1 | /* -*- C++ -*- |
---|
2 | * |
---|
3 | * This file is a part of LEMON, a generic C++ optimization library |
---|
4 | * |
---|
5 | * Copyright (C) 2003-2006 |
---|
6 | * Egervary Jeno Kombinatorikus Optimalizalasi Kutatocsoport |
---|
7 | * (Egervary Research Group on Combinatorial Optimization, EGRES). |
---|
8 | * |
---|
9 | * Permission to use, modify and distribute this software is granted |
---|
10 | * provided that this copyright notice appears in all copies. For |
---|
11 | * precise terms see the accompanying LICENSE file. |
---|
12 | * |
---|
13 | * This software is provided "AS IS" with no warranty of any kind, |
---|
14 | * express or implied, and with no claim as to its suitability for any |
---|
15 | * purpose. |
---|
16 | * |
---|
17 | */ |
---|
18 | |
---|
19 | #ifndef LEMON_MAPS_H |
---|
20 | #define LEMON_MAPS_H |
---|
21 | |
---|
22 | #include <iterator> |
---|
23 | |
---|
24 | #include <lemon/utility.h> |
---|
25 | #include <lemon/traits.h> |
---|
26 | |
---|
27 | ///\file |
---|
28 | ///\ingroup maps |
---|
29 | ///\brief Miscellaneous property maps |
---|
30 | /// |
---|
31 | ///\todo This file has the same name as the concept file in concept/, |
---|
32 | /// and this is not easily detectable in docs... |
---|
33 | |
---|
34 | #include <map> |
---|
35 | |
---|
36 | namespace lemon { |
---|
37 | |
---|
38 | /// \addtogroup maps |
---|
39 | /// @{ |
---|
40 | |
---|
41 | /// Base class of maps. |
---|
42 | |
---|
43 | /// Base class of maps. |
---|
44 | /// It provides the necessary <tt>typedef</tt>s required by the map concept. |
---|
45 | template<typename K, typename T> |
---|
46 | class MapBase { |
---|
47 | public: |
---|
48 | ///\e |
---|
49 | typedef K Key; |
---|
50 | ///\e |
---|
51 | typedef T Value; |
---|
52 | }; |
---|
53 | |
---|
54 | /// Null map. (a.k.a. DoNothingMap) |
---|
55 | |
---|
56 | /// If you have to provide a map only for its type definitions, |
---|
57 | /// or if you have to provide a writable map, but |
---|
58 | /// data written to it will sent to <tt>/dev/null</tt>... |
---|
59 | template<typename K, typename T> |
---|
60 | class NullMap : public MapBase<K, T> { |
---|
61 | public: |
---|
62 | typedef MapBase<K, T> Parent; |
---|
63 | typedef typename Parent::Key Key; |
---|
64 | typedef typename Parent::Value Value; |
---|
65 | |
---|
66 | /// Gives back a default constructed element. |
---|
67 | T operator[](const K&) const { return T(); } |
---|
68 | /// Absorbs the value. |
---|
69 | void set(const K&, const T&) {} |
---|
70 | }; |
---|
71 | |
---|
72 | template <typename K, typename V> |
---|
73 | NullMap<K, V> nullMap() { |
---|
74 | return NullMap<K, V>(); |
---|
75 | } |
---|
76 | |
---|
77 | |
---|
78 | /// Constant map. |
---|
79 | |
---|
80 | /// This is a readable map which assigns a specified value to each key. |
---|
81 | /// In other aspects it is equivalent to the \ref NullMap. |
---|
82 | /// \todo set could be used to set the value. |
---|
83 | template<typename K, typename T> |
---|
84 | class ConstMap : public MapBase<K, T> { |
---|
85 | private: |
---|
86 | T v; |
---|
87 | public: |
---|
88 | |
---|
89 | typedef MapBase<K, T> Parent; |
---|
90 | typedef typename Parent::Key Key; |
---|
91 | typedef typename Parent::Value Value; |
---|
92 | |
---|
93 | /// Default constructor |
---|
94 | |
---|
95 | /// The value of the map will be uninitialized. |
---|
96 | /// (More exactly it will be default constructed.) |
---|
97 | ConstMap() {} |
---|
98 | ///\e |
---|
99 | |
---|
100 | /// \param _v The initial value of the map. |
---|
101 | /// |
---|
102 | ConstMap(const T &_v) : v(_v) {} |
---|
103 | |
---|
104 | T operator[](const K&) const { return v; } |
---|
105 | void set(const K&, const T&) {} |
---|
106 | |
---|
107 | template<typename T1> |
---|
108 | struct rebind { |
---|
109 | typedef ConstMap<K, T1> other; |
---|
110 | }; |
---|
111 | |
---|
112 | template<typename T1> |
---|
113 | ConstMap(const ConstMap<K, T1> &, const T &_v) : v(_v) {} |
---|
114 | }; |
---|
115 | |
---|
116 | ///Returns a \ref ConstMap class |
---|
117 | |
---|
118 | ///This function just returns a \ref ConstMap class. |
---|
119 | ///\relates ConstMap |
---|
120 | template<typename K, typename V> |
---|
121 | inline ConstMap<K, V> constMap(const V &v) { |
---|
122 | return ConstMap<K, V>(v); |
---|
123 | } |
---|
124 | |
---|
125 | |
---|
126 | //\todo to document later |
---|
127 | template<typename T, T v> |
---|
128 | struct Const { }; |
---|
129 | |
---|
130 | //\todo to document later |
---|
131 | template<typename K, typename V, V v> |
---|
132 | class ConstMap<K, Const<V, v> > : public MapBase<K, V> { |
---|
133 | public: |
---|
134 | typedef MapBase<K, V> Parent; |
---|
135 | typedef typename Parent::Key Key; |
---|
136 | typedef typename Parent::Value Value; |
---|
137 | |
---|
138 | ConstMap() { } |
---|
139 | V operator[](const K&) const { return v; } |
---|
140 | void set(const K&, const V&) { } |
---|
141 | }; |
---|
142 | |
---|
143 | ///Returns a \ref ConstMap class |
---|
144 | |
---|
