e,n); } /// \brief Changes the BNode of \c e to \c n /// /// Changes the BNode of \c e to \c n /// /// \note The EdgeIts and OutEdgeIts /// referencing the changed edge remain /// valid. However InEdgeIts are invalidated. void changeBNode(UEdge e, Node n) { Parent::changeBNode(e,n); } /// \brief Changes the source(ANode) of \c e to \c n /// /// Changes the source(ANode) of \c e to \c n /// ///\note The EdgeIts and InEdgeIts referencing ///the changed edge remain valid. However OutEdgeIts are ///invalidated. void changeSource(UEdge e, Node n) { Parent::changeANode(e,n); } /// \brief Changes the target(BNode) of \c e to \c n /// /// Changes the target(BNode) of \c e to \c n /// /// \note The EdgeIts and OutEdgeIts /// referencing the changed edge remain /// valid. However InEdgeIts are invalidated. void changeTarget(UEdge e, Node n) { Parent::changeBNode(e,n); } /// \brief Changes the source of \c e to \c n /// /// Changes the source of \c e to \c n. It changes the proper /// node of the represented undirected edge. /// ///\note The EdgeIts and InEdgeIts ///referencing the changed edge remain ///valid. However OutEdgeIts are invalidated. void changeSource(Edge e, Node n) { if (Parent::direction(e)) { Parent::changeANode(e,n); } else { Parent::changeBNode(e,n); } } /// \brief Changes the target of \c e to \c n /// /// Changes the target of \c e to \c n. It changes the proper /// node of the represented undirected edge. /// ///\note The EdgeIts and OutEdgeIts ///referencing the changed edge remain ///valid. However InEdgeIts are invalidated. void changeTarget(Edge e, Node n) { if (Parent::direction(e)) { Parent::changeBNode(e,n); } else { Parent::changeANode(e,n); } } /// \brief Contract two nodes. /// /// This function contracts two nodes. /// /// Node \p b will be removed but instead of deleting its /// neighboring edges, they will be joined to \p a. The two nodes /// should be from the same nodeset, of course. /// /// \note The EdgeIts referencing a moved edge remain /// valid. void contract(const Node& a, const Node& b) { LEMON_ASSERT(Parent::aNode(a) == Parent::aNode(b), NodeSetError()); if (Parent::aNode(a)) { for (IncEdgeIt e(*this, b); e!=INVALID;) { IncEdgeIt f = e; ++f; changeSource(e, a); e = f; } } else { for (IncEdgeIt e(*this, b); e!=INVALID;) { IncEdgeIt f = e; ++f; changeTarget(e, a); e = f; } } erase(b); } /// \brief Class to make a snapshot of the graph and restore /// to it later. /// /// Class to make a snapshot of the graph and to restore it /// later. /// /// The newly added nodes and undirected edges can be removed /// using the restore() function. /// /// \warning Edge and node deletions cannot be restored. This /// events invalidate the snapshot. class Snapshot { protected: typedef Parent::NodeNotifier NodeNotifier; class NodeObserverProxy : public NodeNotifier::ObserverBase { public: NodeObserverProxy(Snapshot& _snapshot) : snapshot(_snapshot) {} using NodeNotifier::ObserverBase::attach; using NodeNotifier::ObserverBase::detach; using NodeNotifier::ObserverBase::attached; protected: virtual void add(const Node& node) { snapshot.addNode(node); } virtual void add(const std::vector& nodes) { for (int i = nodes.size() - 1; i >= 0; ++i) { snapshot.addNode(nodes[i]); } } virtual void erase(const Node& node) { snapshot.eraseNode(node); } virtual void erase(const std::vector& nodes) { for (int i = 0; i < (int)nodes.size(); ++i) { snapshot.eraseNode(nodes[i]); } } virtual void build() { NodeNotifier* notifier = getNotifier(); Node node; std::vector nodes; for (notifier->first(node); node != INVALID; notifier->next(node)) { nodes.push_back(node); } for (int i = nodes.size() - 1; i >= 0; --i) { snapshot.addNode(nodes[i]); } } virtual void clear() { NodeNotifier* notifier = getNotifier(); Node node; for (notifier->first(node); node != INVALID; notifier->next(node)) { snapshot.eraseNode(node); } } Snapshot& snapshot; }; class UEdgeObserverProxy : public UEdgeNotifier::ObserverBase { public: UEdgeObserverProxy(Snapshot& _snapshot) : snapshot(_snapshot) {} using UEdgeNotifier::ObserverBase::attach; using UEdgeNotifier::ObserverBase::detach; using UEdgeNotifier::ObserverBase::attached; protected: virtual void add(const UEdge& edge) { snapshot.addUEdge(edge); } virtual void add(const std::vector& edges) { for (int i = edges.size() - 1; i >= 0; ++i) { snapshot.addUEdge(edges[i]); } } virtual void erase(const UEdge& edge) { snapshot.eraseUEdge(edge); } virtual void erase(const std::vector& edges) { for (int i = 0; i < (int)edges.size(); ++i) { snapshot.eraseUEdge(edges[i]); } } virtual void build() { UEdgeNotifier* notifier = getNotifier(); UEdge edge; std::vector edges; for (notifier->first(edge); edge != INVALID; notifier->next(edge)) { edges.push_back(edge); } for (int i = edges.size() - 1; i >= 0; --i) { snapshot.addUEdge(edges[i]); } } virtual void clear() { UEdgeNotifier* notifier = getNotifier(); UEdge edge; for (notifier->first(edge); edge != INVALID; notifier->next(edge)) { snapshot.eraseUEdge(edge); } } Snapshot& snapshot; }; ListBpUGraph *graph; NodeObserverProxy node_observer_proxy; UEdgeObserverProxy edge_observer_proxy; std::list added_nodes; std::list added_edges; void addNode(const Node& node) { added_nodes.push_front(node); } void eraseNode(const Node& node) { std::list::iterator it = std::find(added_nodes.begin(), added_nodes.end(), node); if (it == added_nodes.end()) { clear(); edge_observer_proxy.detach(); throw NodeNotifier::ImmediateDetach(); } else { added_nodes.erase(it); } } void addUEdge(const UEdge& edge) { added_edges.push_front(edge); } void eraseUEdge(const UEdge& edge) { std::list::iterator it = std::find(added_edges.begin(), added_edges.end(), edge); if (it == added_edges.end()) { clear(); node_observer_proxy.detach(); throw UEdgeNotifier::ImmediateDetach(); } else { added_edges.erase(it); } } void attach(ListBpUGraph &_graph) { graph = &_graph; node_observer_proxy.attach(graph->getNotifier(Node())); edge_observer_proxy.attach(graph->getNotifier(UEdge())); } void detach() { node_observer_proxy.detach(); edge_observer_proxy.detach(); } bool attached() const { return node_observer_proxy.attached(); } void clear() { added_nodes.clear(); added_edges.clear(); } public: /// \brief Default constructor. /// /// Default constructor. /// To actually make a snapshot you must call save(). Snapshot() : graph(0), node_observer_proxy(*this), edge_observer_proxy(*this) {} /// \brief Constructor that immediately makes a snapshot. /// /// This constructor immediately makes a snapshot of the graph. /// \param _graph The graph we make a snapshot of. Snapshot(ListBpUGraph &_graph) : node_observer_proxy(*this), edge_observer_proxy(*this) { attach(_graph); } /// \brief Make a snapshot. /// /// Make a snapshot of the graph. /// /// This function can be called more than once. In case of a repeated /// call, the previous snapshot gets lost. /// \param _graph The graph we make the snapshot of. void save(ListBpUGraph &_graph) { if (attached()) { detach(); clear(); } attach(_graph); } /// \brief Undo the changes until the last snapshot. // /// Undo the changes until the last snapshot created by save(). void restore() { detach(); for(std::list::iterator it = added_edges.begin(); it != added_edges.end(); ++it) { graph->erase(*it); } for(std::list::iterator it = added_nodes.begin(); it != added_nodes.end(); ++it) { graph->erase(*it); } clear(); } /// \brief Gives back true when the snapshot is valid. /// /// Gives back true when the snapshot is valid. bool valid() const { return attached(); } }; }; /// @} } //namespace lemon #endif