145 | ///This function just returns a \ref ConstMap class. |
---|
146 | ///\relates ConstMap |
---|
147 | template<typename K, typename V, V v> |
---|
148 | inline ConstMap<K, Const<V, v> > constMap() { |
---|
149 | return ConstMap<K, Const<V, v> >(); |
---|
150 | } |
---|
151 | |
---|
152 | /// \c std::map wrapper |
---|
153 | |
---|
154 | /// This is essentially a wrapper for \c std::map. With addition that |
---|
155 | /// you can specify a default value different from \c Value() . |
---|
156 | /// |
---|
157 | /// \todo Provide allocator parameter... |
---|
158 | template <typename K, typename T, typename Compare = std::less<K> > |
---|
159 | class StdMap : public std::map<K, T, Compare> { |
---|
160 | typedef std::map<K, T, Compare> parent; |
---|
161 | T v; |
---|
162 | typedef typename parent::value_type PairType; |
---|
163 | |
---|
164 | public: |
---|
165 | ///\e |
---|
166 | typedef K Key; |
---|
167 | ///\e |
---|
168 | typedef T Value; |
---|
169 | ///\e |
---|
170 | typedef T& Reference; |
---|
171 | ///\e |
---|
172 | typedef const T& ConstReference; |
---|
173 | |
---|
174 | |
---|
175 | StdMap() : v() {} |
---|
176 | /// Constructor with specified default value |
---|
177 | StdMap(const T& _v) : v(_v) {} |
---|
178 | |
---|
179 | /// \brief Constructs the map from an appropriate std::map. |
---|
180 | /// |
---|
181 | /// \warning Inefficient: copies the content of \c m ! |
---|
182 | StdMap(const parent &m) : parent(m) {} |
---|
183 | /// \brief Constructs the map from an appropriate std::map, and explicitly |
---|
184 | /// specifies a default value. |
---|
185 | /// |
---|
186 | /// \warning Inefficient: copies the content of \c m ! |
---|
187 | StdMap(const parent &m, const T& _v) : parent(m), v(_v) {} |
---|
188 | |
---|
189 | template<typename T1, typename Comp1> |
---|
190 | StdMap(const StdMap<Key, T1,Comp1> &m, const T &_v) { |
---|
191 | //FIXME; |
---|
192 | } |
---|
193 | |
---|
194 | Reference operator[](const Key &k) { |
---|
195 | return insert(PairType(k,v)).first -> second; |
---|
196 | } |
---|
197 | |
---|
198 | ConstReference operator[](const Key &k) const { |
---|
199 | typename parent::iterator i = lower_bound(k); |
---|
200 | if (i == parent::end() || parent::key_comp()(k, (*i).first)) |
---|
201 | return v; |
---|
202 | return (*i).second; |
---|
203 | } |
---|
204 | void set(const Key &k, const T &t) { |
---|
205 | parent::operator[](k) = t; |
---|
206 | } |
---|
207 | |
---|
208 | /// Changes the default value of the map. |
---|
209 | /// \return Returns the previous default value. |
---|
210 | /// |
---|
211 | /// \warning The value of some keys (which has already been queried, but |
---|
212 | /// the value has been unchanged from the default) may change! |
---|
213 | T setDefault(const T &_v) { T old=v; v=_v; return old; } |
---|
214 | |
---|
215 | template<typename T1> |
---|
216 | struct rebind { |
---|
217 | typedef StdMap<Key, T1,Compare> other; |
---|
218 | }; |
---|
219 | }; |
---|
220 | |
---|
221 | /// @} |
---|
222 | |
---|
223 | /// \addtogroup map_adaptors |
---|
224 | /// @{ |
---|
225 | |
---|
226 | /// \brief Identity mapping. |
---|
227 | /// |
---|
228 | /// This mapping gives back the given key as value without any |
---|
229 | /// modification. |
---|
230 | template <typename T> |
---|
231 | class IdentityMap : public MapBase<T, T> { |
---|
232 | public: |
---|
233 | typedef MapBase<T, T> Parent; |
---|
234 | typedef typename Parent::Key Key; |
---|
235 | typedef typename Parent::Value Value; |
---|
236 | |
---|
237 | const T& operator[](const T& t) const { |
---|
238 | return t; |
---|
239 | } |
---|
240 | }; |
---|
241 | |
---|
242 | ///Returns an \ref IdentityMap class |
---|
243 | |
---|
244 | ///This function just returns an \ref IdentityMap class. |
---|
245 | ///\relates IdentityMap |
---|
246 | template<typename T> |
---|
247 | inline IdentityMap<T> identityMap() { |
---|
248 | return IdentityMap<T>(); |
---|
249 | } |
---|
250 | |
---|
251 | |
---|
252 | ///Convert the \c Value of a map to another type. |
---|
253 | |
---|
254 | ///This \ref concept::ReadMap "read only map" |
---|
255 | ///converts the \c Value of a maps to type \c T. |
---|
256 | ///Its \c Key is inherited from \c M. |
---|
257 | template <typename M, typename T> |
---|
258 | class ConvertMap : public MapBase<typename M::Key, T> { |
---|
259 | const M& m; |
---|
260 | public: |
---|
261 | typedef MapBase<typename M::Key, T> Parent; |
---|
262 | typedef typename Parent::Key Key; |
---|
263 | typedef typename Parent::Value Value; |
---|
264 | |
---|
265 | ///Constructor |
---|
266 | |
---|
267 | ///Constructor |
---|
268 | ///\param _m is the underlying map |
---|
269 | ConvertMap(const M &_m) : m(_m) {}; |
---|
270 | |
---|
271 | /// \brief The subscript operator. |
---|
272 | /// |
---|
273 | /// The subscript operator. |
---|
274 | /// \param k The key |
---|
275 | /// \return The target of the edge |
---|
276 | Value operator[](const Key& k) const {return m[k];} |
---|
277 | }; |
---|
278 | |
---|
279 | ///Returns an \ref ConvertMap class |
---|
280 | |
---|
281 | ///This function just returns an \ref ConvertMap class. |
---|
282 | ///\relates ConvertMap |
---|
283 | ///\todo The order of the template parameters are changed. |
---|
284 | template<typename T, typename M> |
---|
285 | inline ConvertMap<M, T> convertMap(const M &m) { |
---|
286 | return ConvertMap<M, T>(m); |
---|
287 | } |
---|
288 | |
---|
289 | ///Sum of two maps |
---|
290 | |
---|
291 | ///This \ref concept::ReadMap "read only map" returns the sum of the two |
---|
292 | ///given maps. Its \c Key and \c Value will be inherited from \c M1. |
---|
293 | ///The \c Key and \c Value of M2 must be convertible to those of \c M1. |
---|
294 | |
---|
295 | template<typename M1, typename M2> |
---|
296 | class AddMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
297 | const M1& m1; |
---|
298 | const M2& m2; |
---|
299 | |
---|
300 | public: |
---|
301 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
302 | typedef typename Parent::Key Key; |
---|
303 | typedef typename Parent::Value Value; |
---|
304 | |
---|
305 | ///Constructor |
---|
306 | AddMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
307 | Value operator[](Key k) const {return m1[k]+m2[k];} |
---|
308 | }; |
---|
309 | |
---|
310 | ///Returns an \ref AddMap class |
---|
311 | |
---|
312 | ///This function just returns an \ref AddMap class. |
---|
313 | ///\todo How to call these type of functions? |
---|
314 | /// |
---|
315 | ///\relates AddMap |
---|
316 | ///\todo Wrong scope in Doxygen when \c \\relates is used |
---|
317 | template<typename M1, typename M2> |
---|
318 | inline AddMap<M1, M2> addMap(const M1 &m1,const M2 &m2) { |
---|
319 | return AddMap<M1, M2>(m1,m2); |
---|
320 | } |
---|
321 | |
---|
322 | ///Shift a map with a constant. |
---|
323 | |
---|
324 | ///This \ref concept::ReadMap "read only map" returns the sum of the |
---|
325 | ///given map and a constant value. |
---|
326 | ///Its \c Key and \c Value is inherited from \c M. |
---|
327 | /// |
---|
328 | ///Actually, |
---|
329 | ///\code |
---|
330 | /// ShiftMap<X> sh(x,v); |
---|
331 | ///\endcode |
---|
332 | ///is equivalent with |
---|
333 | ///\code |
---|
334 | /// ConstMap<X::Key, X::Value> c_tmp(v); |
---|
335 | /// AddMap<X, ConstMap<X::Key, X::Value> > sh(x,v); |
---|
336 | ///\endcode |
---|
337 | template<typename M, typename C = typename M::Value> |
---|
338 | class ShiftMap : public MapBase<typename M::Key, typename M::Value> { |
---|
339 | const M& m; |
---|
340 | C v; |
---|
341 | public: |
---|
342 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
343 | typedef typename Parent::Key Key; |
---|
344 | typedef typename Parent::Value Value; |
---|
345 | |
---|
346 | ///Constructor |
---|
347 | |
---|
348 | ///Constructor |
---|
349 | ///\param _m is the undelying map |
---|
350 | ///\param _v is the shift value |
---|
351 | ShiftMap(const M &_m, const C &_v ) : m(_m), v(_v) {}; |
---|
352 | Value operator[](Key k) const {return m[k] + v;} |
---|
353 | }; |
---|
354 | |
---|
355 | ///Returns an \ref ShiftMap class |
---|
356 | |
---|
357 | ///This function just returns an \ref ShiftMap class. |
---|
358 | ///\relates ShiftMap |
---|
359 | ///\todo A better name is required. |
---|
360 | template<typename M, typename C> |
---|
361 | inline ShiftMap<M, C> shiftMap(const M &m,const C &v) { |
---|
362 | return ShiftMap<M, C>(m,v); |
---|
363 | } |
---|
364 | |
---|
365 | ///Difference of two maps |
---|
366 | |
---|
367 | ///This \ref concept::ReadMap "read only map" returns the difference |
---|
368 | ///of the values of the two |
---|
369 | ///given maps. Its \c Key and \c Value will be inherited from \c M1. |
---|
370 | ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
---|
371 | |
---|
372 | template<typename M1, typename M2> |
---|
373 | class SubMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
374 | const M1& m1; |
---|
375 | const M2& m2; |
---|
376 | public: |
---|
377 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
378 | typedef typename Parent::Key Key; |
---|
379 | typedef typename Parent::Value Value; |
---|
380 | |
---|
381 | ///Constructor |
---|
382 | SubMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
383 | Value operator[](Key k) const {return m1[k]-m2[k];} |
---|
384 | }; |
---|
385 | |
---|
386 | ///Returns a \ref SubMap class |
---|
387 | |
---|
388 | ///This function just returns a \ref SubMap class. |
---|
389 | /// |
---|
390 | ///\relates SubMap |
---|
391 | template<typename M1, typename M2> |
---|
392 | inline SubMap<M1, M2> subMap(const M1 &m1, const M2 &m2) { |
---|
393 | return SubMap<M1, M2>(m1, m2); |
---|
394 | } |
---|
395 | |
---|
396 | ///Product of two maps |
---|
397 | |
---|
398 | ///This \ref concept::ReadMap "read only map" returns the product of the |
---|
399 | ///values of the two |
---|
400 | ///given |
---|
401 | ///maps. Its \c Key and \c Value will be inherited from \c M1. |
---|
402 | ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
---|
403 | |
---|
404 | template<typename M1, typename M2> |
---|
405 | class MulMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
406 | const M1& m1; |
---|
407 | const M2& m2; |
---|
408 | public: |
---|
409 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
410 | typedef typename Parent::Key Key; |
---|
411 | typedef typename Parent::Value Value; |
---|
412 | |
---|
413 | ///Constructor |
---|
414 | MulMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
415 | Value operator[](Key k) const {return m1[k]*m2[k];} |
---|
416 | }; |
---|
417 | |
---|
418 | ///Returns a \ref MulMap class |
---|
419 | |
---|
420 | ///This function just returns a \ref MulMap class. |
---|
421 | ///\relates MulMap |
---|
422 | template<typename M1, typename M2> |
---|
423 | inline MulMap<M1, M2> mulMap(const M1 &m1,const M2 &m2) { |
---|
424 | return MulMap<M1, M2>(m1,m2); |
---|
425 | } |
---|
426 | |
---|
427 | ///Scales a maps with a constant. |
---|
428 | |
---|
429 | ///This \ref concept::ReadMap "read only map" returns the value of the |
---|
430 | ///given map multiplied from the left side with a constant value. |
---|
431 | ///Its \c Key and \c Value is inherited from \c M. |
---|
432 | /// |
---|
433 | ///Actually, |
---|
434 | ///\code |
---|
435 | /// ScaleMap<X> sc(x,v); |
---|
436 | ///\endcode |
---|
437 | ///is equivalent with |
---|
438 | ///\code |
---|
439 | /// ConstMap<X::Key, X::Value> c_tmp(v); |
---|
440 | /// MulMap<X, ConstMap<X::Key, X::Value> > sc(x,v); |
---|
441 | ///\endcode |
---|
442 | template<typename M, typename C = typename M::Value> |
---|
443 | class ScaleMap : public MapBase<typename M::Key, typename M::Value> { |
---|
444 | const M& m; |
---|
445 | C v; |
---|
446 | public: |
---|
447 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
448 | typedef typename Parent::Key Key; |
---|
449 | typedef typename Parent::Value Value; |
---|
450 | |
---|
451 | ///Constructor |
---|
452 | |
---|
453 | ///Constructor |
---|
454 | ///\param _m is the undelying map |
---|
455 | ///\param _v is the scaling value |
---|
456 | ScaleMap(const M &_m, const C &_v ) : m(_m), v(_v) {}; |
---|
457 | Value operator[](Key k) const {return v * m[k];} |
---|
458 | }; |
---|
459 | |
---|
460 | ///Returns an \ref ScaleMap class |
---|
461 | |
---|
462 | ///This function just returns an \ref ScaleMap class. |
---|
463 | ///\relates ScaleMap |
---|
464 | ///\todo A better name is required. |
---|
465 | template<typename M, typename C> |
---|
466 | inline ScaleMap<M, C> scaleMap(const M &m,const C &v) { |
---|
467 | return ScaleMap<M, C>(m,v); |
---|
468 | } |
---|
469 | |
---|
470 | ///Quotient of two maps |
---|
471 | |
---|
472 | ///This \ref concept::ReadMap "read only map" returns the quotient of the |
---|
473 | ///values of the two |
---|
474 | ///given maps. Its \c Key and \c Value will be inherited from \c M1. |
---|
475 | ///The \c Key and \c Value of \c M2 must be convertible to those of \c M1. |
---|
476 | |
---|
477 | template<typename M1, typename M2> |
---|
478 | class DivMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
479 | const M1& m1; |
---|
480 | const M2& m2; |
---|
481 | public: |
---|
482 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
483 | typedef typename Parent::Key Key; |
---|
484 | typedef typename Parent::Value Value; |
---|
485 | |
---|
486 | ///Constructor |
---|
487 | DivMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
488 | Value operator[](Key k) const {return m1[k]/m2[k];} |
---|
489 | }; |
---|
490 | |
---|
491 | ///Returns a \ref DivMap class |
---|
492 | |
---|
493 | ///This function just returns a \ref DivMap class. |
---|
494 | ///\relates DivMap |
---|
495 | template<typename M1, typename M2> |
---|
496 | inline DivMap<M1, M2> divMap(const M1 &m1,const M2 &m2) { |
---|
497 | return DivMap<M1, M2>(m1,m2); |
---|
498 | } |
---|
499 | |
---|
500 | ///Composition of two maps |
---|
501 | |
---|
502 | ///This \ref concept::ReadMap "read only map" returns the composition of |
---|
503 | ///two |
---|
504 | ///given maps. That is to say, if \c m1 is of type \c M1 and \c m2 is |
---|
505 | ///of \c M2, |
---|
506 | ///then for |
---|
507 | ///\code |
---|
508 | /// ComposeMap<M1, M2> cm(m1,m2); |
---|
509 | ///\endcode |
---|
510 | /// <tt>cm[x]</tt> will be equal to <tt>m1[m2[x]]</tt> |
---|
511 | /// |
---|
512 | ///Its \c Key is inherited from \c M2 and its \c Value is from |
---|
513 | ///\c M1. |
---|
514 | ///The \c M2::Value must be convertible to \c M1::Key. |
---|
515 | ///\todo Check the requirements. |
---|
516 | |
---|
517 | template <typename M1, typename M2> |
---|
518 | class ComposeMap : public MapBase<typename M2::Key, typename M1::Value> { |
---|
519 | const M1& m1; |
---|
520 | const M2& m2; |
---|
521 | public: |
---|
522 | typedef MapBase<typename M2::Key, typename M1::Value> Parent; |
---|
523 | typedef typename Parent::Key Key; |
---|
524 | typedef typename Parent::Value Value; |
---|
525 | |
---|
526 | ///Constructor |
---|
527 | ComposeMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
528 | |
---|
529 | typename MapTraits<M1>::ConstReturnValue |
---|
530 | operator[](Key k) const {return m1[m2[k]];} |
---|
531 | }; |
---|
532 | ///Returns a \ref ComposeMap class |
---|
533 | |
---|
534 | ///This function just returns a \ref ComposeMap class. |
---|
535 | /// |
---|
536 | ///\relates ComposeMap |
---|
537 | template <typename M1, typename M2> |
---|
538 | inline ComposeMap<M1, M2> composeMap(const M1 &m1,const M2 &m2) { |
---|
539 | return ComposeMap<M1, M2>(m1,m2); |
---|
540 | } |
---|
541 | |
---|
542 | ///Combines of two maps using an STL (binary) functor. |
---|
543 | |
---|
544 | ///Combines of two maps using an STL (binary) functor. |
---|
545 | /// |
---|
546 | /// |
---|
547 | ///This \ref concept::ReadMap "read only map" takes two maps and a |
---|
548 | ///binary functor and returns the composition of |
---|
549 | ///the two |
---|
550 | ///given maps unsing the functor. |
---|
551 | ///That is to say, if \c m1 and \c m2 is of type \c M1 and \c M2 |
---|
552 | ///and \c f is of \c F, |
---|
553 | ///then for |
---|
554 | ///\code |
---|
555 | /// CombineMap<M1, M2,F,V> cm(m1,m2,f); |
---|
556 | ///\endcode |
---|
557 | /// <tt>cm[x]</tt> will be equal to <tt>f(m1[x],m2[x])</tt> |
---|
558 | /// |
---|
559 | ///Its \c Key is inherited from \c M1 and its \c Value is \c V. |
---|
560 | ///The \c M2::Value and \c M1::Value must be convertible to the corresponding |
---|
561 | ///input parameter of \c F and the return type of \c F must be convertible |
---|
562 | ///to \c V. |
---|
563 | ///\todo Check the requirements. |
---|
564 | |
---|
565 | template<typename M1, typename M2, typename F, |
---|
566 | typename V = typename F::result_type, |
---|
567 | typename NC = False> |
---|
568 | class CombineMap : public MapBase<typename M1::Key, V> { |
---|
569 | const M1& m1; |
---|
570 | const M2& m2; |
---|
571 | F f; |
---|
572 | public: |
---|
573 | typedef MapBase<typename M1::Key, V> Parent; |
---|
574 | typedef typename Parent::Key Key; |
---|
575 | typedef typename Parent::Value Value; |
---|
576 | |
---|
577 | ///Constructor |
---|
578 | CombineMap(const M1 &_m1,const M2 &_m2,const F &_f) |
---|
579 | : m1(_m1), m2(_m2), f(_f) {}; |
---|
580 | Value operator[](Key k) const {return f(m1[k],m2[k]);} |
---|
581 | }; |
---|
582 | |
---|
583 | ///Returns a \ref CombineMap class |
---|
584 | |
---|
585 | ///This function just returns a \ref CombineMap class. |
---|
586 | /// |
---|
587 | ///Only the first template parameter (the value type) must be given. |
---|
588 | /// |
---|
589 | ///For example if \c m1 and \c m2 are both \c double valued maps, then |
---|
590 | ///\code |
---|
591 | ///combineMap<double>(m1,m2,std::plus<double>) |
---|
592 | ///\endcode |
---|
593 | ///is equivalent with |
---|
594 | ///\code |
---|
595 | ///addMap(m1,m2) |
---|
596 | ///\endcode |
---|
597 | /// |
---|
598 | ///\relates CombineMap |
---|
599 | template<typename M1, typename M2, typename F, typename V> |
---|
600 | inline CombineMap<M1, M2, F, V> |
---|
601 | combineMap(const M1& m1,const M2& m2, const F& f) { |
---|
602 | return CombineMap<M1, M2, F, V>(m1,m2,f); |
---|
603 | } |
---|
604 | |
---|
605 | template<typename M1, typename M2, typename F> |
---|
606 | inline CombineMap<M1, M2, F, typename F::result_type> |
---|
607 | combineMap(const M1& m1, const M2& m2, const F& f) { |
---|
608 | return combineMap<M1, M2, F, typename F::result_type>(m1,m2,f); |
---|
609 | } |
---|
610 | |
---|
611 | template<typename M1, typename M2, typename K1, typename K2, typename V> |
---|
612 | inline CombineMap<M1, M2, V (*)(K1, K2), V> |
---|
613 | combineMap(const M1 &m1, const M2 &m2, V (*f)(K1, K2)) { |
---|
614 | return combineMap<M1, M2, V (*)(K1, K2), V>(m1,m2,f); |
---|
615 | } |
---|
616 | |
---|
617 | ///Negative value of a map |
---|
618 | |
---|
619 | ///This \ref concept::ReadMap "read only map" returns the negative |
---|
620 | ///value of the |
---|
621 | ///value returned by the |
---|
622 | ///given map. Its \c Key and \c Value will be inherited from \c M. |
---|
623 | ///The unary \c - operator must be defined for \c Value, of course. |
---|
624 | |
---|
625 | template<typename M> |
---|
626 | class NegMap : public MapBase<typename M::Key, typename M::Value> { |
---|
627 | const M& m; |
---|
628 | public: |
---|
629 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
630 | typedef typename Parent::Key Key; |
---|
631 | typedef typename Parent::Value Value; |
---|
632 | |
---|
633 | ///Constructor |
---|
634 | NegMap(const M &_m) : m(_m) {}; |
---|
635 | Value operator[](Key k) const {return -m[k];} |
---|
636 | }; |
---|
637 | |
---|
638 | ///Returns a \ref NegMap class |
---|
639 | |
---|
640 | ///This function just returns a \ref NegMap class. |
---|
641 | ///\relates NegMap |
---|
642 | template <typename M> |
---|
643 | inline NegMap<M> negMap(const M &m) { |
---|
644 | return NegMap<M>(m); |
---|
645 | } |
---|
646 | |
---|
647 | |
---|
648 | ///Absolute value of a map |
---|
649 | |
---|
650 | ///This \ref concept::ReadMap "read only map" returns the absolute value |
---|
651 | ///of the |
---|
652 | ///value returned by the |
---|
653 | ///given map. Its \c Key and \c Value will be inherited |
---|
654 | ///from <tt>M</tt>. <tt>Value</tt> |
---|
655 | ///must be comparable to <tt>0</tt> and the unary <tt>-</tt> |
---|
656 | ///operator must be defined for it, of course. |
---|
657 | /// |
---|
658 | ///\bug We need a unified way to handle the situation below: |
---|
659 | ///\code |
---|
660 | /// struct _UnConvertible {}; |
---|
661 | /// template<class A> inline A t_abs(A a) {return _UnConvertible();} |
---|
662 | /// template<> inline int t_abs<>(int n) {return abs(n);} |
---|
663 | /// template<> inline long int t_abs<>(long int n) {return labs(n);} |
---|
664 | /// template<> inline long long int t_abs<>(long long int n) {return ::llabs(n);} |
---|
665 | /// template<> inline float t_abs<>(float n) {return fabsf(n);} |
---|
666 | /// template<> inline double t_abs<>(double n) {return fabs(n);} |
---|
667 | /// template<> inline long double t_abs<>(long double n) {return fabsl(n);} |
---|
668 | ///\endcode |
---|
669 | |
---|
670 | |
---|
671 | template<typename M> |
---|
672 | class AbsMap : public MapBase<typename M::Key, typename M::Value> { |
---|
673 | const M& m; |
---|
674 | public: |
---|
675 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
676 | typedef typename Parent::Key Key; |
---|
677 | typedef typename Parent::Value Value; |
---|
678 | |
---|
679 | ///Constructor |
---|
680 | AbsMap(const M &_m) : m(_m) {}; |
---|
681 | Value operator[](Key k) const { |
---|
682 | Value tmp = m[k]; |
---|
683 | return tmp >= 0 ? tmp : -tmp; |
---|
684 | } |
---|
685 | |
---|
686 | }; |
---|
687 | |
---|
688 | ///Returns a \ref AbsMap class |
---|
689 | |
---|
690 | ///This function just returns a \ref AbsMap class. |
---|
691 | ///\relates AbsMap |
---|
692 | template<typename M> |
---|
693 | inline AbsMap<M> absMap(const M &m) { |
---|
694 | return AbsMap<M>(m); |
---|
695 | } |
---|
696 | |
---|
697 | ///Converts an STL style functor to a map |
---|
698 | |
---|
699 | ///This \ref concept::ReadMap "read only map" returns the value |
---|
700 | ///of a |
---|
701 | ///given map. |
---|
702 | /// |
---|
703 | ///Template parameters \c K and \c V will become its |
---|
704 | ///\c Key and \c Value. They must be given explicitely |
---|
705 | ///because a functor does not provide such typedefs. |
---|
706 | /// |
---|
707 | ///Parameter \c F is the type of the used functor. |
---|
708 | |
---|
709 | |
---|
710 | template<typename F, |
---|
711 | typename K = typename F::argument_type, |
---|
712 | typename V = typename F::result_type, |
---|
713 | typename NC = False> |
---|
714 | class FunctorMap : public MapBase<K, V> { |
---|
715 | F f; |
---|
716 | public: |
---|
717 | typedef MapBase<K, V> Parent; |
---|
718 | typedef typename Parent::Key Key; |
---|
719 | typedef typename Parent::Value Value; |
---|
720 | |
---|
721 | ///Constructor |
---|
722 | FunctorMap(const F &_f) : f(_f) {} |
---|
723 | |
---|
724 | Value operator[](Key k) const { return f(k);} |
---|
725 | }; |
---|
726 | |
---|
727 | ///Returns a \ref FunctorMap class |
---|
728 | |
---|
729 | ///This function just returns a \ref FunctorMap class. |
---|
730 | /// |
---|
731 | ///The third template parameter isn't necessary to be given. |
---|
732 | ///\relates FunctorMap |
---|
733 | template<typename K, typename V, typename F> inline |
---|
734 | FunctorMap<F, K, V> functorMap(const F &f) { |
---|
735 | return FunctorMap<F, K, V>(f); |
---|
736 | } |
---|
737 | |
---|
738 | template <typename F> inline |
---|
739 | FunctorMap<F, typename F::argument_type, typename F::result_type> |
---|
740 | functorMap(const F &f) { |
---|
741 | return FunctorMap<F, typename F::argument_type, |
---|
742 | typename F::result_type>(f); |
---|
743 | } |
---|
744 | |
---|
745 | template <typename K, typename V> inline |
---|
746 | FunctorMap<V (*)(K), K, V> functorMap(V (*f)(K)) { |
---|
747 | return FunctorMap<V (*)(K), K, V>(f); |
---|
748 | } |
---|
749 | |
---|
750 | |
---|
751 | ///Converts a map to an STL style (unary) functor |
---|
752 | |
---|
753 | ///This class Converts a map to an STL style (unary) functor. |
---|
754 | ///that is it provides an <tt>operator()</tt> to read its values. |
---|
755 | /// |
---|
756 | ///For the sake of convenience it also works as |
---|
757 | ///a ususal \ref concept::ReadMap "readable map", |
---|
758 | ///i.e. <tt>operator[]</tt> and the \c Key and \c Value typedefs also exist. |
---|
759 | |
---|
760 | template <typename M> |
---|
761 | class MapFunctor : public MapBase<typename M::Key, typename M::Value> { |
---|
762 | const M& m; |
---|
763 | public: |
---|
764 | typedef MapBase<typename M::Key, typename M::Value> Parent; |
---|
765 | typedef typename Parent::Key Key; |
---|
766 | typedef typename Parent::Value Value; |
---|
767 | |
---|
768 | ///\e |
---|
769 | typedef typename M::Key argument_type; |
---|
770 | ///\e |
---|
771 | typedef typename M::Value result_type; |
---|
772 | |
---|
773 | ///Constructor |
---|
774 | MapFunctor(const M &_m) : m(_m) {}; |
---|
775 | ///Returns a value of the map |
---|
776 | Value operator()(Key k) const {return m[k];} |
---|
777 | ///\e |
---|
778 | Value operator[](Key k) const {return m[k];} |
---|
779 | }; |
---|
780 | |
---|
781 | ///Returns a \ref MapFunctor class |
---|
782 | |
---|
783 | ///This function just returns a \ref MapFunctor class. |
---|
784 | ///\relates MapFunctor |
---|
785 | template<typename M> |
---|
786 | inline MapFunctor<M> mapFunctor(const M &m) { |
---|
787 | return MapFunctor<M>(m); |
---|
788 | } |
---|
789 | |
---|
790 | |
---|
791 | ///Applies all map setting operations to two maps |
---|
792 | |
---|
793 | ///This map has two \ref concept::WriteMap "writable map" |
---|
794 | ///parameters and each write request will be passed to both of them. |
---|
795 | ///If \c M1 is also \ref concept::ReadMap "readable", |
---|
796 | ///then the read operations will return the |
---|
797 | ///corresponding values of \c M1. |
---|
798 | /// |
---|
799 | ///The \c Key and \c Value will be inherited from \c M1. |
---|
800 | ///The \c Key and \c Value of M2 must be convertible from those of \c M1. |
---|
801 | |
---|
802 | template<typename M1, typename M2> |
---|
803 | class ForkMap : public MapBase<typename M1::Key, typename M1::Value> { |
---|
804 | const M1& m1; |
---|
805 | const M2& m2; |
---|
806 | public: |
---|
807 | typedef MapBase<typename M1::Key, typename M1::Value> Parent; |
---|
808 | typedef typename Parent::Key Key; |
---|
809 | typedef typename Parent::Value Value; |
---|
810 | |
---|
811 | ///Constructor |
---|
812 | ForkMap(const M1 &_m1,const M2 &_m2) : m1(_m1), m2(_m2) {}; |
---|
813 | Value operator[](Key k) const {return m1[k];} |
---|
814 | // void set(Key k, const Value &v) {m1.set(k,v); m2.set(k,v);} |
---|
815 | }; |
---|
816 | |
---|
817 | ///Returns an \ref ForkMap class |
---|
818 | |
---|
819 | ///This function just returns an \ref ForkMap class. |
---|
820 | ///\todo How to call these type of functions? |
---|
821 | /// |
---|
822 | ///\relates ForkMap |
---|
823 | ///\todo Wrong scope in Doxygen when \c \\relates is used |
---|
824 | template <typename M1, typename M2> |
---|
825 | inline ForkMap<M1, M2> forkMap(const M1 &m1,const M2 &m2) { |
---|
826 | return ForkMap<M1, M2>(m1,m2); |
---|
827 | } |
---|
828 | |
---|
829 | |
---|
830 | |
---|
831 | /* ************* BOOL MAPS ******************* */ |
---|
832 | |
---|
833 | ///Logical 'not' of a map |
---|
834 | |
---|
835 | ///This bool \ref concept::ReadMap "read only map" returns the |
---|
836 | ///logical negation of |
---|
837 | ///value returned by the |
---|
838 | ///given map. Its \c Key and will be inherited from \c M, |
---|
839 | ///its Value is <tt>bool</tt>. |
---|
840 | |
---|
841 | template <typename M> |
---|
842 | class NotMap : public MapBase<typename M::Key, bool> { |
---|
843 | const M& m; |
---|
844 | public: |
---|
845 | typedef MapBase<typename M::Key, bool> Parent; |
---|
846 | typedef typename Parent::Key Key; |
---|
847 | typedef typename Parent::Value Value; |
---|
848 | |
---|
849 | /// Constructor |
---|
850 | NotMap(const M &_m) : m(_m) {}; |
---|
851 | Value operator[](Key k) const {return !m[k];} |
---|
852 | }; |
---|
853 | |
---|
854 | ///Returns a \ref NotMap class |
---|
855 | |
---|
856 | ///This function just returns a \ref NotMap class. |
---|
857 | ///\relates NotMap |
---|
858 | template <typename M> |
---|
859 | inline NotMap<M> notMap(const M &m) { |
---|
860 | return NotMap<M>(m); |
---|
861 | } |
---|
862 | |
---|
863 | /// \brief Writable bool map for store each true assigned elements. |
---|
864 | /// |
---|
865 | /// Writable bool map for store each true assigned elements. It will |
---|
866 | /// copies all the true setted keys to the given iterator. |
---|
867 | /// |
---|
868 | /// \note The container of the iterator should contain for each element. |
---|
869 | template <typename _Iterator> |
---|
870 | class StoreBoolMap { |
---|
871 | public: |
---|
872 | typedef _Iterator Iterator; |
---|
873 | |
---|
874 | typedef typename std::iterator_traits<Iterator>::value_type Key; |
---|
875 | typedef bool Value; |
---|
876 | |
---|
877 | /// Constructor |
---|
878 | StoreBoolMap(Iterator it) : _begin(it), _end(it) {} |
---|
879 | |
---|
880 | /// Gives back the given first setted iterator. |
---|
881 | Iterator begin() const { |
---|
882 | return _begin; |
---|
883 | } |
---|
884 | |
---|
885 | /// Gives back the iterator after the last setted. |
---|
886 | Iterator end() const { |
---|
887 | return _end; |
---|
888 | } |
---|
889 | |
---|
890 | /// Setter function of the map |
---|
891 | void set(const Key& key, Value value) { |
---|
892 | if (value) { |
---|
893 | *_end++ = key; |
---|
894 | } |
---|
895 | } |
---|
896 | |
---|
897 | private: |
---|
898 | Iterator _begin, _end; |
---|
899 | }; |
---|
900 | |
---|
901 | /// \brief Writable bool map for store each true assigned elements in |
---|
902 | /// a back insertable container. |
---|
903 | /// |
---|
904 | /// Writable bool map for store each true assigned elements in a back |
---|
905 | /// insertable container. It will push back all the true setted keys into |
---|
906 | /// the container. |
---|
907 | template <typename Container> |
---|
908 | class BackInserterBoolMap { |
---|
909 | public: |
---|
910 | typedef typename Container::value_type Key; |
---|
911 | typedef bool Value; |
---|
912 | |
---|
913 | /// Constructor |
---|
914 | BackInserterBoolMap(Container& _container) : container(_container) {} |
---|
915 | |
---|
916 | /// Setter function of the map |
---|
917 | void set(const Key& key, Value value) { |
---|
918 | if (value) { |
---|
919 | container.push_back(key); |
---|
920 | } |
---|
921 | } |
---|
922 | |
---|
923 | private: |
---|
924 | Container& container; |
---|
925 | }; |
---|
926 | |
---|
927 | /// \brief Writable bool map for store each true assigned elements in |
---|
928 | /// a front insertable container. |
---|
929 | /// |
---|
930 | /// Writable bool map for store each true assigned elements in a front |
---|
931 | /// insertable container. It will push front all the true setted keys into |
---|
932 | /// the container. |
---|
933 | template <typename Container> |
---|
934 | class FrontInserterBoolMap { |
---|
935 | public: |
---|
936 | typedef typename Container::value_type Key; |
---|
937 | typedef bool Value; |
---|
938 | |
---|
939 | /// Constructor |
---|
940 | FrontInserterBoolMap(Container& _container) : container(_container) {} |
---|
941 | |
---|
942 | /// Setter function of the map |
---|
943 | void set(const Key& key, Value value) { |
---|
944 | if (value) { |
---|
945 | container.push_front(key); |
---|
946 | } |
---|
947 | } |
---|
948 | |
---|
949 | private: |
---|
950 | Container& container; |
---|
951 | }; |
---|
952 | |
---|
953 | /// \brief Writable bool map for store each true assigned elements in |
---|
954 | /// an insertable container. |
---|
955 | /// |
---|
956 | /// Writable bool map for store each true assigned elements in an |
---|
957 | /// insertable container. It will insert all the true setted keys into |
---|
958 | /// the container. |
---|
959 | template <typename Container> |
---|
960 | class InserterBoolMap { |
---|
961 | public: |
---|
962 | typedef typename Container::value_type Key; |
---|
963 | typedef bool Value; |
---|
964 | |
---|
965 | /// Constructor |
---|
966 | InserterBoolMap(Container& _container) : container(_container) {} |
---|
967 | |
---|
968 | /// Setter function of the map |
---|
969 | void set(const Key& key, Value value) { |
---|
970 | if (value) { |
---|
971 | container.insert(key); |
---|
972 | } |
---|
973 | } |
---|
974 | |
---|
975 | private: |
---|
976 | Container& container; |
---|
977 | }; |
---|
978 | |
---|
979 | /// \brief Fill the true setted elements with a given value. |
---|
980 | /// |
---|
981 | /// Writable bool map for fill the true setted elements with a given value. |
---|
982 | /// The value can be setted |
---|
983 | /// the container. |
---|
984 | template <typename Map> |
---|
985 | class FillBoolMap { |
---|
986 | public: |
---|
987 | typedef typename Map::Key Key; |
---|
988 | typedef bool Value; |
---|
989 | |
---|
990 | /// Constructor |
---|
991 | FillBoolMap(Map& _map, const typename Map::Value& _fill) |
---|
992 | : map(_map), fill(_fill) {} |
---|
993 | |
---|
994 | /// Constructor |
---|
995 | FillBoolMap(Map& _map) |
---|
996 | : map(_map), fill() {} |
---|
997 | |
---|
998 | /// Gives back the current fill value |
---|
999 | typename Map::Value fillValue() const { |
---|
1000 | return fill; |
---|
1001 | } |
---|
1002 | |
---|
1003 | /// Sets the current fill value |
---|
1004 | void fillValue(const typename Map::Value& _fill) { |
---|
1005 | fill = _fill; |
---|
1006 | } |
---|
1007 | |
---|
1008 | /// Setter function of the map |
---|
1009 | void set(const Key& key, Value value) { |
---|
1010 | if (value) { |
---|
1011 | map.set(key, fill); |
---|
1012 | } |
---|
1013 | } |
---|
1014 | |
---|
1015 | private: |
---|
1016 | Map& map; |
---|
1017 | typename Map::Value fill; |
---|
1018 | }; |
---|
1019 | |
---|
1020 | |
---|
1021 | /// \brief Writable bool map which stores for each true assigned elements |
---|
1022 | /// the setting order number. |
---|
1023 | /// |
---|
1024 | /// Writable bool map which stores for each true assigned elements |
---|
1025 | /// the setting order number. |
---|
1026 | template <typename Map> |
---|
1027 | class SettingOrderBoolMap { |
---|
1028 | public: |
---|
1029 | typedef typename Map::Key Key; |
---|
1030 | typedef bool Value; |
---|
1031 | |
---|
1032 | /// Constructor |
---|
1033 | SettingOrderBoolMap(Map& _map) |
---|
1034 | : map(_map), counter(0) {} |
---|
1035 | |
---|
1036 | /// Number of setted keys. |
---|
1037 | int num() const { |
---|
1038 | return counter; |
---|
1039 | } |
---|
1040 | |
---|
1041 | /// Setter function of the map |
---|
1042 | void set(const Key& key, Value value) { |
---|
1043 | if (value) { |
---|
1044 | map.set(key, counter++); |
---|
1045 | } |
---|
1046 | } |
---|
1047 | |
---|
1048 | private: |
---|
1049 | Map& map; |
---|
1050 | int counter; |
---|
1051 | }; |
---|
1052 | |
---|
1053 | /// @} |
---|
1054 | } |
---|
1055 | |
---|
1056 | #endif // LEMON_MAPS_H |
---|